Show simple item record

Central Nervous System Reorganization in a Variety of Chronic Pain States: A Review

dc.contributor.authorHenry, Douglas E.
dc.contributor.authorChiodo, Anthony E.
dc.contributor.authorYang, Weibin
dc.date.accessioned2019-01-15T20:24:53Z
dc.date.available2019-01-15T20:24:53Z
dc.date.issued2011-12
dc.identifier.citationHenry, Douglas E.; Chiodo, Anthony E.; Yang, Weibin (2011). "Central Nervous System Reorganization in a Variety of Chronic Pain States: A Review." PM&R 3(12): 1116-1125.
dc.identifier.issn1934-1482
dc.identifier.issn1934-1563
dc.identifier.urihttps://hdl.handle.net/2027.42/146873
dc.description.abstractChronic pain can develop from numerous conditions and is one of the most widespread and disabling health problems today. Unfortunately, the pathophysiology of chronic pain in most of these conditions, along with consistently effective treatments, remain elusive. However, recent advances in neuroimaging and neurophysiology are rapidly expanding our understanding of these pain syndromes. It is now clear that substantial functional and structural changes, or plasticity, in the central nervous system (CNS) are associated with many chronic pain syndromes. A group of cortical and subcortical brain regions, often referred to as the “pain matrix,” often show abnormalities on functional imaging studies in persons with chronic pain, even with different pain locations and etiologies. Changes in the motor and sensory homunculus also are seen. Some of these CNS changes return to a normal state with resolution of the pain. It is hoped that this knowledge will lead to more effective treatments or even new preventative measures. The purpose of this article is to review recent advances in the understanding of the CNS changes associated with chronic pain in a number of clinical entities encountered in the field of physical medicine and rehabilitation. These clinical entities include nonspecific low back pain, fibromyalgia, complex regional pain syndrome, postamputation phantom pain, and chronic pain after spinal cord injury.
dc.publisherJohn Libbey Eurotext
dc.publisherWiley Periodicals, Inc.
dc.titleCentral Nervous System Reorganization in a Variety of Chronic Pain States: A Review
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelKinesiology and Sports
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartment of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI
dc.contributor.affiliationotherDepartment of Developmental and Rehabilitative Pediatrics, Children’s Hospital, Cleveland Clinic, 2801 MLK Jr Dr, Cleveland, OH 44104
dc.contributor.affiliationotherVA North Texas Health Care System, University of Texas Southwestern Medical School, Rehabilitation Institute of Texas, Dallas, TX
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146873/1/pmr21116.pdf
dc.identifier.doi10.1016/j.pmrj.2011.05.018
dc.identifier.sourcePM&R
dc.identifier.citedreferenceA. Bechara, D. Tranel, H. Damasio. Characterization of the decision‐making deficit of patients with ventromedial prefrontal cortex lesions. Brain. 2000; 123: 2189 – 2202.
dc.identifier.citedreferenceG.L. Moseley, A. Gallace, C. Spence. Is mirror therapy all it is cracked up to be?. Current evidence and future directions. Pain. 2008; 138: 7 – 10.
dc.identifier.citedreferenceA. Curt, H. Alkadhi, G.R. Crelier, S.H. Boendermaker, M.C. Hepp‐Reymond, S.S. Kollias. Changes of non‐affected upper limb cortical representation in paraplegic patients as assessed by fMRI. Brain. 2002; 125: 2567 – 2578.
dc.identifier.citedreferenceM. Lotze, U. Laubis‐Herrmann, H. Topka. Combination of TMS and fMRI reveals a specific pattern of reorganization in M1 in patients after complete spinal cord injury. Restor Neurol Neurosci. 2006; 24: 97 – 107.
dc.identifier.citedreferenceT. Endo, C. Spenger, T. Tominaga, S. Brene, L. Olson. Cortical sensory map rearrangement after spinal cord injury: fMRI responses linked to Nogo signalling. Brain. 2007; 130: 2951 – 2961.
dc.identifier.citedreferenceT. Endo, T. Tominaga, L. Olson. Cortical changes following spinal cord injury with emphasis on the Nogo signaling system. Neuroscientist. 2009; 15: 291 – 299.
dc.identifier.citedreferenceJ. Ramu, K.H. Bockhorst, R.J. Grill, K.V. Mogatadakala, P.A. Narayana. Cortical reorganization in NT3‐treated experimental spinal cord injury: Functional magnetic resonance imaging. Exp Neurol. 2007; 204: 58 – 65.
dc.identifier.citedreferenceB.C. Hains, C.Y. Saab, S.G. Waxman. Changes in electrophysiological properties and sodium channel Nav1.3 expression in thalamic neurons after spinal cord injury. Brain. 2005; 128: 2359 – 2371.
dc.identifier.citedreferenceZ.K. Song, M.J. Cohen, P.A. Ament, W.H. Ho, M. Vulpe, S.L. Schandler. Two‐point discrimination thresholds in spinal cord injured patients with dysesthetic pain. Paraplegia. 1993; 31: 425 – 493.
dc.identifier.citedreferenceC.I. Moore, C.E. Stern, C. Dunbar, S.K. Kostyk, A. Gehi, S. Corkin. Referred phantom sensations and cortical reorganization after spinal cord injury in humans. Proc Natl Acad Sci U S A. 2000; 97: 14703 – 14708.
dc.identifier.citedreferenceP.J. Wrigley, S.R. Press, S.M. Gustin, et al. Neuropathic pain and primary somatosensory cortex reorganization following spinal cord injury. Pain. 2009; 141: 52 – 59.
dc.identifier.citedreferenceS.M. Gustin, P.J. Wrigley, S.C. Gandevia, J.W. Middleton, L.A. Henderson, P.J. Siddall. Movement imagery increases pain in people with neuropathic pain following complete thoracic spinal cord injury. Pain. 2008; 137: 237 – 244.
dc.identifier.citedreferenceS.M. Gustin, P.J. Wrigley, L.A. Henderson, P.J. Siddall. Brain circuitry underlying pain in response to imagined movement in people with spinal cord injury. Pain. 2010; 148: 438 – 445.
dc.identifier.citedreferenceN. Duggal, D. Rabin, R. Bartha, et al. Brain reorganization in patients with spinal cord compression evaluated using fMRI. Neurology. 2010; 74: 1048 – 1054.
dc.identifier.citedreferenceS.C. Cramer, E. Fray, A. Tievsky, et al. Changes in motor cortex activation after recovery from spinal cord inflammation. Mult Scler. 2001; 7: 364 – 370.
dc.identifier.citedreferenceR.C. deCharms, F. Maeda, G.H. Glover, et al. Control over brain activation and pain learned by using real‐time functional MRI. Proc Natl Acad Sci U S A. 2005; 102: 18626 – 18631.
dc.identifier.citedreferenceS.W. Derbyshire, M.G. Whalley, D.A. Oakley. Fibromyalgia pain and its modulation by hypnotic and non‐hypnotic suggestion: An fMRI analysis. Eur J Pain. 2009; 13: 542 – 550.
dc.identifier.citedreferenceD.D. Sherry, C.A. Wallace, C. Kelley, M. Kidder, L. Sapp. Short‐ and long‐term outcomes of children with complex regional pain syndrome type I treated with exercise therapy. Clin J Pain. 1999; 15: 218 – 223.
dc.identifier.citedreferenceV.S. Ramachandran, E.L. Altschuler. The use of visual feedback, in particular mirror visual feedback, in restoring brain function. Brain. 2009; 132: 1693 – 1710.
dc.identifier.citedreferenceD. Ertelt, S. Small, A. Solodkin, et al. Action observation has a positive impact on rehabilitation of motor deficits after stroke. Neuroimage. 2007; 36 (Suppl 2): T164 – T173.
dc.identifier.citedreferenceA. Latremoliere, C.J. Woolf. Central sensitization: A generator of pain hypersensitivity by central neural plasticity. J Pain. 2009; 10: 895 – 926.
dc.identifier.citedreferenceM. Hauck, J. Lorenz, A.K. Engel. Attention to painful stimulation enhances gamma‐band activity and synchronization in human sensorimotor cortex. J Neurosci. 2007; 27: 9270 – 9277.
dc.identifier.citedreferenceS. Ohara, N.E. Crone, N. Weiss, F.A. Lenz. Analysis of synchrony demonstrates “pain networks” defined by rapidly switching, task‐specific, functional connectivity between pain‐related cortical structures. Pain. 2006; 123: 244 – 253.
dc.identifier.citedreferenceN.E. Mahrer, J.I. Gold. The use of virtual reality for pain control: A review. Curr Pain Headache Rep. 2009; 13: 100 – 109.
dc.identifier.citedreferenceH. Flor. Cortical reorganisation and chronic pain: Implications for rehabilitation. J Rehabil Med. 2003; (41 Suppl): 66 – 72.
dc.identifier.citedreferenceH. Flor. The modification of cortical reorganization and chronic pain by sensory feedback. Appl Psychophysiol Biofeedback. 2002; 27: 215 – 227.
dc.identifier.citedreferenceM.V. Johnston. Plasticity in the developing brain: Implications for rehabilitation. Dev Disabil Res Rev. 2009; 15: 94 – 101.
dc.identifier.citedreferenceA. May. Neuroimaging: Visualising the brain in pain. Neurol Sci. 2007; 28 (Suppl 2): S101 – S107.
dc.identifier.citedreferenceR. Peyron, L. Garcia‐Larrea, M.C. Gregoire, et al. Haemodynamic brain responses to acute pain in humans: Sensory and attentional networks. Brain. 1999; 122: 1765 – 1780.
dc.identifier.citedreferenceP. Rainville, G.H. Duncan, D.D. Price, B. Carrier, M.C. Bushnell. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science. 1997; 277: 968 – 971.
dc.identifier.citedreferenceM. Zhuo. Targeting central plasticity: A new direction of finding painkillers. Curr Pharm Des. 2005; 11: 2797 – 2807.
dc.identifier.citedreferenceA.K.P. Jones. Cortical and thalamic imaging in normal volunteers and patients with chronic pain. In J.M. Besson, G. Guilbaud, H. Ollat, eds. Forebrain Areas Involved in Pain Processing. Paris, France: John Libbey Eurotext. 1995, 229 – 238, DS.
dc.identifier.citedreferenceB.A. Vogt, R.W. Sikes. The medial pain system, cingulate cortex, and parallel processing of nociceptive information. Prog Brain Res. 2000; 122: 223 – 235.
dc.identifier.citedreferenceE.L. Foltz, L.E. White. The role of rostral cingulumotomy in “pain” relief. Int J Neurol. 1968; 6: 353 – 373.
dc.identifier.citedreferenceR.C. Coghill, J.G. McHaffie, Y.F. Yen. Neural correlates of interindividual differences in the subjective experience of pain. Proc Natl Acad Sci U S A. 2003; 100: 8538 – 8542.
dc.identifier.citedreferenceM. Valet, T. Sprenger, H. Boecker, et al. Distraction modulates connectivity of the cingulo‐frontal cortex and the midbrain during pain: An fMRI analysis. Pain. 2004; 109: 399 – 408.
dc.identifier.citedreferenceK. Wiech, M. Ploner, I. Tracey. Neurocognitive aspects of pain perception. Trends Cogn Sci. 2008; 12: 306 – 313.
dc.identifier.citedreferenceR. Melzack, P.D. Wall. Pain mechanisms: A new theory. Science. 1965; 150: 971 – 979.
dc.identifier.citedreferenceH. Flor, T. Elbert, S. Knecht, et al. Phantom‐limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature. 1995; 375: 482 – 484.
dc.identifier.citedreferenceC. Maihofner, H.O. Handwerker, B. Neundorfer, F. Birklein. Patterns of cortical reorganization in complex regional pain syndrome. Neurology. 2003; 61: 1707 – 1715.
dc.identifier.citedreferenceR. Rodriguez‐Raecke, A. Niemeier, K. Ihle, W. Ruether, A. May. Brain gray matter decrease in chronic pain is the consequence and not the cause of pain. J Neurosci. 2009; 29: 13746 – 13750.
dc.identifier.citedreferenceA.V. Apkarian, Y. Sosa, S. Sonty, et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci. 2004; 24: 10410 – 10415.
dc.identifier.citedreferenceA. May. Chronic pain may change the structure of the brain. Pain. 2008; 137: 7 – 15.
dc.identifier.citedreferenceA.V. Apkarian, M.N. Baliki, P.Y. Geha. Towards a theory of chronic pain. Prog Neurobiol. 2009; 87: 81 – 97.
dc.identifier.citedreferenceT. Schmidt‐Wilcke, R. Luerding, T. Weigand, et al. Striatal grey matter increase in patients suffering from fibromyalgia: A voxel‐based morphometry study. Pain. 2007; 132 (Suppl 1): S109 – S116.
dc.identifier.citedreferenceS.J. Bantick, R.G. Wise, A. Ploghaus, S. Clare, S.M. Smith, I. Tracey. Imaging how attention modulates pain in humans using functional MRI. Brain. 2002; 125: 310 – 319.
dc.identifier.citedreferenceJ. Hohmeister, A. Kroll, I. Wollgarten‐Hadamek, et al. Cerebral processing of pain in school‐aged children with neonatal nociceptive input: An exploratory fMRI study. Pain. 2010; 150: 257 – 267.
dc.identifier.citedreferenceF. Seifert, C. Maihofner. Central mechanisms of experimental and chronic neuropathic pain: Findings from functional imaging studies. Cell Mol Life Sci. 2009; 66: 375 – 390.
dc.identifier.citedreferenceF. Seifert, G. Kiefer, R. DeCol, M. Schmelz, C. Maihofner. Differential endogenous pain modulation in complex‐regional pain syndrome. Brain. 2009; 132: 788 – 800.
dc.identifier.citedreferenceK. Ablin, D.J. Clauw. From fibrositis to functional somatic syndromes to a bell‐shaped curve of pain and sensory sensitivity: Evolution of a clinical construct. Rheum Dis Clin North Am. 2009; 35: 233 – 251.
dc.identifier.citedreferenceR.R. Edwards. Individual differences in endogenous pain modulation as a risk factor for chronic pain. Neurology. 2005; 65: 437 – 443.
dc.identifier.citedreferenceE.K. Plowman, J.A. Kleim. Motor cortex reorganization across the lifespan. J Commun Disord. 2010; 43: 286 – 294.
dc.identifier.citedreferenceA.M. de Rooij, M. de Mos, J.J. van Hilten, et al. Increased risk of complex regional pain syndrome in siblings of patients?. J Pain. 2009; 10: 1250 – 1255.
dc.identifier.citedreferenceH. Flor, C. Braun, T. Elbert, N. Birbaumer. Extensive reorganization of primary somatosensory cortex in chronic back pain patients. Neurosci Lett. 1997; 224: 5 – 8.
dc.identifier.citedreferenceT. Schmidt‐Wilcke, E. Leinisch, S. Ganssbauer, et al. Affective components and intensity of pain correlate with structural differences in gray matter in chronic back pain patients. Pain. 2006; 125: 89 – 97.
dc.identifier.citedreferenceM.N. Baliki, D.R. Chialvo, P.Y. Geha, et al. Chronic pain and the emotional brain: Specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci. 2006; 26: 12165 – 12173.
dc.identifier.citedreferenceM.N. Baliki, P.Y. Geha, A.V. Apkarian, D.R. Chialvo. Beyond feeling: Chronic pain hurts the brain, disrupting the default‐mode network dynamics. J Neurosci. 2008; 28: 1398 – 1403.
dc.identifier.citedreferenceR.L. Buckner, J.R. Andrews‐Hanna, D.L. Schacter. The brain’s default network: Anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008; 1124: 1 – 38.
dc.identifier.citedreferenceM.N. Baliki, P.Y. Geha, R. Jabakhanji, N. Harden, T.J. Schnitzer, A.V. Apkarian. A preliminary fMRI study of analgesic treatment in chronic back pain and knee osteoarthritis. Mol Pain. 2008; 4: 47.
dc.identifier.citedreferenceR. Staud, M. Spaeth. Psychophysical and neurochemical abnormalities of pain processing in fibromyalgia. CNS Spectr. 2008; 13 (Suppl 5): 12 – 17.
dc.identifier.citedreferenceR. Bennett. Fibromyalgia: Present to future. Curr Rheumatol Rep. 2005; 7: 371 – 376.
dc.identifier.citedreferenceB. Moshiree, D.D. Price, M.E. Robinson, R. Gaible, G.N. Verne. Thermal and visceral hypersensitivity in irritable bowel syndrome patients with and without fibromyalgia. Clin J Pain. 2007; 23: 323 – 330.
dc.identifier.citedreferenceW. Maixner, R. Fillingim, D. Booker, A. Sigurdsson. Sensitivity of patients with painful temporomandibular disorders to experimentally evoked pain. Pain. 1995; 63: 341 – 351.
dc.identifier.citedreferenceJ. Giesecke, B.D. Reed, H.K. Haefner, T. Giesecke, D.J. Clauw, R.H. Gracely. Quantitative sensory testing in vulvodynia patients and increased peripheral pressure pain sensitivity. Obstet Gynecol. 2004; 104: 126 – 133.
dc.identifier.citedreferenceM. Langemark, K. Jensen, T.S. Jensen, J. Olesen. Pressure pain thresholds and thermal nociceptive thresholds in chronic tension‐type headache. Pain. 1989; 38: 203 – 210.
dc.identifier.citedreferenceH. Gobel, L. Weigle, P. Kropp, D. Soyka. Pain sensitivity and pain reactivity of pericranial muscles in migraine and tension‐type headache. Cephalalgia. 1992; 12: 142 – 151.
dc.identifier.citedreferenceT. Giesecke, R.H. Gracely, M.A. Grant, et al. Evidence of augmented central pain processing in idiopathic chronic low back pain. Arthritis Rheum. 2004; 50: 613 – 623.
dc.identifier.citedreferenceD.A. Drossman. Brain imaging and its implications for studying centrally targeted treatments in irritable bowel syndrome: A primer for gastroenterologists. Gut. 2005; 54: 569 – 573.
dc.identifier.citedreferenceN. Rapps, L. van Oudenhove, P. Enck, Q. Aziz. Brain imaging of visceral functions in healthy volunteers and IBS patients. J Psychosom Res. 2008; 64: 599 – 604.
dc.identifier.citedreferenceR.R. Edwards, T.J. Ness, D.A. Weigent, R.B. Fillingim. Individual differences in diffuse noxious inhibitory controls (DNIC): Association with clinical variables. Pain. 2003; 106: 427 – 437.
dc.identifier.citedreferenceJ.B. de Souza, S. Potvin, P. Goffaux, J. Charest, S. Marchand. The deficit of pain inhibition in fibromyalgia is more pronounced in patients with comorbid depressive symptoms. Clin J Pain. 2009; 25: 123 – 127.
dc.identifier.citedreferenceC.D. King, F. Wong, T. Currie, A.P. Mauderli, R.B. Fillingim, J.L. Riley III. Deficiency in endogenous modulation of prolonged heat pain in patients with irritable bowel syndrome and temporomandibular disorder. Pain. 2009; 143: 172 – 178.
dc.identifier.citedreferenceA.J. McDermid, G.B. Rollman, G.A. McCain. Generalized hypervigilance in fibromyalgia: Evidence of perceptual amplification. Pain. 1996; 66: 133 – 144.
dc.identifier.citedreferenceG.L. Moseley. Graded motor imagery is effective for long‐standing complex regional pain syndrome: A randomised controlled trial. Pain. 2004; 108: 192 – 198.
dc.identifier.citedreferenceM.E. Geisser, R.H. Gracely, T. Giesecke, F.W. Petzke, D.A. Williams, D.J. Clauw. The association between experimental and clinical pain measures among persons with fibromyalgia and chronic fatigue syndrome. Eur J Pain. 2007; 11: 202 – 207.
dc.identifier.citedreferenceA.D. Craig. Human feelings: Why are some more aware than others?. Trends Cogn Sci. 2004; 8: 239 – 241.
dc.identifier.citedreferenceI. Tracey, P.W. Mantyh. The cerebral signature for pain perception and its modulation. Neuron. 2007; 55: 377 – 391.
dc.identifier.citedreferenceR.H. Gracely, M.E. Geisser, T. Giesecke, et al. Pain catastrophizing and neural responses to pain among persons with fibromyalgia. Brain. 2004; 127: 835 – 843.
dc.identifier.citedreferenceM.B. Nebel, R.H. Gracely. Neuroimaging of fibromyalgia. Rheum Dis Clin North Am. 2009; 35: 313 – 327.
dc.identifier.citedreferenceM.C. Hsu, R.E. Harris, P.C. Sundgren, et al. No consistent difference in gray matter volume between individuals with fibromyalgia and age‐matched healthy subjects when controlling for affective disorder. Pain. 2009; 143: 262 – 267.
dc.identifier.citedreferenceJ.M. Mountz, L.A. Bradley, J.G. Modell, et al. Fibromyalgia in women. Abnormalities of regional cerebral blood flow in the thalamus and the caudate nucleus are associated with low pain threshold levels. Arthritis Rheum. 1995; 38: 926 – 938.
dc.identifier.citedreferenceR. Kwiatek, L. Barnden, R. Tedman, et al. Regional cerebral blood flow in fibromyalgia: single‐photon‐emission computed tomography evidence of reduction in the pontine tegmentum and thalami. Arthritis Rheum. 2000; 43: 2823 – 2833.
dc.identifier.citedreferenceY. Mainguy. Functional magnetic resonance imagery (fMRI) in fibromyalgia and the response to milnacipran. Hum Psychopharmacol. 2009; 24 (Suppl 1): S19 – S23.
dc.identifier.citedreferenceE. Guedj, S. Cammilleri, C. Colavolpe, C. de Laforte, J. Niboyet, O. Mundler. Follow‐up of pain processing recovery after ketamine in hyperalgesic fibromyalgia patients using brain perfusion ECD‐SPECT. Eur J Nucl Med Mol Imaging. 2007; 34: 2115 – 2119.
dc.identifier.citedreferenceR.H. Gracely, F. Petzke, J.M. Wolf, D.J. Clauw. Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis Rheum. 2002; 46: 1333 – 1343.
dc.identifier.citedreferenceM. Stanton‐Hicks, W. Janig, S. Hassenbusch, J.D. Haddox, R. Boas, P. Wilson. Reflex sympathetic dystrophy: Changing concepts and taxonomy. Pain. 1995; 63: 127 – 133.
dc.identifier.citedreferenceM. Fukumoto, T. Ushida, V.S. Zinchuk, H. Yamamoto, S. Yoshida. Contralateral thalamic perfusion in patients with reflex sympathetic dystrophy syndrome. Lancet. 1999; 354: 1790 – 1791.
dc.identifier.citedreferenceC. Maihofner, H.O. Handwerker, B. Neundorfer, F. Birklein. Cortical reorganization during recovery from complex regional pain syndrome. Neurology. 2004; 63: 693 – 701.
dc.identifier.citedreferenceC. Maihofner, R. Baron, R. DeCol, et al. The motor system shows adaptive changes in complex regional pain syndrome. Brain. 2007; 130: 2671 – 2687.
dc.identifier.citedreferenceB. Pleger, P. Ragert, P. Schwenkreis, et al. Patterns of cortical reorganization parallel impaired tactile discrimination and pain intensity in complex regional pain syndrome. Neuroimage. 2006; 32: 503 – 510.
dc.identifier.citedreferenceB. Pleger, M. Tegenthoff, P. Schwenkreis, et al. Mean sustained pain levels are linked to hemispherical side‐to‐side differences of primary somatosensory cortex in the complex regional pain syndrome I. Exp Brain Res. 2004; 155: 115 – 119.
dc.identifier.citedreferenceN.V. Vartiainen, E. Kirveskari, N. Forss. Central processing of tactile and nociceptive stimuli in complex regional pain syndrome. Clin Neurophysiol. 2008; 119: 2380 – 2388.
dc.identifier.citedreferenceK. Juottonen, M. Gockel, T. Silen, H. Hurri, R. Hari, N. Forss. Altered central sensorimotor processing in patients with complex regional pain syndrome. Pain. 2002; 98: 315 – 323.
dc.identifier.citedreferenceB. Pleger, M. Tegenthoff, P. Ragert, et al. Sensorimotor retuning [corrected] in complex regional pain syndrome parallels pain reduction. Ann Neurol. 2005; 57: 425 – 429.
dc.identifier.citedreferenceA. Lebel, L. Becerra, D. Wallin, et al. fMRI reveals distinct CNS processing during symptomatic and recovered complex regional pain syndrome in children. Brain. 2008; 131: 1854 – 1879.
dc.identifier.citedreferenceC. Maihofner, B. Neundorfer, F. Birklein, H.O. Handwerker. Mislocalization of tactile stimulation in patients with complex regional pain syndrome. J Neurol. 2006; 253: 772 – 779.
dc.identifier.citedreferenceD.S. Charney. Neuroanatomical circuits modulating fear and anxiety behaviors. Acta Psychiatr Scand Suppl. 2003; (417): 38 – 50.
dc.identifier.citedreferenceM. Desmurget, C.M. Epstein, R.S. Turner, C. Prablanc, G.E. Alexander, S.T. Grafton. Role of the posterior parietal cortex in updating reaching movements to a visual target. Nat Neurosci. 1999; 2: 563 – 567.
dc.identifier.citedreferenceB.S. Galer, M. Jensen. Neglect‐like symptoms in complex regional pain syndrome: Results of a self‐administered survey. J Pain Symptom Manage. 1999; 18: 213 – 217.
dc.identifier.citedreferenceW.J. Triggs, M. Gold, G. Gerstle, J. Adair, K.M. Heilman. Motor neglect associated with a discrete parietal lesion. Neurology. 1994; 44: 1164 – 1166.
dc.identifier.citedreferenceG.M. Ribbers, T. Mulder, A.C. Geurts, R.A. den Otter. Reflex sympathetic dystrophy of the left hand and motor impairments of the unaffected right hand: Impaired central motor processing?. Arch Phys Med Rehabil. 2002; 83: 81 – 85.
dc.identifier.citedreferenceM.L. Kringelbach. The human orbitofrontal cortex: Linking reward to hedonic experience. Nat Rev Neurosci. 2005; 6: 691 – 702.
dc.identifier.citedreferenceA.V. Apkarian, Y. Sosa, B.R. Krauss, et al. Chronic pain patients are impaired on an emotional decision‐making task. Pain. 2004; 108: 129 – 136.
dc.identifier.citedreferenceP.Y. Geha, M.N. Baliki, R.N. Harden, W.R. Bauer, T.B. Parrish, A.V. Apkarian. The brain in chronic CRPS pain: Abnormal gray‐white matter interactions in emotional and autonomic regions. Neuron. 2008; 60: 570 – 581.
dc.identifier.citedreferenceT.S. Jensen, B. Krebs, J. Nielsen, P. Rasmussen. Immediate and long‐term phantom limb pain in amputees: Incidence, clinical characteristics and relationship to pre‐amputation limb pain. Pain. 1985; 21: 267 – 278.
dc.identifier.citedreferenceH. Flor. The parietal lobes. In A.M. Siegel, R.A. Andersen, H.J. Freund, D.D. Spencer, eds. Advances in Neurology. vol 93: Philadelphia, PA: Lippincott, Williams and Wilkins. 2003, 195 – 204.
dc.identifier.citedreferenceP. Schwenkreis, B. Pleger, B. Cornelius, et al. Reorganization in the ipsilateral motor cortex of patients with lower limb amputation. Neurosci Lett. 2003; 349: 187 – 190.
dc.identifier.citedreferenceK. Wiech, R.T. Kiefer, S. Topfner, et al. A placebo‐controlled randomized crossover trial of the N‐methyl‐D‐aspartic acid receptor antagonist, memantine, in patients with chronic phantom limb pain. Anesth Analg. 2004; 98: 408 – 413.
dc.identifier.citedreferenceR.G. Bittar, I. Kar‐Purkayastha, S.L. Owen, et al. Deep brain stimulation for pain relief: A meta‐analysis. J Clin Neurosci. 2005; 12: 515 – 519.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.