Show simple item record

Root endophytes and invasiveness: no difference between native and non‐native Phragmites in the Great Lakes Region

dc.contributor.authorBickford, Wesley A.
dc.contributor.authorGoldberg, Deborah E.
dc.contributor.authorKowalski, Kurt P.
dc.contributor.authorZak, Donald R.
dc.date.accessioned2019-01-15T20:24:02Z
dc.date.available2020-02-03T20:18:24Zen
dc.date.issued2018-12
dc.identifier.citationBickford, Wesley A.; Goldberg, Deborah E.; Kowalski, Kurt P.; Zak, Donald R. (2018). "Root endophytes and invasiveness: no difference between native and non‐native Phragmites in the Great Lakes Region." Ecosphere (12): n/a-n/a.
dc.identifier.issn2150-8925
dc.identifier.issn2150-8925
dc.identifier.urihttps://hdl.handle.net/2027.42/146836
dc.description.abstractMicrobial interactions could play an important role in plant invasions. If invasive plants associate with relatively more mutualists or fewer pathogens than their native counterparts, then microbial communities could foster plant invasiveness. Studies examining the effects of microbes on invasive plants commonly focus on a single microbial group (e.g., bacteria) or measure only plant response to microbes, not documenting the specific taxa associating with invaders. We surveyed root microbial communities associated with co‐occurring native and non‐native lineages of Phragmites australis, across Michigan, USA. Our aim was to determine whether (1) plant lineage was a stronger predictor of root microbial community composition than environmental variables and (2) the non‐native lineage associated with more mutualistic and/or fewer pathogenic microbes than the native lineage. We used microscopy and culture‐independent molecular methods to examine fungal colonization rate and community composition in three major microbial groups (bacteria, fungi, and oomycetes) within roots. We also used microbial functional databases to assess putative functions of the observed microbial taxa. While fungal colonization of roots was significantly higher in non‐native Phragmites than the native lineage, we found no differences in root microbial community composition or potential function between the two Phragmites lineages. Community composition did differ significantly by site, with soil saturation playing a significant role in structuring communities in all three microbial groups. The relative abundance of some specific bacterial taxa did differ between Phragmites lineages at the phylum and genus level (e.g., Proteobacteria, Firmicutes). Purported function of root fungi and respiratory mode of root bacteria also did not differ between native and non‐native Phragmites. We found no evidence that native and non‐native Phragmites harbored distinct root microbial communities; nor did those communities differ functionally. Therefore, if the trends revealed at our sites are widespread, it is unlikely that total root microbial communities are driving invasion by non‐native Phragmites plants.
dc.publisherPRIMER‐E
dc.publisherWiley Periodicals, Inc.
dc.subject.otherfungi
dc.subject.otherinvasive plants
dc.subject.othermicrobes
dc.subject.othermutualists
dc.subject.otheroomycetes
dc.subject.otherpathogens
dc.subject.otherplant‐microbial interactions
dc.subject.otherroots
dc.subject.othersoil saturation
dc.subject.otherendophytes
dc.subject.otherbacteria
dc.titleRoot endophytes and invasiveness: no difference between native and non‐native Phragmites in the Great Lakes Region
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146836/1/ecs22526-sup-0001-AppendixS1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146836/2/ecs22526.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146836/3/ecs22526_am.pdf
dc.identifier.sourceEcosphere
dc.identifier.citedreferenceRyan, R. P., K. Germaine, A. Franks, D. J. Ryan, and D. N. Dowling. 2008. Bacterial endophytes: recent developments and applications. FEMS Microbiology Letters 278: 1 – 9.
dc.identifier.citedreferenceMartin, L. J., and B. Blossey. 2013. The Runaway Weed: costs and failures of Phragmites australis management in the USA. Estuaries and Coasts 36: 626 – 632.
dc.identifier.citedreferenceMcGonigle, T. P., M. H. Miller, D. G. Evans, G. L. Fairchild, and J. A. Swan. 1990. A new method which gives an objective measure of colonization of roots by vesicular‐arbuscular mycorrhizal fungi. New Phytologist 115: 495 – 501.
dc.identifier.citedreferenceMeyerson, L. A., J. T. Cronin, and P. Pyšek. 2016. Phragmites australis as a model organism for studying plant invasions. Biological Invasions 18: 2421 – 2431.
dc.identifier.citedreferenceMozdzer, T. J., J. Brisson, and E. L. G. Hazelton. 2013. Physiological ecology and functional traits of North American native and Eurasian introduced Phragmites australis lineages. AoB Plants 5. https://doi.org/10.1093/aobpla/plt048
dc.identifier.citedreferenceNelson, E. B., and M. A. Karp. 2013. Soil pathogen communities associated with native and non‐native Phragmites australis populations in freshwater wetlands. Ecology and Evolution 3: 5254 – 5267.
dc.identifier.citedreferenceNguyen, N. H., Z. Song, S. T. Bates, S. Branco, L. Tedersoo, J. Menke, J. S. Schilling, and P. G. Kennedy. 2015. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology 20: 241 – 248.
dc.identifier.citedreferenceNilsson, R. H., et al. 2013. Towards a unified paradigm for sequence‐based identification of fungi. Molecular Ecology 22: 5271 – 5277.
dc.identifier.citedreferenceOgata, H., S. Goto, K. Sato, W. Fujibuchi, and H. Bono. 1999. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research 27: 29 – 34.
dc.identifier.citedreferencePrice, A. L., J. B. Fant, and D. J. Larkin. 2013. Ecology of native vs. introduced Phragmites australis (common reed) in Chicago‐Area Wetlands. Wetlands 34: 369 – 377.
dc.identifier.citedreferenceQuast, C., E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, F. O. Glo, and P. Yarza. 2018. The SILVA ribosomal RNA gene database project: improved data processing and web‐based tools. Nucleic Acids Research 41: 590 – 596.
dc.identifier.citedreferenceR Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/
dc.identifier.citedreferenceReinhart, K. O., and R. M. Callaway. 2006. Soil biota and invasive plants. New Phytologist 170: 445 – 457.
dc.identifier.citedreferenceSalles, J. F., and C. A. Mallon. 2014. Invasive plant species set up their own niche. New Phytologist 204: 435 – 437.
dc.identifier.citedreferenceSaltonstall, K. 2002. Cryptic invasion by a non‐native genotype of the common reed, Phragmites australis, into North America. Proceedings of the National Academy of Sciences of USA 99: 2445 – 2449.
dc.identifier.citedreferenceSaltonstall, K., P. M. Peterson, and R. J. Soreng. 2004. Recognition of Phragmites australis subsp. americanus (Poaceae: Arundinoidae) in North America: evidence from morphological and genetic analyses. SIDA, Contributions to Botany 21: 683 – 692.
dc.identifier.citedreferenceSchloss, P. D., et al. 2009. Introducing mothur: open‐source, platform‐independent, community‐supported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75: 7537 – 7541.
dc.identifier.citedreferenceSchulz, B., and C. Boyle. 2005. The endophytic continuum. Mycological Research 109: 661 – 686.
dc.identifier.citedreferenceShearin, Z. R. C., M. Filipek, R. Desai, W. A. Bickford, K. P. Kowalski, and K. Clay. 2018. Fungal endophytes from seeds of invasive, non‐native Phragmites australis and their potential role in germination and seedling growth. Plant and Soil 422: 183 – 194.
dc.identifier.citedreferenceSoares, M. A., H. Li, K. P. Kowalski, M. S. Bergen, M. S. Torres, and J. F. White. 2016. Evaluation of the functional roles of fungal endophytes of Phragmites australis from high saline and low saline habitats. Biological Invasions 18: 2689 – 2702.
dc.identifier.citedreferenceStockinger, H., M. Kruger, and A. Schubler. 2010. DNA barcoding of arbuscular mycorrhizal fungi. New Phytologist 187: 461 – 474.
dc.identifier.citedreferenceSuding, K. N., W. Stanley Harpole, T. Fukami, A. Kulmatiski, A. S. Macdougall, C. Stein, and W. H. van der Putten. 2013. Consequences of plant‐soil feedbacks in invasion. Journal of Ecology 101: 298 – 308.
dc.identifier.citedreferenceThorpe, A. S., and R. M. Callaway. 2006. Interactions between invasive plants and soil ecosystems: positive feedbacks and their potential to persist. Pages 323 – 341 in M. W. Cadotte, S. M. McMahon, and T. Fukami, editors. Conceptual ecology and invasion biology: reciprocal approaches to nature. Springer, Dordrecht, The Netherlands.
dc.identifier.citedreferenceTravers, K. J., C. Chin, D. R. Rank, J. S. Eid, and S. W. Turner. 2010. A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Research 38. https://doi.org/10.1093/nar/gkq543
dc.identifier.citedreferenceTulbure, M. G., D. M. Ghioca‐Robrecht, C. A. Johnston, and D. F. Whigham. 2012. Inventory and ventilation efficiency of nonnative and native Phragmites australis (Common Reed) in tidal wetlands of the Chesapeake Bay. Estuaries and Coasts 35: 1353 – 1359.
dc.identifier.citedreferenceWard, T., et al. 2017. BugBase predicts organism‐level microbiome phenotypes. bioRxiv 133462.
dc.identifier.citedreferenceWhite, T. J., T. Bruns, S. Lee, and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pages 315 – 322 in M.   Innis, D. Gelfand, J. Sninsky, and T. White, editors. PCR protocols: a guide to methods and applications. Academic Press, Cambridge, Massachusetts, USA.
dc.identifier.citedreferenceWhite, J. F., K. I. Kingsley, K. P. Kowalski, I. Irizarry, A.   Micci, M. A. Soares, and M. S. Bergen. 2018. Disease protection and allelopathic interactions of seed‐transmitted endophytic pseudomonads of invasive reed grass ( Phragmites australis ). Plant and Soil 422: 195 – 208.
dc.identifier.citedreferenceYarwood, S. A., A. H. Baldwin, M. Gonzalez Mateu, and J. S. Buyer. 2016. Archaeal rhizosphere communities differ between the native and invasive lineages of the wetland plant Phragmites australis (common reed) in a Chesapeake Bay subestuary. Biological Invasions 18: 2717 – 2728.
dc.identifier.citedreferenceAllen, W. J., L. A. Meyerson, A. J. Flick, and J. T. Cronin. 2018. Intraspecific variation in indirect plant‐soil feedbacks influences a wetland plant invasion. Ecology. https://doi.org/10.1002/ecy.2344
dc.identifier.citedreferenceArcate, J. M., M. A. Karp, and E. B. Nelson. 2006. Diversity of Peronosporomycete (Oomycete) communities associated with the Rhizosphere of different plant species. Microbial Ecology 51: 36 – 50.
dc.identifier.citedreferenceBowen, J. L., P. J. Kearns, J. E. K. Byrnes, S. Wigginton, W. J. Allen, M. Greenwood, K. Tran, J. Yu, J. T. Cronin, and L. A. Meyerson. 2017. Lineage overwhelms environmental conditions in determining rhizosphere bacterial community structure in a cosmopolitan invasive plant. Nature Communications 8. https://doi.org/10.1038/s41467-017-00626-0
dc.identifier.citedreferenceBray, R. A., and L. T. Kurtz. 1945. Determination of total, organic and available forms of phosphate in soils. Soil Science 59: 39 – 45.
dc.identifier.citedreferenceCerri, M., et al. 2017. Oomycete communities associated with reed die‐back syndrome. Frontiers in Plant Science 8: 1 – 11.
dc.identifier.citedreferenceClarke, K. R., and R. N. Gorley. 2006. PRIMER v6: User Manual/Tutorial. PRIMER‐E, Plymouth, UK.
dc.identifier.citedreferenceClay, K., Z. R. Shearin, K. A. Bourke, W. A. Bickford, and K. P. Kowalski. 2016. Diversity of fungal endophytes in non‐native Phragmites australis in the Great Lakes. Biological Invasions 18: 2703 – 2716.
dc.identifier.citedreferenceCrocker, E. V., M. A. Karp, and E. B. Nelson. 2015. Virulence of oomycete pathogens from Phragmites australis ‐invaded and noninvaded soils to seedlings of wetland plant species. Ecology and Evolution 5: 2127 – 2139.
dc.identifier.citedreferenceDesantis, T. Z., P. Hugenholtz, N. Larsen, M. Rojas, E. L. Brodie, K. Keller, T. Huber, D. Dalevi, P. Hu, and G. L. Andersen. 2006. Greengenes, a chimera‐checked 16S rRNA gene database and workbench compatible with ARB. Applied Environmental Microbiology 72: 5069 – 5072.
dc.identifier.citedreferenceGood, I. J. 1953. The population frequencies of species and the estimation of population parameters. Biometrika 40: 237 – 264.
dc.identifier.citedreferenceHardoim, P. R., L. S. Van Overbeek, and J. D. Van Elsas. 2008. Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology 16: 463 – 471.
dc.identifier.citedreferenceHoldredge, C., M. D. Bertness, E. Von Wettberg, and B. R. Silliman. 2010. Nutrient enrichment enhances hidden differences in phenotype to drive a cryptic plant invasion. Oikos 119: 1776 – 1784.
dc.identifier.citedreferenceKlironomos, J. N. 2002. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417: 1096 – 1099.
dc.identifier.citedreferenceKosuta, S., T. Winzer, and M. Parniske. 2005. Arbuscular mycorrhiza. Pages 87 – 95 in A. J. Marquez, editor. Lotus Japonicus handbook. Springer, Dordrecht, The Netherlands.
dc.identifier.citedreferenceKowalski, K. P., et al. 2015. Advancing the science of microbial symbiosis to support invasive species management: a case study on Phragmites in the Great Lakes. Frontiers in Microbiology 6: 1 – 14.
dc.identifier.citedreferenceKřiváčková‐Suchá, O., P. Vávřová, H. Čížková, V. Čurn, and B. Kubátová. 2007. Phenotypic and genotypic variation of Phragmites australis: a comparative study of clones originating from two populations of different age. Aquatic Botany 86: 361 – 368.
dc.identifier.citedreferenceKulmatiski, A. 2018. Community level plant–soil feedbacks explain landscape distribution of native and non‐native plants. Ecology and Evolution 8: 2041 – 2049.
dc.identifier.citedreferenceLane, D. 1991. 16S/23S rRNA sequencing. Pages 115 – 175 in E. Stackebrandt and M. Goodfellow, editors. Nucleic acid techniques in bacterial systematics. Wiley, New York, New York, USA.
dc.identifier.citedreferenceLangille, M. G. I., et al. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology 31: 814 – 821.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.