Show simple item record

Assessing the ability of human endothelial cells derived from induced‐pluripotent stem cells to form functional microvasculature in vivo

dc.contributor.authorBezenah, Jonathan R.
dc.contributor.authorRioja, Ana Y.
dc.contributor.authorJuliar, Benjamin
dc.contributor.authorFriend, Nicole
dc.contributor.authorPutnam, Andrew J.
dc.date.accessioned2019-01-15T20:26:47Z
dc.date.available2020-04-01T15:06:24Zen
dc.date.issued2019-02
dc.identifier.citationBezenah, Jonathan R.; Rioja, Ana Y.; Juliar, Benjamin; Friend, Nicole; Putnam, Andrew J. (2019). "Assessing the ability of human endothelial cells derived from induced‐pluripotent stem cells to form functional microvasculature in vivo." Biotechnology and Bioengineering 116(2): 415-426.
dc.identifier.issn0006-3592
dc.identifier.issn1097-0290
dc.identifier.urihttps://hdl.handle.net/2027.42/146963
dc.description.abstractForming functional blood vessel networks is a major clinical challenge in the fields of tissue engineering and therapeutic angiogenesis. Cell‐based strategies to promote neovascularization have been widely explored, but cell sourcing remains a significant limitation. Induced‐pluripotent stem cell‐derived endothelial cells (iPSC‐ECs) are a promising, potentially autologous, alternative cell source. However, it is unclear whether iPSC‐ECs form the same robust microvasculature in vivo documented for other EC sources. In this study, we utilized a well‐established in vivo model, in which ECs (iPSC‐EC or human umbilical vein endothelial cells [HUVEC]) were coinjected with normal human lung fibroblasts (NHLFs) and a fibrin matrix into the dorsal flank of severe combined immunodeficiency mice to assess their ability to form functional microvasculature. Qualitatively, iPSC‐ECs were capable of vessel formation and perfusion and demonstrated similar vessel morphologies to HUVECs. However, quantitatively, iPSC‐ECs exhibited a two‐fold reduction in vessel density and a three‐fold reduction in the number of perfused vessels compared with HUVECs. Further analysis revealed the presence of collagen‐IV and α‐smooth muscle actin were significantly lower around iPSC‐EC/NHLF vasculature than in HUVEC/NHLF implants, suggesting reduced vessel maturity. Collectively, these results demonstrate the need for increased iPSC‐EC maturation for clinical translation to be realized.Forming functional blood vessel networks is a major clinical challenge in the fields of tissue engineering and therapeutic angiogenesis. Cell‐based strategies to promote neovascularization have been widely explored, but cell sourcing remains a significant limitation.
dc.publisherWiley Periodicals, Inc.
dc.subject.otheriPSCs
dc.subject.otherendothelial cell
dc.subject.otherHUVECs
dc.subject.othervascularization
dc.titleAssessing the ability of human endothelial cells derived from induced‐pluripotent stem cells to form functional microvasculature in vivo
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelStatistics and Numeric Data
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelMathematics
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelSocial Sciences
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146963/1/bit26860.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146963/2/bit26860_am.pdf
dc.identifier.doi10.1002/bit.26860
dc.identifier.sourceBiotechnology and Bioengineering
dc.identifier.citedreferenceLi, A. C. Y., & Thompson, R. P. H. ( 2003 ). Basement membrane components. Journal of Clinical Pathology, 56 ( 12 ), 885 – 887. https://doi.org/10.1136/jcp.56.12.885
dc.identifier.citedreferenceMargariti, A., Winkler, B., Karamariti, E., Zampetaki, A., Tsai, T., Baban, D., … Xu, Q. ( 2012 ). Direct reprogramming of fibroblasts into endothelial cells capable of angiogenesis and reendothelialization in tissue‐engineered vessels. Proceedings of the National Academy of Sciences of the United States of America, 109 ( 34 ), 13793 – 13798. https://doi.org/10.1073/pnas.1205526109
dc.identifier.citedreferenceMelero‐Martin, J. M., De Obaldia, M. E., Kang, S. Y., Khan, Z. A., Yuan, L., Oettgen, P., & Bischoff, J. ( 2008 ). Engineering robust and functional vascular networks in vivo with human adult and cord blood‐derived progenitor cells. Circulation Research, 103 ( 2 ), 194 – 202. https://doi.org/10.1161/CIRCRESAHA.108.178590
dc.identifier.citedreferenceMozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., Cushman, M., … Turner, M. B. ( 2015 ). AHA statistical update: Executive summary: Heart disease and stroke statistics—2015 update: A report from the American Heart Association. Circulation, 131, 434 – 441. https://doi.org/10.1161/CIR.0000000000000152
dc.identifier.citedreferencePeterson, A. W., Caldwell, D. J., Rioja, A. Y., Rao, R. R., Putnam, A. J., & Stegemann, J. P. ( 2014 ). Vasculogenesis and angiogenesis in modular collagen‐fibrin microtissues. Biomaterials Science, 2 ( 10 ), 1497 – 1508. https://doi.org/10.1039/C4BM00141A
dc.identifier.citedreferencePotter, R. F., & Groom, A. C. ( 1983 ). Capillary diameter and geometry in cardiac and skeletal muscle studied by means of corrosion casts. Microvasculature Research, 1, 68 – 84. https://doi.org/10.1016/0026‐2862(83)90044‐4
dc.identifier.citedreferenceRao, R. R., Peterson, A. W., Ceccarelli, J., Putnam, A. J., & Stegemann, J. P. ( 2012 ). Matrix composition regulates three‐dimensional network formation by endothelial cells and mesenchymal stem cells in collagen/fibrin materials. Angiogenesis, 15 ( 2 ), 253 – 264. https://doi.org/10.1007/s10456‐012‐9257‐1
dc.identifier.citedreferenceRoger, V. L., Go, A. S., Lloyd‐Jones, D. M., Adams, R. J., Berry, J. D., Brown, T. M., … Wylie‐Rosett, J. ( 2011 ). Heart disease and stroke statistics—2011 update: A report from the American Heart Association. Circulation, 123 ( 4 ), e18 – e209. https://doi.org/10.1161/CIR.0b013e3182009701
dc.identifier.citedreferenceRouwkema, J., Rivron, N. C., & van Blitterswijk, C. A. ( 2008 ). Vascularization in tissue engineering. Trends in Biotechnology, 26 ( 8 ), 434 – 441. https://doi.org/10.1016/j.tibtech.2008.04.009
dc.identifier.citedreferenceRubina, K., Kalinina, N., Efimenko, A., Lopatina, T., Melikhova, V., Tsokolaeva, Z., … Parfyonova, Y. ( 2009 ). Adipose stromal cells stimulate angiogenesis via promoting progenitor cell differentiation, secretion of angiogenic factors, and enhancing vessel maturation. Tissue Engineering. Part A, 15 ( 8 ), 2039 – 2050. https://doi.org/10.1089/ten.tea.2008.0359
dc.identifier.citedreferenceRufaihah, A. J., Huang, N. F., Jamé, S., Lee, J. C., Nguyen, H. N., Byers, B., … Cooke, J. P. ( 2011 ). Endothelial cells derived from human iPSCS increase capillary density and improve perfusion in a mouse model of peripheral arterial disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 31 ( 11 ), e72 – e79. https://doi.org/10.1161/ATVBAHA.111.230938
dc.identifier.citedreferenceRufaihah, A. J., Huang, N. F., Kim, J., Herold, J., Volz, K. S., Park, T. S., … Cooke, J. P. ( 2013 ). Human induced pluripotent stem cell‐derived endothelial cells exhibit functional heterogeneity. American Journal of Translational Research, 5 ( 1 ), 21 – 35. http://www.pubmedcentral.nih.gov/
dc.identifier.citedreferenceRundek, T., & Della‐Morte, D. ( 2015 ). The role of shear stress and arteriogenesis in maintaining vascular homeostasis and preventing cerebral atherosclerosis. Brain Circulation, 1 ( 1 ), 53. https://doi.org/10.4103/2394‐8108.164993
dc.identifier.citedreferenceSaigawa, T., Kato, K., Ozawa, T., Toba, K., Makiyama, Y., Minagawa, S., … Aizawa, Y. ( 2004 ). Clinical application of bone marrow implantation in patients with arteriosclerosis obliterans, and the association between efficacy and the number of implanted bone marrow cells. Circulation Journal, 68 ( 12 ), 1189 – 1193. https://doi.org/10.1253/circj.68.1189
dc.identifier.citedreferenceShi, S., & Gronthos, S. ( 2003 ). Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. Journal of Bone and Mineral Research, 18 ( 696 ), 696 – 704. https://doi.org/10.1359/jbmr.2003.18.4.696
dc.identifier.citedreferenceSimonavicius, N., Ashenden, M., van Weverwijk, A., Lax, S., Huso, D. L., Buckley, C. D., … Isacke, C. M. ( 2012 ). Pericytes promote selective vessel regression to regulate vascular patterning. Blood, 120 ( 7 ), 1516 – 1527. https://doi.org/10.1182/blood‐2011‐01‐332338
dc.identifier.citedreferenceSkalli, O., Pelte, M. F., Peclet, M. C., Gabbiani, G., Gugliotta, P., Bussolati, G., … Orci, L. ( 1989 ). Alpha‐smooth muscle actin, a differentiation marker of smooth muscle cells, is present in microfilamentous bundles of pericytes. Journal of Histochemistry & Cytochemistry, 37 ( 3 ), 315 – 321. https://doi.org/10.1177/37.3.2918221
dc.identifier.citedreferenceSun, Q., Silva, E. A., Wang, A., Fritton, J. C., Mooney, D. J., Schaffler, M. B., … Rajagopalan, S. ( 2010 ). Sustained release of multiple growth factors from injectable polymeric system as a novel therapeutic approach towards angiogenesis. Pharmaceutical Research, 27 ( 2 ), 264 – 271. https://doi.org/10.1007/s11095‐009‐0014‐0
dc.identifier.citedreferenceTakahashi, K., & Yamanaka, S. ( 2006 ). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126 ( 4 ), 663 – 676. https://doi.org/10.1016/j.cell.2006.07.024
dc.identifier.citedreferenceTaleb, S. ( 2016 ). Inflammation in atherosclerosis. Archives of Cardiovascular Diseases, 9 ( 12 ), 708 – 715. https://doi.org/10.1016/j.acvd.2016.04.002
dc.identifier.citedreferenceTarride, J. E., Lim, M., DesMeules, M., Luo, W., Burke, N., O’Reilly, D., … Goeree, R. ( 2009 ). A review of the cost of cardiovascular disease. The Canadian Journal of Cardiology, 25 ( 6 ), e195 – e202. https://doi.org/10.1016/S0828‐282×(09)70098‐4
dc.identifier.citedreferenceTraktuev, D. O., Prater, D. N., Merfeld‐Clauss, S., Sanjeevaiah, A. R., Saadatzadeh, M. R., & March, K. L. ( 2009 ). Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circulation Research, 104, 1410 – 1420. https://doi.org/10.1161/CIRCRESAHA.108.190926
dc.identifier.citedreferenceWiedeman, M. P. ( 1963 ). Dimensions of blood vessels from distributing artery to collecting vein. Circulation Research, 9, 375 – 378. https://doi.org/10.1161/01.RES.12.4.375
dc.identifier.citedreferenceWong, W. T., Sayed, N., & Cooke, J. P. ( 2013 ). Induced pluripotent stem cells: How they will change the practice of cardiovascular medicine. Methodist DeBakey Cardiovascular Journal, 9 ( 4 ), 206 – 209. https://doi.org/10.14797/mdcj‐9‐4‐206
dc.identifier.citedreferenceXu, K., & Cleaver, O. ( 2011 ). Tubulogenesis during blood vessel formation. Seminars in Cell & Developmental Biology, 22 ( 9 ), 993 – 1004. https://doi.org/10.1016/j.semcdb.2011.05.001
dc.identifier.citedreferenceYancopoulos, G. D., Davis, S., Gale, N. W., Rudge, J. S., Wiegand, S. J., & Holash, J. ( 2000 ). Vascular‐specific growth factors and blood vessel formation. Nature, 407 ( 6801 ), 242 – 248. https://doi.org/10.1038/35025215
dc.identifier.citedreferenceYee, J. ( 2010 ). Turning somatic cells into pluripotent stem cells. Nature Education, 3 ( 9 ), 25.
dc.identifier.citedreferenceYoder, M. C. ( 2015 ). Differentiation of pluripotent stem cells into endothelial cells. Current Opinion in Hematology, 22 ( 3 ), 252 – 257. https://doi.org/10.1097/MOH.0000000000000140
dc.identifier.citedreferenceZhang, H., Zhang, N., Li, M., Feng, H., Jin, W., Zhao, H., … Tian, L. ( 2008 ). Therapeutic angiogenesis of bone marrow mononuclear cells (MNCs) and peripheral blood MNCs: Transplantation for ischemic hindlimb. Annals of Vascular Surgery, 22 ( 2 ), 238 – 247. https://doi.org/10.1016/j.avsg.2007.07.037
dc.identifier.citedreferenceGhajar, C. M., Blevins, K. S., Hughes, C. C. W., George, S. C., & Putnam, A. J. ( 2006 ). Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation. Tissue Engineering, 12 ( 10 ), 2875 – 2888. https://doi.org/10.1089/ten.2006.12.2875
dc.identifier.citedreferenceAdams, W. J., Zhang, Y., Cloutier, J., Kuchimanchi, P., Newton, G., Sehrawat, S., … García‐Cardeña, G. ( 2013 ). Functional vascular endothelium derived from human induced pluripotent stem cells. Stem Cell Reports, 1 ( 2 ), 105 – 113. https://doi.org/10.1016/j.stemcr.2013.06.007
dc.identifier.citedreferenceAllen, P., Melero‐Martin, J., & Bischoff, J. ( 2011 ). Type I collagen, fibrin, and puramatrix matrices provide permissive environments for human endothelial and mesenchymal progenitor cells to form neovascular networks. Journal of Tissue Engineering and Regenerative Medicine, 5 ( 4 ), e74 – e86. https://doi.org/10.1002/term.389
dc.identifier.citedreferenceAu, P., Tam, J., Fukumura, D., & Jain, R. K. ( 2008 ). Bone marrow–derived mesenchymal stem cells facilitate engineering of long‐lasting functional vasculature. Blood, 111 ( 9 ), 4551 – 4558. https://doi.org/10.1182/blood‐2007‐10‐118273
dc.identifier.citedreferenceBexell, D., Gunnarsson, S., Tormin, A., Darabi, A., Gisselsson, D., Roybon, L., … Bengzon, J. ( 2009 ). Bone marrow multipotent mesenchymal stroma cells act as pericyte‐like migratory vehicles in experimental gliomas. Molecular Therapy: The Journal of the American Society of Gene Therapy, 17 ( 1 ), 183 – 190. https://doi.org/10.1038/mt.2008.229
dc.identifier.citedreferenceBezenah, J. R., Kong, Y. P., & Putnam, A. J. ( 2018 ). Evaluating the potential of endothelial cells derived from human induced pluripotent stem cells to form microvascular networks in 3D cultures. Scientific Reports, 8, 2671. https://doi.org/10.1038/s41598‐018‐20966‐1
dc.identifier.citedreferenceBlache, U., & Ehrbar, M. ( 2018 ). Inspired by nature: Hydrogels as versatile tools for vascular engineering. Advances in Wound Care, 7 ( 7 ), 232 – 246. https://doi.org/10.1089/wound.2017.0760
dc.identifier.citedreferenceCeccarelli, J., & Putnam, A. J. ( 2014 ). Sculpting the blank slate: How fibrin’s support of vascularization can inspire biomaterial design. Acta Biomaterialia, 10 ( 4 ), 1515 – 1523. https://doi.org/10.1016/j.actbio.2013.07.043
dc.identifier.citedreferenceChen, D. Y., Wei, H. J., Lin, K. J., Huang, C. C., Wang, C. C., & Sung, H. W. ( 2004 ). Three‐dimensional cell aggregates composed of HUVECs and cbMSCs for therapeutic neovascularization in a mouse model of hindlimb ischemia. Biomaterials, 34 ( 8 ), 1995 – 2004. https://doi.org/10.1016/j.biomaterials.2012.11.045
dc.identifier.citedreferenceChen, X., Aledia, A. S., Popson, S. A., Him, L., Hughes, C. C. W., & George, S. C. ( 2010 ). Rapid anastomosis of endothelial progenitor cell–derived vessels with host vasculature is promoted by a high density of cotransplanted fibroblasts. Tissue Engineering. Part A, 16 ( 2 ), 585 – 594. https://doi.org/10.1089/ten.tea.2009.0491
dc.identifier.citedreferenceCheng, G., Liao, S., Kit Wong, H., Lacorre, D. A., Di Tomaso, E., Au, P., … Munn, L. L. ( 2011 ). Engineered blood vessel networks connect to host vasculature via wrapping‐and‐tapping anastomosis. Blood, 118 ( 17 ), 4740 – 4749. https://doi.org/10.1182/blood‐2011‐02‐338426
dc.identifier.citedreferenceChristman, K. L., Vardanian, A. J., Fang, Q., Sievers, R. E., Fok, H. H., & Lee, R. J. ( 2004 ). Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. Journal of the American College of Cardiology, 44 ( 3 ), 654 – 660. https://doi.org/10.1016/j.jacc.2004.04.040
dc.identifier.citedreferenceDavies, M. G. ( 2012 ). Critical limb ischemia: Epidemiology. Methodist DeBakey Cardiovascular Journal, 8 ( 4 ), 10 – 14.
dc.identifier.citedreferenceGao, Y.‐R., & Drew, P. J. ( 2014 ). Determination of vessel cross‐sectional area by thresholding in radon space. Journal of Cerebral Blood Flow & Metabolism, 34 ( 7 ), 1180 – 1187. https://doi.org/10.1038/jcbfm.2014.67
dc.identifier.citedreferenceGhajar, C. M., Chen, X., Harris, J. W., Suresh, V., Hughes, C. C. W., Jeon, N. L., … George, S. C. ( 2008 ). The effect of matrix density on the regulation of 3‐D capillary morphogenesis. Biophysical Journal, 94 ( 5 ), 1930 – 1941. https://doi.org/10.1529/biophysj.107.120774
dc.identifier.citedreferenceGhajar, C. M., Kachgal, S., Kniazeva, E., Mori, H., Costes, S. V., George, S. C., & Putnam, A. J. ( 2010 ). Mesenchymal cells stimulate capillary morphogenesis via distinct proteolytic mechanisms. Experimental Cell Research, 316 ( 5 ), 813 – 825. https://doi.org/10.1016/j.yexcr.2010.01.013
dc.identifier.citedreferenceGrainger, S. J., Carrion, B., Ceccarelli, J., & Putnam, A. J. ( 2013 ). Stromal cell identity influences the in vivo functionality of engineered capillary networks formed by co‐delivery of endothelial cells and stromal cells. Tissue Engineering. Part A, 19 ( 9‐10 ), 1209 – 1222. https://doi.org/10.1089/ten.tea.2012.0281
dc.identifier.citedreferenceHalaidych, O. V., Freund, C., van den Hil, F., Salvatori, D. C. F., Riminucci, M., Mummery, C. L., & Orlova, V. V. ( 2018 ). Inflammatory responses and barrier function of endothelial cells derived from human induced pluripotent stem cells. Stem Cell Reports, 10 ( 5 ), 1642 – 1656. https://doi.org/10.1016/j.stemcr.2018.03.012
dc.identifier.citedreferenceHinz, B. ( 2007 ). Formation and function of the myofibroblast during tissue repair. Journal of Investigative Dermatology, 127 ( 3 ), 526 – 537. https://doi.org/10.1038/sj.jid.5700613
dc.identifier.citedreferenceIkada, Y. ( 2006 ). Challenges in tissue engineering. Journal of the Royal Society Interface, 3 ( 10 ), 589 – 601. https://doi.org/10.1098/rsif.2006.0124
dc.identifier.citedreferenceIkuno, T., Masumoto, H., Yamamizu, K., Yoshioka, M., Minakata, K., Ikeda, T., … Yamashita, J. K. ( 2017 ). Efficient and robust differentiation of endothelial cells from human induced pluripotent stem cells via lineage control with VEGF and cyclic AMP. PLoS One, 12 ( 3 ), e0173271. https://doi.org/10.1371/journal.pone.0173271
dc.identifier.citedreferenceKannan, R. Y., Salacinski, H. J., Sales, K., Butler, P., & Seifalian, A. M. ( 2005 ). The roles of tissue engineering and vascularisation in the development of microvascular networks: A review. Biomaterials, 26 ( 14 ), 1857 – 1875. https://doi.org/10.1016/j.biomaterials.2004.07.006
dc.identifier.citedreferenceKniazeva, E., Kachgal, S., & Putnam, A. J. ( 2011 ). Effects of extracellular matrix density and mesenchymal stem cells on neovascularization in vivo. Tissue Engineering. Part A, 17 ( 7‐8 ), 905 – 914. https://doi.org/10.1089/ten.tea.2010.0275
dc.identifier.citedreferenceKoike, N., Fukumura, D., Gralla, O., Au, P., Schechner, J. S., & Jain, R. K. ( 2004 ). Tissue engineering: Creation of long‐lasting blood vessels. Nature, 428 ( 6979 ), 138 – 139. https://doi.org/10.1038/428138a
dc.identifier.citedreferenceKorn, C., & Augustin, H. G. ( 2015 ). Mechanisms of vessel pruning and regression. Developmental Cell, 34 ( 1 ), 5 – 17. https://doi.org/10.1016/j.devcel.2015.06.004
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.