Show simple item record

Validation of Ionospheric Specifications During Geomagnetic Storms: TEC and foF2 During the 2013 March Storm Event

dc.contributor.authorShim, J. S.
dc.contributor.authorTsagouri, I.
dc.contributor.authorGoncharenko, L.
dc.contributor.authorRastaetter, L.
dc.contributor.authorKuznetsova, M.
dc.contributor.authorBilitza, D.
dc.contributor.authorCodrescu, M.
dc.contributor.authorCoster, A. J.
dc.contributor.authorSolomon, S. C.
dc.contributor.authorFedrizzi, M.
dc.contributor.authorFörster, M.
dc.contributor.authorFuller‐rowell, T. J.
dc.contributor.authorGardner, L. C.
dc.contributor.authorHuba, J.
dc.contributor.authorNamgaladze, A. A.
dc.contributor.authorProkhorov, B. E.
dc.contributor.authorRidley, A. J.
dc.contributor.authorScherliess, L.
dc.contributor.authorSchunk, R. W.
dc.contributor.authorSojka, J. J.
dc.contributor.authorZhu, L.
dc.date.accessioned2019-01-15T20:23:55Z
dc.date.available2020-01-06T16:40:58Zen
dc.date.issued2018-11
dc.identifier.citationShim, J. S.; Tsagouri, I.; Goncharenko, L.; Rastaetter, L.; Kuznetsova, M.; Bilitza, D.; Codrescu, M.; Coster, A. J.; Solomon, S. C.; Fedrizzi, M.; Förster, M. ; Fuller‐rowell, T. J. ; Gardner, L. C.; Huba, J.; Namgaladze, A. A.; Prokhorov, B. E.; Ridley, A. J.; Scherliess, L.; Schunk, R. W.; Sojka, J. J.; Zhu, L. (2018). "Validation of Ionospheric Specifications During Geomagnetic Storms: TEC and foF2 During the 2013 March Storm Event." Space Weather 16(11): 1686-1701.
dc.identifier.issn1542-7390
dc.identifier.issn1542-7390
dc.identifier.urihttps://hdl.handle.net/2027.42/146832
dc.description.abstractTo address challenges of assessing space weather modeling capabilities, the Community Coordinated Modeling Center is leading a newly established International Forum for Space Weather Modeling Capabilities Assessment. This paper presents preliminary results of validation of modeled foF2 (F2 layer critical frequency) and TEC (total electron content) during the first selected 2013 March storm event (17 March 2013). In this study, we used eight ionospheric models ranging from empirical to physicsâ based, coupled ionosphereâ thermosphere and data assimilation models. The quantities we considered are TEC and foF2 changes and percentage changes compared to quiet time background, and the maximum and minimum percentage changes. In addition, we considered normalized percentage changes of TEC. We compared the modeled quantities with groundâ based observations of vertical Global Navigation Satellite System TEC (provided by Massachusetts Institute of Technology Haystack Observatory) and foF2 data (provided by Global Ionospheric Radio Observatory) at the 12 locations selected in middle latitudes of the American and Europeanâ African longitude sectors. To quantitatively evaluate the models’ performance, we calculated skill scores including correlation coefficient, rootâ mean square error (RMSE), ratio of the modeled to observed maximum percentage changes (yield), and timing error. Our study indicates that average RMSEs of foF2 range from about 1 MHz to 1.5 MHz. The average RMSEs of TEC are between ~5 and ~10 TECU (1 TEC Unit = 1016 el/m2). dfoF2[%] RMSEs are between 15% and 25%, which is smaller than RMSE of dTEC[%] ranging from 30% to 60%. The performance of the models varies with the location and metrics considered.Key PointsfoF2/TEC and foF2/TEC changes during a storm predicted by eight ionosphere models were compared with GIRO foF2 and GPS TEC measurementsSkill scores (e.g., correlation coefficient, RMSE, yield, and timing error) were calculatedModel performance strongly depends on the quantities considered, the type of metrics used, and the location considered
dc.publisherWiley Periodicals, Inc.
dc.publisherUtah State University.
dc.titleValidation of Ionospheric Specifications During Geomagnetic Storms: TEC and foF2 During the 2013 March Storm Event
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146832/1/swe20769-sup-0001-2018SW002034-SI.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146832/2/swe20769.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146832/3/swe20769_am.pdf
dc.identifier.doi10.1029/2018SW002034
dc.identifier.sourceSpace Weather
dc.identifier.citedreferenceRichards, P. G., Fennelly, J. A., & Torr, D. G. ( 1994 ). EUVAC: A solar EUV flux model for aeronomic calculations. Journal of Geophysical Research, 99 ( A5 ), 8981 â 8992. https://doi.org/10.1029/94JA00518
dc.identifier.citedreferenceMillward, G. H., Müllerâ Wodrag, I. C. F., Aylward, A. D., Fullerâ Rowell, T. J., Richmond, A. D., & Moffett, R. J. ( 2001 ). An investigation into the influence of tidal forcing on F region equatorial vertical ion drift using a global ionosphereâ thermosphere model with coupled electrodynamics. Journal of Geophysical Research, 106 ( A11 ), 24,733 â 24,744. https://doi.org/10.1029/2000JA000342
dc.identifier.citedreferenceNamgaladze, A. A., Korenkov, Y. N., Klimenko, V. V., Karpov, I. V., Bessarab, F. S., Surotkin, V. A., Glushchenko, T. A., & Naumova, N. M. ( 1988 ). Global model of the thermosphereâ ionosphereâ protonosphere system. Pure and Applied Geophysics, 127 ( 2/3 ), 219 â 254. https://doi.org/10.1007/BF00879812
dc.identifier.citedreferenceNamgaladze, A. A., Korenkov, Y. N., Klimenko, V. V., Karpov, I. V., Surotkin, V. A., & Naumova, N. M. ( 1991 ). Numerical modeling of the thermosphereâ ionosphereâ protonosphere system. Journal of Atmospheric and Terrestrial Physics, 53 ( 11/12 ), 1113 â 1124. https://doi.org/10.1016/0021â 9169(91)90060â K
dc.identifier.citedreferenceNewell, P. T., & Gjerloev, J. W. ( 2011 ). Substorm and magnetosphere characteristic scales inferred from the SuperMAG auroral electrojet indices. Journal of Geophysical Research, 116, A12232. https://doi.org/10.1029/2011JA016936
dc.identifier.citedreferenceNewell, P. T., Sotirelis, T., & Wing, S. ( 2009 ). Diffuse, monoenergetic, and broadband aurora: The global precipitation budget. Journal of Geophysical Research, 114, A09207. https://doi.org/10.1029/2009JA014326
dc.identifier.citedreferenceNishioka, M., Tsugawa, T., Jin, H., & Ishii, M. ( 2017 ). A new ionospheric storm scale based on TEC and foF2 statistics. Space Weather, 15, 228 â 239. https://doi.org/10.1002/2016SW001536
dc.identifier.citedreferenceOrús, R., Hernándezâ Pajares, M., Juan, J. M., Sanz, J., & Garcíaâ Fernández, M. ( 2002 ). Performance of different TEC models to provide GPS ionospheric corrections. Journal of Atmospheric and Solar â Terrestrial Physics, 64 ( 18 ), 2055 â 2062.
dc.identifier.citedreferenceOrús, R., Hernándezâ Pajares, M., Juan, J. M., Sanz, J., & Garcíaâ Fernández, M. ( 2003 ). Validation of the GPS TEC maps with TOPEX data. Advances in Space Research, 31 ( 3 ), 621 â 627.
dc.identifier.citedreferencePerlongo, N. J., Ridley, A. J., Cnossen, I., & Wu, C. ( 2018 ). A yearâ long comparison of GPS TEC and global ionosphereâ thermosphere models. Journal of Geophysical Research: Space Physics, 123, 1410 â 1428. https://doi.org/10.1002/2017JA024411
dc.identifier.citedreferencePicone, J. M., Hedin, A. E., Drob, D. P., & Aikin, A. C. ( 2002 ). NRLMSISEâ 00 empirical model of the atmosphere: Statistical comparisons and scientific issues. Journal of Geophysical Research, 107 ( A12 ), 1468. https://doi.org/10.1029/2002JA009430
dc.identifier.citedreferenceProkhorov, B. E., Förster, M., Lesur, V., Namgaladze, A. A., Holschneider, M., & Stolle, C. ( 2018 ). Modeling of the ionospheric current system and calculating its contribution to the Earth’s magnetic field. Magnetic fields. In Magnetic fields the solar system, astrophysics and space science library (Vol. 448, pp. 263 â 292 ). Cham: Springer. https://doi.org/10.1007/978â 3â 319â 64292â 5_10
dc.identifier.citedreferenceRastätter, L., Shim, J. S., Kuznetsova, M. M., Kilcommons, L. M., Knipp, D. J., Codrescu, M., Fullerâ Rowell, T., Emery, B., Weimer, D. R., Cosgrove, R., Wiltberger, M., Raeder, J., Li, W., Tóth, G., & Welling, D. ( 2016 ). GEMâ CEDAR challenge: Poynting flux at DMSP and modeled Joule heat. Space Weather, 14, 113 â 135. https://doi.org/10.1002/2015SW001238
dc.identifier.citedreferenceReinisch, B., & Galkin, I. ( 2011 ). Global Ionospheric Radio Observatory (GIRO). Earth, Planets and Space, 63 ( 4 ), 377 â 381. https://doi.org/10.5047/eps.2011.03.001
dc.identifier.citedreferenceRichmond, A. D., Ridley, E. C., & Roble, R. G. ( 1992 ). A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophysical Research Letters, 19 ( 6 ), 601 â 604. https://doi.org/10.1029/92GL00401
dc.identifier.citedreferenceRideout, W., & Coster, A. ( 2006 ). Automated GPS processing for global total electron content data. GPS Solutions, 10 ( 3 ), 219 â 228. https://doi.org/10.1007/s10291â 006â 0029â 5
dc.identifier.citedreferenceRidley, A. J., Deng, Y., & Toth, G. ( 2006 ). The global ionosphereâ thermosphere model. Journal of Atmospheric and Solar â Terrestrial Physics, 68 ( 8 ), 839 â 864.
dc.identifier.citedreferenceRoble, R. G., & Ridley, E. C. ( 1987 ). An auroral model for the NCAR thermospheric general circulation model (TGCM). Annales Geophysicae, 5A, 369 â 382.
dc.identifier.citedreferenceRoble, R. G., Ridley, E. C., Richmond, A. D., & Dickinson, R. E. ( 1988 ). A coupled thermosphere/ionosphere general circulation model. Geophysical Research Letters, 15 ( 12 ), 1325 â 1328. https://doi.org/10.1029/GL015i012p01325
dc.identifier.citedreferenceScherliess, L., & Fejer, B. G. ( 1999 ). Radar and satellite global equatorial F â region vertical drift model. Journal of Geophysical Research, 104 ( A4 ), 6829 â 6842. https://doi.org/10.1029/1999JA900025
dc.identifier.citedreferenceScherliess, L., Schunk, R. W., Sojka, J. J., & Thompson, D. C. ( 2004 ). Development of a physicsâ based reduced state Kalman filter for the ionosphere. Radio Science, 39, RS1S04. https://doi.org/10.1029/2002RS002797
dc.identifier.citedreferenceScherliess, L., Schunk, R. W., Sojka, J. J., Thompson, D. C., & Zhu, L. ( 2006 ). Utah State University global assimilation of ionospheric measurements Gaussâ Markov Kalman filter model of the ionosphere: Model description and validation. Journal of Geophysical Research, 111, A11315. https://doi.org/10.1029/2006JA011712
dc.identifier.citedreferenceSchunk, R. W., Scherliess, L., Sojka, J. J., Thompson, D. C., Anderson, D. N., Codrescu, M., Minter, C., Fullerâ Rowell, T. J., Heelis, R. A., Hairston, M., & Howe, B. M. ( 2004 ). Global Assimilation of Ionospheric Measurements (GAIM). Radio Science, 39, RS1S02. https://doi.org/10.1029/2002RS002794
dc.identifier.citedreferenceSchunk, R. W., Sojka, J. J., & Eccles, J. V. ( 1997 ). Expanded capabilities for the ionospheric forecast model, Rep. AFRLâ VSâ HAâ TRâ 98â 0001, Air Force Res. Lab., Hanscom Air Force Base, Mass., December.
dc.identifier.citedreferenceShim, J. S., Jee, G., & Scherliess, L. ( 2017 ). Climatology of plasmaspheric total electron content obtained from Jason 1 satellite. Journal of Geophysical Research: Space Physics, 122, 1611 â 1623. https://doi.org/10.1002/2016JA023444
dc.identifier.citedreferenceShim, J. S., Kuznetsova, M., Rastätter, L., Bilitza, D., Butala, M., Codrescu, M., Emery, B. A., Foster, B., Fullerâ Rowell, T. J., Huba, J., Mannucci, A. J., Pi, X., Ridley, A., Scherliess, L., Schunk, R. W., Sojka, J. J., Stephens, P., Thompson, D. C., Weimer, D., Zhu, L., Anderson, D., Chau, J. L., & Sutton, E. ( 2014 ). Systematic evaluation of Ionosphere/Thermosphere (IT) models: CEDAR Electrodynamics Thermosphere Ionosphere (ETI) challenge (2009â 2010). In Modeling the ionosphereâ thermosphere system, Geophysical Monograph Series (pp. 145 â 160 ). Washington, DC: American Geophysical Union.
dc.identifier.citedreferenceShim, J. S., Kuznetsova, M., Rastätter, L., Bilitza, D., Butala, M., Codrescu, M., Emery, B. A., Foster, B., Fullerâ Rowell, T. J., Huba, J., Mannucci, A. J., Pi, X., Ridley, A., Scherliess, L., Schunk, R. W., Sojka, J. J., Stephens, P., Thompson, D. C., Weimer, D., Zhu, L., & Sutton, E. ( 2012 ). CEDAR Electrodynamics Thermosphere Ionosphere (ETI) challenge for systematic assessment of ionosphere/thermosphere models: Electron density, neutral density, NmF2, and hmF2 using space based observations. Space Weather, 10, S10004. https://doi.org/10.1029/2012SW000851
dc.identifier.citedreferenceShim, J. S., Kuznetsova, M., Rastätter, L., Hesse, M., Bilitza, D., Butala, M., Codrescu, M., Emery, B., Foster, B., Fullerâ Rowell, T., Huba, J., Mannucci, A. J., Pi, X., Ridley, A., Scherliess, L., Schunk, R. W., Stephens, P., Thompson, D. C., Zhu, L., Anderson, D., Chau, J. L., Sojka, J. J., & Rideout, B. ( 2011 ). CEDAR Electrodynamics Thermosphere Ionosphere (ETI) challenge for systematic assessment of ionosphere/thermosphere models: NmF2, hmF2, and vertical drift using groundâ based observations. Space Weather, 9, S12003. https://doi.org/10.1029/2011SW000727
dc.identifier.citedreferenceShim, J. S., Rastätter, L., Kuznetsova, M., Bilitza, D., Codrescu, M., Coster, A. J., et al. ( 2017 ). CEDARâ GEM challenge for systematic assessment of ionosphere/thermosphere models in predicting TEC during the 2006 December storm event. Space Weather, 15, 1238 â 1256. https://doi.org/10.1002/2017SW001649
dc.identifier.citedreferenceSolomon, S. C., Burns, A. G., Emery, B. A., Mlynczak, M. G., Qian, L., Wang, W., Weimer, D. R., & Wiltberger, M. ( 2012 ). Modeling studies of the impact of highâ speed streams and coâ rotating interaction regions on the thermosphereâ ionosphere. Journal of Geophysical Research, 117, A00L11. https://doi.org/10.1029/2011JA017417
dc.identifier.citedreferenceSolomon, S. C., Qian, L., & Mannucci, A. J. ( 2018 ). Ionospheric electron content during solar cycle 23. Journal of Geophysical Research: Space Physics, 123, 5223. https://doi.org/10.1029/2018JA025464
dc.identifier.citedreferenceWebb, P. A., Kuznetsova, M. M., Hesse, M., Rastaetter, L., & Chulaki, A. ( 2009 ). Ionosphereâ thermosphere models at the Community Coordinated Modeling Center. Radio Science, 44, RS0A34. https://doi.org/10.1029/2008RS004108
dc.identifier.citedreferenceWeimer, D. R. ( 2005 ). Improved ionospheric electrodynamic models and application to calculating Joule heating rates. Journal of Geophysical Research, 110, A05306. https://doi.org/10.1029/2004JA010884
dc.identifier.citedreferenceYue, X., Wan, W., Liu, L., Liu, J., Zhang, S., Schreiner, W. S., Zhao, B., & Hu, L. ( 2016 ). Mapping the conjugate and corotating stormâ enhanced density during 17 March 2013 storm through data assimilation. Journal of Geophysical Research: Space Physics, 121, 12,202 â 12,210. https://doi.org/10.1002/2016JA023038
dc.identifier.citedreferenceZhang, S.â R., Zhang, Y., Wang, W., & Verkhoglyadova, O. P. ( 2017 ). Geospace system responses to the St. Patrick’s Day storms in 2013 and 2015. Journal of Geophysical Research: Space Physics, 122, 6901 â 6906. https://doi.org/10.1002/2017JA024232
dc.identifier.citedreferenceZhu, L., Schunk, R. W., Jee, G., Scherliess, L., Sojka, J. J., & Thompson, D. C. ( 2006 ). Validation study of the ionosphere forecast model using the TOPEX total electron content measurements. Radio Science, 41, RS5S11. https://doi.org/10.1029/2005RS003336
dc.identifier.citedreferenceAnderson, D. N., Buonsanto, M. J., Codrescu, M., Decker, D., Fesen, C. G., Fullerâ Rowell, T. J., Reinisch, B. W., Richards, P. G., Roble, R. G., Schunk, R. W., & Sojka, J. J. ( 1998 ). Intercomparison of physical models and observations of the ionosphere. Journal of Geophysical Research, 103 ( A2 ), 2179 â 2192. https://doi.org/10.1029/97JA02872
dc.identifier.citedreferenceAraujoâ Pradere, E. A., Fullerâ Rowell, T. J., Spencer, P. S. J., & Minter, C. F. ( 2007 ). Differential validation of the USâ TEC model. Radio Science, 42, RS3016. https://doi.org/10.1029/2006RS003459
dc.identifier.citedreferenceBilitza, D., Altadill, D., Truhlik, V., Shubin, V., Galkin, I., Reinisch, B., & Huang, X. ( 2017 ). International Reference Ionosphere 2016: From ionospheric climate to realâ time weather predictions. Space Weather, 15, 418 â 429. https://doi.org/10.1002/2016SW001593
dc.identifier.citedreferenceBilitza, D., Altadill, D., Zhang, Y., Mertens, C., Truhlik, V., Richards, P., McKinnell, L. A., & Reinisch, B. ( 2014 ). The International Reference Ionosphere 2012â A model of international collaboration. Journal of Space Weather and Space Climate, 4, 1 â 12. https://doi.org/10.1051/swsc/2014004
dc.identifier.citedreferenceSchunk, R. W., Scherliess, L., & Sojka, J. J. ( 2002 ). Ionospheric specification and forecast modeling. Journal of Spacecraft and Rockets, 39 ( 2 ), 314 â 324.
dc.identifier.citedreferenceBurns, A. G., Wang, W., Wiltberger, M., Solomon, S. C., Spence, H., Killeen, T. L., Lopez, R. E., & Landivar, J. E. ( 2008 ). An event study to provide validation of TING and CMIT geomagnetic middleâ latitude electron densities at the F 2 peak. Journal of Geophysical Research, 113, A05310. https://doi.org/10.1029/2007JA012931
dc.identifier.citedreferenceChamberlin, P. C., Woods, T. N., & Eparvier, F. G. ( 2007 ). Flare Irradiance Spectral Model (FISM): Daily component algorithms and results. Space Weather, 5, S07005. https://doi.org/10.1029/2007SW000316
dc.identifier.citedreferenceCodrescu, M. V., Fullerâ Rowell, T. J., Foster, J. C., Holt, J. M., & Cariglia, S. J. ( 2000 ). Electric field variability associated with the Millstone Hill electric field model. Journal of Geophysical Research, 105 ( A3 ), 5265 â 5273. https://doi.org/10.1029/1999JA900463
dc.identifier.citedreferenceDmitriev, A. V., Suvorova, V., Klimenko, M. V., Klimenko, V. V., Ratovsky, K. G., Rakhmatulin, R. A., & Parkhomov, V. A. ( 2017 ). Predictable and unpredictable ionospheric disturbances during St. Patrick’s Day magnetic storms of 2013 and 2015 and on 8â 9 March 2008. Journal of Geophysical Research: Space Physics, 122, 2398 â 2423. https://doi.org/10.1002/2016JA0232
dc.identifier.citedreferenceDrob, D. P., Emmert, J. T., Crowley, G., Picone, J. M., Shepherd, G. G., Skinner, W., Hays, P., Niciejewski, R. J., Larsen, M., She, C. Y., Meriwether, J. W., Hernandez, G., Jarvis, M. J., Sipler, D. P., Tepley, C. A., O’Brien, M. S., Bowman, J. R., Wu, Q., Murayama, Y., Kawamura, S., Reid, I. M., & Vincent, R. A. ( 2008 ). An empirical model of the Earth’s horizontal wind fields: HWM07. Journal of Geophysical Research, 113, A12304. https://doi.org/10.1029/2008JA013668
dc.identifier.citedreferenceFeltens, J., Angling, M., Jacksonâ Booth, N., Jakowski, N., Hoque, M., Hernándezâ Pajares, M., Aragónâ à ngel, A., Orús, R., & Zandbergen, R. ( 2011 ). Comparative testing of four ionospheric models driven with GPS measurements. Radio Science, 46, RS0D12. https://doi.org/10.1029/2010RS004584
dc.identifier.citedreferenceFuller â Rowell, T. J., & Evans, D. S. ( 1987 ). Heightâ integrated Pedersen and Hall conductivity patterns inferred from the TIROSâ NOAA satellite data. Journal of Geophysical Research, 92 ( A7 ), 7606 â 7618.
dc.identifier.citedreferenceFullerâ Rowell, T., Araujoâ Pradere, E., & Codrescu, M. ( 2000 ). An empirical ionospheric stormâ time correction model. Advances in Space Research, 25 ( 1 ), 139 â 148. https://doi.org/10.1016/S0273â 1177(99)00911â 4
dc.identifier.citedreferenceFullerâ Rowell, T., Codrescu, M., Araujoâ Pradere, E., & Kutiev, I. ( 1999 ). Progress in developing a stormâ time ionospheric correction model. Advances in Space Research, 22 ( 6 ), 821 â 827. https://doi.org/10.1016/S0273â 1177(98)00105â 7
dc.identifier.citedreferenceFullerâ Rowell, T. J., Codrescu, M. C., & Wilkinson, P. ( 2000 ). Quantitative modeling of the ionospheric response to geomagnetic activity. Annales de Geophysique, 18 ( 7 ), 766 â 781. https://doi.org/10.1007/s00585â 000â 0766â 7
dc.identifier.citedreferenceFullerâ Rowell, T. J., Rees, D., Quegan, S., Moffett, R. J., Codrescu, M. V., & Millward, G. H. ( 1996 ). A coupled thermosphereâ ionosphere model (CTIM). In R. W. Schunk (Ed.), Handbook of Ionospheric Models (pp. 217 â 238 ). Logan, Utah: Utah State University.
dc.identifier.citedreferenceHagan, M. E., Burrage, M. D., Forbes, J. M., Hackney, J., Randel, W. J., & Zhang, X. ( 1999 ). GSWMâ 98: Results for migrating solar tides. Journal of Geophysical Research, 104 ( A4 ), 6813 â 6828. https://doi.org/10.1029/1998JA900125
dc.identifier.citedreferenceHardy, D. A., Gussenhoven, M. S., & Holeman, E. ( 1985 ). A statistical model of auroral electron precipitation. Journal of Geophysical Research, 90 ( A5 ), 4229 â 4248. https://doi.org/10.1029/JA090iA05p04229
dc.identifier.citedreferenceHedin, A. E. ( 1991 ). Extension of the MSIS thermospheric model into the middle and lower atmosphere. Journal of Geophysical Research, 96 ( A2 ), 1159 â 1172. https://doi.org/10.1029/90JA02125
dc.identifier.citedreferenceHedin, A. E., Biondi, M. A., Burnside, R. G., Hernandez, G., Johnson, R. M., Killeen, T. L., Mazaudier, C., Meriwether, J. W., Salah, J. E., Sica, R. J., Smith, R. W., Spencer, N. W., Wickwar, V. B., & Virdi, T. S. ( 1991 ). Revised global model of thermospheric winds using satellite and groundâ based observations. Journal of Geophysical Research, 96 ( A5 ), 7657 â 7688. https://doi.org/10.1029/91JA00251
dc.identifier.citedreferenceHeppner, J. P., & Maynard, N. C. ( 1987 ). Empirical high latitude electric field models. Journal of Geophysical Research, 92 ( A5 ), 4467 â 4489. https://doi.org/10.1029/JA092iA05p04467
dc.identifier.citedreferenceHuba, J., Joyce, G., & Fedder, J. ( 2000 ). Sami2 is Another Model of the Ionosphere (SAMI2): A new lowâ latitude ionosphere model. Journal of Geophysical Research, 105 ( A10 ), 23,035 â 23,053. https://doi.org/10.1029/2000JA000035
dc.identifier.citedreferenceHuba, J. D., Joyce, G., & Krall, J. ( 2008 ). Threeâ dimensional equatorial spread F modeling. Geophysical Research Letters, 35, L10102. https://doi.org/10.1029/2008GL033509
dc.identifier.citedreferenceHuba, J. D., Sazykin, S., & Coster, A. ( 2017 ). SAMI3â RCM simulation of the 17 March 2015 geomagnetic storm. Journal of Geophysical Research: Space Physics, 122, 1246 â 1257. https://doi.org/10.1002/2016JA023341
dc.identifier.citedreferenceIijima, T., & Potemra, T. A. ( 1976 ). Fieldâ aligned currents in the dayside cusp observed by Triad. Journal of Geophysical Research, 8, 5971 â 5979. https://doi.org/10.1029/JA081i034p05971
dc.identifier.citedreferenceMaruyama, N., Richmond, A. D., Fullerâ Rowell, T. J., Codrescu, M. V., Sazykin, S., Toffoletto, F. R., Spiro, R. W., & Millward, G. H. ( 2005 ). Interaction between direct penetration and disturbance dynamo electric fields in the stormâ time equatorial ionosphere. Geophysical Research Letters, 32, L17105. https://doi.org/10.1029/2005GL023763
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.