Show simple item record

Diverse population trajectories among coexisting species of subarctic forest moths

dc.contributor.authorKozlov, Mikhail V.
dc.contributor.authorHunter, Mark D.
dc.contributor.authorKoponen, Seppo
dc.contributor.authorKouki, Jari
dc.contributor.authorNiemelä, Pekka
dc.contributor.authorPrice, Peter W.
dc.date.accessioned2019-01-15T20:24:52Z
dc.date.available2019-01-15T20:24:52Z
dc.date.issued2010-04
dc.identifier.citationKozlov, Mikhail V.; Hunter, Mark D.; Koponen, Seppo; Kouki, Jari; Niemelä, Pekka ; Price, Peter W. (2010). "Diverse population trajectories among coexisting species of subarctic forest moths." Population Ecology 52(2): 295-305.
dc.identifier.issn1438-3896
dc.identifier.issn1438-390X
dc.identifier.urihttps://hdl.handle.net/2027.42/146872
dc.description.abstractRecords of 232 moth species spanning 26 years (total catch of ca. 230,000 specimens), obtained by continuous light‐trapping in Kevo, northernmost subarctic Finland, were used to examine the hypothesis that life‐history traits and taxonomic position contribute to both relative abundance and temporal variability of Lepidoptera. Species with detritophagous or moss‐feeding larvae, species hibernating in the larval stage, and species pupating during the first half of the growing season were over‐represented among 42 species classified as abundant during the entire sampling period. The coefficients of variation in annual catches of species hibernating as eggs averaged 1.7 times higher than those of species hibernating as larvae or pupae. Time‐series analysis demonstrated that periodicity in fluctuations of annual catches is generally independent of life‐history traits and taxonomic affinities of the species. Moreover, closely related species with similar life‐history traits often show different population dynamics, undermining the phylogenetic constraints hypothesis. Species with the shortest (1 year) time lag in the action of negative feedback processes on population growth exhibit the largest magnitude of fluctuations. Our analyses revealed that only a few consistent patterns in the population dynamics of herbivorous moths can be deduced from life‐history characteristics of the species. Moreover, the diversity of population behaviour in one moth assemblage challenges any conventional wisdom suggesting predictable patterns. Our results raise several questions about perceptions and paradigms in insect population dynamics and stress the need for research on detritivorous insect population dynamics, as well as the need for more assemblage‐wide studies using common trapping methods to provide comparative data on related and unrelated species with different life‐history traits.
dc.publisherSpringer Japan
dc.publisherWiley Periodicals, Inc.
dc.subject.otherPopulation cycles
dc.subject.otherRarity
dc.subject.otherTemporal variability
dc.subject.otherLife histories
dc.subject.otherLepidoptera
dc.titleDiverse population trajectories among coexisting species of subarctic forest moths
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146872/1/pope0295.pdf
dc.identifier.doi10.1007/s10144-009-0183-z
dc.identifier.sourcePopulation Ecology
dc.identifier.citedreferenceRoyama T ( 1992 ) Analytical population dynamics. Chapman and Hall, London
dc.identifier.citedreferenceHunter MD, Price PW ( 1998 ) Cycles in insect populations: delayed density dependence or exogenous driving variables? Ecol Entomol 23: 216 – 222
dc.identifier.citedreferenceRedfearn A, Pimm LS ( 1988 ) Population variability and polyphagy in herbivorous insect communities. Ecol Monogr 58: 39 – 55
dc.identifier.citedreferenceRedfern M, Hunter MD ( 2005 ) Time tells: long‐term patterns in the population dynamics of the yew gall midge, Taxomyia taxi (Cecidomyiidae), over 35 years. Ecol Entomol 30: 86 – 95
dc.identifier.citedreferenceRejmanek M, Spitzer K ( 1982 ) Bionomic strategies and long‐term fluctuations in abundance of Noctuidae (Lepidoptera). Acta Entomol Bohemoslov 79: 81 – 96
dc.identifier.citedreferenceRossiter MC ( 1994 ) Maternal effects hypothesis of herbivore outbreak. Bioscience 44: 752 – 763
dc.identifier.citedreferenceInkinen P ( 1994 ) Distribution and abundance in British noctuid moths revisited. Ann Zool Fenn 31: 235 – 243
dc.identifier.citedreferenceRuohomäki K, Tanhuanpää M, Ayres MP, Kaitaniemi P, Tammaru T, Haukioja E ( 2000 ) Causes of cyclicity of Epirrita autumnata (Lepidoptera, Geometridae): grandiose theory and tedious practice. Popul Ecol 42: 211 – 223
dc.identifier.citedreferenceSAS Institute ( 2009 ) SAS version 9.2 for Windows. SAS Institute, Cary
dc.identifier.citedreferenceSeppälä M, Rastas J ( 1980 ) Vegetation map of northernmost Finland with special reference to subarctic forest limits and natural hazards. Fennia 158: 41 – 61
dc.identifier.citedreferenceSlansky F, Rodriguez JG ( 1987 ) Nutritional ecology of insects, mites, spiders and related invertebrates. Wiley, NY
dc.identifier.citedreferenceSouthwood TRE ( 1977 ) Habitat, the templet for ecological strategies? J Anim Ecol 46: 337 – 365
dc.identifier.citedreferenceSpitzer K, Rejmanek M, Soldan T ( 1984 ) The fecundity and long‐term variability in abundance of noctuid moths (Lepidoptera, Noctuidae). Oecologia 62: 91 – 93
dc.identifier.citedreferenceStenseth NC, Bjornstad ON, Falck W ( 1996 ) Is spacing behaviour coupled with predation causing the microtine density cycle? A synthesis of current process‐oriented and pattern‐oriented studies. Proc R Soc B 263: 1423 – 1435
dc.identifier.citedreferenceStiling P ( 1988 ) Density‐dependent processes and key factors in insect populations. J Anim Ecol 57: 581 – 594
dc.identifier.citedreferenceTammaru T, Haukioja E ( 1996 ) Capital breeders and income breeders among Lepidoptera—consequences to population dynamics. Oikos 77: 561 – 564
dc.identifier.citedreferenceTammaru T, Kaitaniemi P, Ruohomäki K ( 1995 ) Oviposition choices of Epirrita autumnata (Lepidoptera: Geometridae) in relation to its eruptive population dynamics. Oikos 74: 296 – 304
dc.identifier.citedreferenceTenow O ( 1972 ) The outbreaks of Oporinia autumnata Bkh. and Operophthera spp. (Lep., Geometridae) in the Scandinavian mountain chain and northern Finland 1862–1968 (PhD thesis). Zoologiska Bidrag från Uppsala ( Suppl 2 ): 1 – 107
dc.identifier.citedreferenceTurchin P ( 1990 ) Rarity of density dependence or regulation with lags? Nature 344: 660 – 663
dc.identifier.citedreferencevan Emden HF, Way MJ ( 1972 ) Host plants in the population dynamics of insects. In: van Emden HF (ed) Insect/plant relationships. Blackwell, Oxford, pp 181 – 199
dc.identifier.citedreferenceVoipio P ( 1950 ) Evolution at the population level with special reference to the game animals and practical game management. Pap Game Res 5: 1 – 176
dc.identifier.citedreferenceWasserman SS, Mitter C ( 1978 ) The relationship of body size to breadth of diet in some Lepidoptera. Ecol Entomol 3: 155 – 160
dc.identifier.citedreferenceWatt KEF ( 1964 ) Comments on fluctuations of animal populations and measures of community stability. Can Entomol 96: 1434 – 1442
dc.identifier.citedreferenceWilliams DW, Liebhold AM ( 1995 ) Detection of delayed density dependence: effects of autocorrelation in an exogenous factor. Ecology 76: 1005 – 1008
dc.identifier.citedreferenceWolda H, Marek J, Spitzer K, Is Novak ( 1994 ) Diversity and variability of Lepidoptera populations in urban Brno, Czech Republic. Eur J Entomol 91: 213 – 226
dc.identifier.citedreferenceZvereva EL, Kozlov MV ( 2006 ) Top‐down effects on population dynamics of Eriocrania miners (Lepidoptera) under pollution impact: does enemy‐free space exist? Oikos 115: 413 – 426
dc.identifier.citedreferenceZvereva EL, Kozlov MV, Kruglova OY ( 2002 ) Colour polymorphism in relation to population dynamics of the leaf beetle, Chrysomela lapponica. Evol Ecol 16: 523 – 539
dc.identifier.citedreferenceHunter MD, Varley GC, Gradwell GR ( 1997 ) Estimating the relative roles of top‐down and bottom‐up forces on insect herbivore populations: a classic study re‐visited. Proc Natl Acad Sci USA 94: 9176 – 9181
dc.identifier.citedreferenceAndrewarth HG, Birch LC ( 1954 ) The distribution and abundance of animals. University of Chicago Press, Chicago
dc.identifier.citedreferenceAriño A, Pimm LS ( 1995 ) On the nature of population extremes. Evol Ecol 9: 429 – 443
dc.identifier.citedreferenceBerryman AA ( 1987 ) The theory and classification of outbreaks. In: Barbosa P, Schultz JC (eds) Insect outbreaks. Academic, San Diego, pp 3 – 30
dc.identifier.citedreferenceBerryman AA ( 1994 ) Population dynamics: forecasting and diagnosis from time series. In: Leather SR, Watt AD, Mills NJ, Walters KFA (eds) Individuals populations and patterns in ecology. Intercept, Andover, pp 119 – 128
dc.identifier.citedreferenceBylund H, Tenow O ( 1994 ) Long‐term dynamics of leaf miners Erocrania spp., on mountain birch: alternate year fluctuations and interaction with Epirrita autumnata. Ecol Entomol 19: 310 – 318
dc.identifier.citedreferenceChitty D ( 1960 ) Population processes in the vole and their relevance to general theory. Can J Zool 38: 99 – 113
dc.identifier.citedreferenceDennis B, Taper ML ( 1994 ) Density dependence in time series observations of natural populations: estimation and testing. Ecol Monogr 64: 205 – 224
dc.identifier.citedreferenceEber S, Smith HP, Didham RK, Cornell HV ( 2001 ) Holly leaf‐miners on two continents: what makes an outbreak species? Ecol Entomol 26: 124 – 132
dc.identifier.citedreferenceFaeth SH ( 1987 ) Community structure and folivorous insect outbreaks: the roles of vertical and horizontal interactions. In: Barbosa P, Schultz JC (eds) Insect outbreaks. Academic, San Diego, pp 135 – 171
dc.identifier.citedreferenceForchhammer MC, Stenseth NC, Post E, Langvatn R ( 1998 ) Population dynamics of Norwegian red deer: density‐dependence and climatic variation. Proc R Soc B 265: 341 – 350
dc.identifier.citedreferenceFreville H, McConway K, Dodd M, Silvertown J ( 2007 ) Prediction of extinction in plants: interaction of extrinsic threats and life history traits. Ecology 88: 2662 – 2672
dc.identifier.citedreferenceGaston KJ ( 1988 ) Patterns in the local and regional dynamics of moth populations. Oikos 53: 49 – 57
dc.identifier.citedreferenceGaston KJ, McArdle BH ( 1994 ) The temporal variability of animal abundances: measures, methods and patterns. Philos Trans R Soc B Biol Sci 345: 335 – 358
dc.identifier.citedreferenceGinzburg LR, Taneyhill DE ( 1994 ) Population cycles of forest Lepidoptera: a maternal effect hypothesis. J Anim Ecol 63: 79 – 92
dc.identifier.citedreferenceHaukioja E ( 2005 ) Plant defenses and population fluctuations of forest defoliators: mechanism‐based scenarios. Ann Zool Fenn 42: 313 – 325
dc.identifier.citedreferenceHaukioja E, Niemelä P, Iso‐Iivari L, Ojala H, Aro E‐M ( 1978 ) Birch leaves as a resource for herbivores. I. Variation in the suitability of leaves. Rep Kevo Subarctic Res Stn 14: 5 – 12
dc.identifier.citedreferenceHunter AF ( 1991 ) Traits that distinguish outbreaking and nonout‐breaking Macrolepidoptera feeding on northern hardwood trees. Oikos 60: 275 – 282
dc.identifier.citedreferenceHunter AF ( 1995a ) Ecology, life history, and phylogeny of outbreak and nonoutbreak species. In: Cappuccino N, Price PW (eds) Population dynamics: new approaches and synthesis. Academic, London, pp 41 – 64
dc.identifier.citedreferenceHunter AF ( 1995b ) The ecology and evolution of reduced wings in forest macrolepidoptera. Evol Ecol 9: 275 – 287
dc.identifier.citedreferenceHunter MD ( 1998 ) Interactions between Operophtera brumata (Lepidoptera: Geometridae) and Tortix viridana (Lepidoptera: Tortricidae) on oak: new evidence from time‐series analysis. Ecol Entomol 23: 168 – 173
dc.identifier.citedreferenceHunter MD ( 2001 ) Multiple approaches to estimating the relative importance of top‐down and bottom‐up forces on insect populations: experiments, life tables, and time‐series analysis. Basic Appl Ecol 2: 295 – 309
dc.identifier.citedreferenceJalas I ( 1960 ) Eine leichtgebaute, leichttransportable Lichtreuse zum Fangen von Schmetterlingen. Ann Entomol Fenn 26: 44 – 50
dc.identifier.citedreferenceKallio P ( 1975 ) Kevo, Finland. Ecol Bull 20: 193 – 223
dc.identifier.citedreferenceKallio P, Laine U, Mäkinen Y ( 1969 ) Vascular flora of Inari Lapland. 1. Introduction and Lycopodiaceae–Polypodiaceae. Rep Kevo Subarctic Res Stn 5: 1 – 108
dc.identifier.citedreferenceKarvonen J, Laasonen EM, Aalto A, Kerppola S, Karvonen EV ( 1979 ) Lepidoptera species new to Finland, caught with continuous light trapping. Not Entomol 59: 153 – 158
dc.identifier.citedreferenceKremen C ( 1992 ) Assessing the indicator properties of species assemblages for natural areas monitoring. Ecol Appl 2: 203 – 217
dc.identifier.citedreferenceKristensen NP, Skalski AW ( 1998 ) Palaeontology and phylogeny. Lepidoptera: moths and butterflies 1. In: Kristensen NP (ed) Handbuch der Zoologie/Handbook of zoology, vol IV/35. NP Walter de Gruyter, Berlin, pp 7 – 25
dc.identifier.citedreferenceKullberg J, Albrecht A, Kaila L, Varis V ( 2002 ) Checklist of Finnish Lepidoptera—Suomen perhosten luettelo. Sahlbergia 6: 45 – 190
dc.identifier.citedreferenceKunin WE, Gaston KJ ( 1993 ) The biology of rarity: patterns, causes, and consequences. Trends Ecol Evol 8: 298 – 301
dc.identifier.citedreferenceLack D ( 1954 ) The natural regulation of animal numbers. Oxford University Press, New York
dc.identifier.citedreferenceLawton JH, Gaston KJ ( 1989 ) Temporal patterns in the herbivorous insects on bracken: a test of community predictability. J Anim Ecol 58: 1021 – 1034
dc.identifier.citedreferenceLindström J, Kaila L, Niemelä P ( 1994 ) Polyphagy and adult body size in geometrid moths. Oecologia 98: 130 – 132
dc.identifier.citedreferenceLinnaluoto ET, Koponen S ( 1980 ) Lepidoptera of Utsjoki, northernmost Finland. Kevo Notes 5: 1 – 68
dc.identifier.citedreferenceLokki J, Malmström K, Suomalainen E ( 1978 ) Migration of Vanessa cardui and Plutella xylostella (Lepidoptera) to Spitsbergen in the summer 1978. Not Entomol 58: 121 – 123
dc.identifier.citedreferenceMacArthur RH ( 1955 ) Fluctuations of animal populations and a measure of community stability. Ecology 36: 533 – 536
dc.identifier.citedreferenceMartel J, Kause A ( 2002 ) The phenological window of opportunity for early‐season birch sawflies. Ecol Entomol 27: 302 – 307
dc.identifier.citedreferenceMason RR ( 1987 ) Nonoutbreak species of forest Lepidoptera. In: Barbosa P, Schultz JC (eds) Insect outbreaks. Academic, San Diego, pp 31 – 57
dc.identifier.citedreferenceMurakami M, Yoshida K, Hara H, Toda MJ ( 2005 ) Spatio‐temporal variation in Lepidopteran larval assemblages associated with oak, Quercus crispula: the importance of leaf quality. Ecol Entomol 30: 521 – 531
dc.identifier.citedreferenceMyers JH ( 1988 ) Can a general hypothesis explain population cycles of forest Lepidoptera? Adv Ecol Res 18: 179 – 242
dc.identifier.citedreferenceNew TR ( 1997 ) Are Lepidoptera an effective ‘umbrella group’ for biodiversity conservation? J Insect Conserv 1: 5 – 12
dc.identifier.citedreferenceNiemelä P, Hanhimäki S, Mannila R ( 1981 ) The relationship of adult size in noctuid moths (Lepidoptera, Noctuidae) to breadth of diet and growth form of host plants. Ann Entomol Fenn 47: 17 – 20
dc.identifier.citedreferencePollard E, Lakhani KH, Rothery P ( 1987 ) The detection of density‐dependence from a series of annual censuses. Ecology 68: 2046 – 2055
dc.identifier.citedreferencePrice PW ( 1990 ) Insect herbivore population dynamics: is a new paradigm available? Symp Biol Hung 39: 177 – 190
dc.identifier.citedreferencePrice PW ( 1994 ) Phylogenetic constraints, adaptive syndromes, and emergent properties: from individuals to population dynamics. Res Popul Ecol 36: 3 – 14
dc.identifier.citedreferencePrice PW ( 1997 ) Insect ecology, 3rd edn. Wiley, NY
dc.identifier.citedreferencePrice PW ( 2003 ) Macroevolutionary theory on macroecological patterns. Cambridge Univ Press, Cambridge
dc.identifier.citedreferencePrice PW, Hunter MD ( 2005 ) Long‐term population dynamics of a sawfly show strong bottom‐up effects. J Anim Ecol 74: 917 – 925
dc.identifier.citedreferencePrice PW, Cobb N, Craig TP, Fernandes GW, Itami JK, Mopper S, Preszler RW ( 1990 ) Insect herbivore population dynamics on trees and shrubs: new approaches relevant to latent and eruptive species and life table development. In: Bernays EA (ed) Insect‐plant interactions, vol 2. CRC, Boca Raton, pp 1 – 38
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.