Show simple item record

Deep learning in medical imaging and radiation therapy

dc.contributor.authorSahiner, Berkman
dc.contributor.authorPezeshk, Aria
dc.contributor.authorHadjiiski, Lubomir M.
dc.contributor.authorWang, Xiaosong
dc.contributor.authorDrukker, Karen
dc.contributor.authorCha, Kenny H.
dc.contributor.authorSummers, Ronald M.
dc.contributor.authorGiger, Maryellen L.
dc.date.accessioned2019-01-15T20:27:10Z
dc.date.available2020-03-03T21:29:35Zen
dc.date.issued2019-01
dc.identifier.citationSahiner, Berkman; Pezeshk, Aria; Hadjiiski, Lubomir M.; Wang, Xiaosong; Drukker, Karen; Cha, Kenny H.; Summers, Ronald M.; Giger, Maryellen L. (2019). "Deep learning in medical imaging and radiation therapy." Medical Physics 46(1): e1-e36.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/146980
dc.publisherWW Norton & Company
dc.publisherWiley Periodicals, Inc.
dc.subject.othersegmentation
dc.subject.othertreatment
dc.subject.othercomputer‐aided detection/characterization
dc.subject.otherdeep learning, machine learning
dc.subject.otherreconstruction
dc.titleDeep learning in medical imaging and radiation therapy
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146980/1/mp13264_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146980/2/mp13264.pdf
dc.identifier.doi10.1002/mp.13264
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceLin T‐Y, Maire M, Belongie S, et al. Microsoft coco: common objects in context. Eur Conf Comput Vis. 2014; 740–755.
dc.identifier.citedreferenceChuquicusma MJ, Hussein S, Burt J, Bagci U. How to fool radiologists with generative adversarial networks? A visual turing test for lung cancer diagnosis. In: IEEE International Symposium on Biomedical Imaging; 2018.
dc.identifier.citedreferenceObuchowski NA, Barnhart HX, Buckler AJ, et al. Statistical issues in the comparison of quantitative imaging biomarker algorithms using pulmonary nodule volume as an example. Stat Methods Med Res. 2015; 24: 107 – 140.
dc.identifier.citedreferenceObuchowski NA, Reeves AP, Huang EP, et al. Quantitative imaging biomarkers: a review of statistical methods for computer algorithm comparisons. Stat Methods Med Res. 2015; 24: 68 – 106.
dc.identifier.citedreferenceLazzeroni LC, Lu Y, Belitskaya‐Levy I. P‐values in genomics: apparent precision masks high uncertainty. Mol Psychiatry. 2014; 19: 1336 – 1340.
dc.identifier.citedreferenceDrukker K, Pesce L, Giger M. Repeatability in computer‐aided diagnosis: application to breast cancer diagnosis on sonography. Med Phys. 2010; 37: 2659 – 2669.
dc.identifier.citedreferenceHolm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979; 6: 65 – 70.
dc.identifier.citedreferenceCurran‐Everett D. Multiple comparisons: philosophies and illustrations. Am J Physiol Regul Integr Comp Physiol. 2000; 279: R1 – R8.
dc.identifier.citedreferenceEin‐Dor L, Kela I, Getz G, Givol D, Domany E. Outcome signature genes in breast cancer: is there a unique set? Bioinformatics. 2005; 21: 171 – 178.
dc.identifier.citedreferenceEin‐Dor L, Zuk O, Domany E. Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc Natl Acad Sci USA. 2006; 103: 5923 – 5928.
dc.identifier.citedreferenceBegley CG, Ellis LM. Raise standards for preclinical cancer research. Nature. 2012; 483: 531 – 533.
dc.identifier.citedreferenceChalkidou A, O’Doherty MJ, Marsden PK. False discovery rates in PET and CT studies with texture features: a systematic review. PLoS ONE. 2015; 10: e0124165.
dc.identifier.citedreferenceGruszauskas NP, Drukker K, Giger ML, Sennett CA, Pesce LL. Performance of breast ultrasound computer‐aided diagnosis: dependence on image selection. Acad Radiol. 2008; 15: 1234 – 1245.
dc.identifier.citedreferenceGruszauskas NP, Drukker K, Giger ML, et al. Breast US computer‐aided diagnosis system: robustness across urban populations in South Korea and the United States. Radiology. 2009; 253: 661 – 671.
dc.identifier.citedreferenceMendel KR, Li H, Lan L, et al. Quantitative texture analysis: robustness of radiomics across two digital mammography manufacturers’ systems. J Med Imaging. 2018; 5: 011002.
dc.identifier.citedreferenceKalpathy‐Cramer J, Mamomov A, Zhao BS, et al. Radiomics of lung nodules: a multi‐institutional study of robustness and agreement of quantitative imaging features. Tomography. 2016; 2: 430 – 437.
dc.identifier.citedreferenceCourt LE. Harmonization & robustness in radiomics. Med Phys. 2016; 43: 3695 – 3696.
dc.identifier.citedreferenceHolzinger A, Biemann C, Pattichis CS, Kell DB. What do we need to build explainable AI systems for the medical domain?; 2017. arXiv:1712.09923.
dc.identifier.citedreferenceSamek W, Wiegand T, Müller K‐R. Explainable artificial intelligence: understanding, visualizing and interpreting deep learning models; 2017. arXiv:1708.08296.
dc.identifier.citedreferenceZeiler MD, Fergus R. Visualizing and understanding convolutional networks; 2014. arXiv:1311.2901.
dc.identifier.citedreferenceRibeiro MT, Singh S, Guestrin C. Why Should I Trust You? Explaining the predictions of any classifier; 2016. arXiv:1602.04938.
dc.identifier.citedreferenceSimonyan K, Vedaldi A, Zisserman A. Deep inside convolutional networks: visualising image classification models and saliency maps; 2014. arXiv:1312.6034.
dc.identifier.citedreferenceZhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative localization; 2015. arXiv:1512.04150.
dc.identifier.citedreferenceSelvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad‐CAM: visual explanations from deep networks via gradient‐based localization; 2017. arXiv:1610.02391.
dc.identifier.citedreferenceLitjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017; 42: 60 – 88.
dc.identifier.citedreferenceAdil K, Jiang F, Liu SH, Grigorev A, Gupta BB, Rho S. Training an agent for FPS doom game using visual reinforcement learning and VizDoom. Int J Adv Comput Sci Appl. 2017; 8: 32 – 41.
dc.identifier.citedreferenceSummers RM. Are we at a crossroads or a plateau? Radiomics and machine learning in abdominal oncology imaging”. Abdom Radiol. 2018; 1 – 5. [Epub ahead of print]. https://doi.org/10.1007/s00261-018-1613-1
dc.identifier.citedreferenceAmodei D, Ananthanarayanan S, Anubhai R, et al. Deep speech 2: end‐to‐end speech recognition in English and Mandarin. In: International Conference on Machine Learning; 2016: 173 – 182.
dc.identifier.citedreferencePeters ME, Neumann M, Iyyer M, et al. Deep contextualized word representations; 2018. arXiv preprint arXiv:1802.05365.
dc.identifier.citedreferenceZoph B, Vasudevan V, Shlens J, Le QV. Learning transferable architectures for scalable image recognition, 2; 2017. arXiv preprint arXiv:1707.07012.
dc.identifier.citedreferenceSilver D, Huang A, Maddison CJ, et al. Mastering the game of go with deep neural networks and tree search. Nature. 2016; 529: 484 – 489.
dc.identifier.citedreferenceGandhi D, Pinto L, Gupta A. Learning to fly by crashing; 2017. arXiv:1704.05588.
dc.identifier.citedreferenceWorldwide Semiannual Cognitive and Artificial Intelligence Systems Spending Guide; 2016. https://www.idc.com/getdoc.jsp?containerId=prUS41878616.
dc.identifier.citedreferenceThe Fourth Industrial Revolution: what it means, how to respond; 2016. https://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-and-how-to-respond/.
dc.identifier.citedreferenceBrynjolfsson E, McAfee A. The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies. New York, NY: WW Norton & Company; 2014.
dc.identifier.citedreferenceSchwab K. The Fourth Industrial Revolution. New York, NY: Crown Business; 2017.
dc.identifier.citedreferenceHarnessing automation for a future that works; 2017. https://www.mckinsey.com/global-themes/digital-disruption/harnessing-automation-for-a-future-that-works.
dc.identifier.citedreferenceLeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521: 436 – 444.
dc.identifier.citedreferenceSchmidhuber J. Deep learning in neural networks: an overview. Neural Netw. 2015; 61: 85 – 117.
dc.identifier.citedreferenceCaruana R, Niculescu‐Mizil A. An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd International Conference on Machine Learning. Pittsburgh, PA, USA: ACM; 2006: 161 – 168.
dc.identifier.citedreferencePan SJ, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng. 2010; 22: 1345 – 1359.
dc.identifier.citedreferenceWeiss K, Khoshgoftaar TM, Wang D. A survey of transfer learning. J Big Data. 2016; 3: 9.
dc.identifier.citedreferenceAzizi S, Mousavi P, Yan P, et al. Transfer learning from RF to B‐mode temporal enhanced ultrasound features for prostate cancer detection. Int J Comput Assist Radiol Surg. 2017; 12: 1111 – 1121.
dc.identifier.citedreferenceSamala RK, Chan HP, Hadjiiski L, Helvie MA, Wei J, Cha K. Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography. Med Phys. 2016; 43: 6654.
dc.identifier.citedreferenceKumar A, Kim J, Lyndon D, Fulham M, Feng D. An ensemble of fine‐tuned convolutional neural networks for medical image classification. IEEE J Biomed Health Inf. 2017; 21: 31 – 40.
dc.identifier.citedreferenceBengio Y. Learning deep architectures for AI. Found Trends Mach Learn. 2009; 2: 1 – 127.
dc.identifier.citedreferenceFelleman DJ, Van Essen DC. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex. 1991; 1: 1 – 47.
dc.identifier.citedreferenceWessinger CM, Van Meter J, Tian B, Van Lare J, Pekar J, Rauschecker JP. Hierarchical organization of the human auditory cortex revealed by functional magnetic resonance imaging. J Cogn Neurosci. 2001; 13: 1 – 7.
dc.identifier.citedreferenceCaruana R, Karampatziakis N, Yessenalina A. An empirical evaluation of supervised learning in high dimensions. In: Proceedings of the 25th International Conference on Machine Learning. Helsinki, Finland: ACM; 2008: 96 – 103.
dc.identifier.citedreferenceHinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. Neural Comput. 2006; 18: 1527 – 1554.
dc.identifier.citedreferenceSutskever I, Martens J, Dahl G, Hinton G. On the importance of initialization and momentum in deep learning. In: Sanjoy D, David M, eds. Proceedings of the 30th International Conference on Machine Learning (PMLR, Proceedings of Machine Learning Research), Vol. 28; 2013: 1139 – 1147.
dc.identifier.citedreferenceGlorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks. In: Geoffrey G, David D, Miroslav D, eds. Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (PMLR, Proceedings of Machine Learning Research), Vol. 15; 2011: 315 – 323.
dc.identifier.citedreferenceSrivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014; 15: 1929 – 1958.
dc.identifier.citedreferenceWan L, Zeiler M, Zhang S, Cun YL, Fergus R. Regularization of neural networks using DropConnect. In: Sanjoy D, David M, eds. Proceedings of the 30th International Conference on Machine Learning (PMLR, Proceedings of Machine Learning Research), Vol. 28; 2013: 1058 – 1066.
dc.identifier.citedreferenceDeng J, Dong W, Socher R, Li L‐J, Li K, Fei‐Fei L. Imagenet: a large‐scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2009: 248–255.
dc.identifier.citedreferenceKrizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ, eds. Advances in Neural Information Processing Systems, Vol. 25. New York, NY: Curran Associates, Inc.; 2012: 1097 – 1105.
dc.identifier.citedreferenceLeCun Y, Kavukcuoglu K, Farabet C. Convolutional networks and applications in vision. In: IEEE International Symposium on Circuits and Systems; 2010; 253 – 256.
dc.identifier.citedreferenceHochreiter S, Schmidhuber R. Long short‐term memory. Neural Comput. 1997; 9: 1735 – 1780.
dc.identifier.citedreferenceVinyals O, Toshev A, Bengio S, Erhan D. Show and tell: a neural image caption generator In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA: IEEE. 2015: 3156 – 3164.
dc.identifier.citedreferenceShin H‐C, Lu L, Kim L, Seff A, Yao J, Summers R. Interleaved text/image deep mining on a large‐scale radiology database for automated image interpretation. J Mach Learn Res. 2016; 17: 2.
dc.identifier.citedreferenceGraves A, Mohamed A‐R, Hinton G. Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Vancouver, BC Canada: IEEE; 2013: 6645 – 6649.
dc.identifier.citedreferenceSutskever I, Vinyals O, Le QV. Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems. Montreal, QC Canada: NIPS; 2014: 3104 – 3112.
dc.identifier.citedreferenceArjovsky M, Chintala S, Bottou L. Wasserstein Gan; 2017. arXiv preprint arXiv:1701.07875.
dc.identifier.citedreferenceZhu JY, Park T, Isola P, Efros AA. Unpaired image‐to‐image translation using cycle‐consistent adversarial networks. In: IEEE International Conference on Computer Vision; 2017.
dc.identifier.citedreferenceGoodfellow I, Pouget‐Abadie J, Mirza M, et al. Generative adversarial nets. Advances in Neural Information Processing Systems. Montreal, QC Canada: NIPS. 2014; 2672 – 2680.
dc.identifier.citedreferenceMardani M, Gong E, Cheng JY, et al. Deep generative adversarial networks for compressed sensing automates MRI; 2017. arXiv:1706.00051.
dc.identifier.citedreferenceMeyers PH, Nice CM, Becker HC, Nettleton WJ, Sweeney JW, Meckstroth GR. Automated computer analysis of radiographic images. Radiology. 1964; 83: 1029 – 1034.
dc.identifier.citedreferenceBecker HC, Nettleton WJ, Meyers PH, Sweeney JW, Nice CM. Digital computer determination of a medical diagnostic index directly from chest X‐ray images. IEEE Trans Biomed Eng. 1964; 11: 67 – 72.
dc.identifier.citedreferenceLodwick GS, Keats TE, Dorst JP. The coding of roentgen images for computer analysis as applied to lung cancer. Radiology. 1963; 81: 185 – 200.
dc.identifier.citedreferenceChan H‐P, Doi K, Galhotra S, Vyborny CJ, MacMahon H, Jokich PM. Image feature analysis and computer‐aided diagnosis in digital radiography. 1. Automated detection of microcalcifications in mammography. Med Phys. 1987; 14: 538 – 548.
dc.identifier.citedreferenceGiger ML, Doi K, MacMahon H. Image feature analysis and computer aided diagnosis in digital radiography. 3. Automated detection of nodules in peripheral lung fields. Med Phys. 1988; 15: 158 – 166.
dc.identifier.citedreferenceKanazawa K, Kawata Y, Niki N, et al. Computer‐aided diagnosis for pulmonary nodules based on helical CT images. Comput Med Imaging Graph. 1998; 22: 157 – 167.
dc.identifier.citedreferenceAbe C, Kahn CE, Doi K, Katsuragawa S. Computer‐aided detection of diffuse liver‐disease in ultrasound images. Invest Radiol. 1992; 27: 71 – 77.
dc.identifier.citedreferenceFukushima K, Miyake S, Ito T. Neocognitron: a neural network model for a mechanism of visual pattern recognition. IEEE Trans Syst Man Cybern. 1983; SMC‐13: 826 – 834.
dc.identifier.citedreferenceLin JS, Ligomenides PA, Freedman MT, Mun SK. Application of artificial neural networks for reduction of false‐positive detections in digital chest radiographs. In: Proceedings of the Symposium on Computer Applications in Medical Care; 1993: 434 – 438.
dc.identifier.citedreferenceLo SC, Lou SL, Lin JS, Freedman MT, Mun SK. Artificial convolution neural network techniques and applications to lung nodule detection. IEEE Trans Med Imaging. 1995; 14: 711 – 718.
dc.identifier.citedreferenceChan H‐P, Lo SCB, Sahiner B, Lam KL, Helvie MA. Computer‐aided detection of mammographic microcalcifications: pattern recognition with an artificial neural network. Med Phys. 1995; 22: 1555 – 1567.
dc.identifier.citedreferenceSahiner B, Heang‐Ping C, Petrick N, et al. Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images. IEEE Trans Med Imaging. 1996; 15: 598 – 610.
dc.identifier.citedreferenceZhang W, Doi K, Giger ML, Wu Y, Nishikawa RM, Schmidt RA. Computerized detection of clustered microcalcifications in digital mammograms using a shift‐invariant artificial neural network. Med Phys. 1994; 21: 517 – 524.
dc.identifier.citedreferenceZhang W, Doi K, Giger ML, Nishikawa RM, Schmidt RA. An improved shift‐invariant artificial neural network for computerized detection of clustered microcalcifications in digital mammograms. Med Phys. 1996; 23: 595 – 601.
dc.identifier.citedreferenceSuzuki K, Armato SG, Li F, Sone S, Doi K. Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low‐dose computed tomography. Med Phys. 2003; 30: 1602 – 1617.
dc.identifier.citedreferenceSuzuki K, Li F, Sone S, Doi K. Computer‐aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low‐dose CT by use of massive training artificial neural network. IEEE Trans Med Imaging. 2005; 24: 1138 – 1150.
dc.identifier.citedreferenceHe KM, Zhang XY, Ren SQ, Sun J. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition; 2016: 770 – 778.
dc.identifier.citedreferenceDrozdzal M, Vorontsov E, Chartrand G, Kadoury S, Pal C. The importance of skip connections in biomedical image segmentation. In: Carneiro G, Mateus D, Peter L, Bradley A, Tavares J, Belagiannis V, Papa JP, Nascimento JC, Loog M, Lu Z, Cardoso JS, Cornebise J, eds. Deep Learning and Data Labeling for Medical Applications, Vol. 10008. Berlin: Springer; 2016: 179 – 187.
dc.identifier.citedreferenceGreenspan H, van Ginneken B, Summers RM. Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging. 2016; 35: 1153 – 1159.
dc.identifier.citedreferenceSimonyan K, Zisserman A. Very deep convolutional networks for large‐scale image recognition; 2014. arXiv:1409.1556.
dc.identifier.citedreferenceHuang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. In: CVPR, 3; 2017.
dc.identifier.citedreferenceChollet F. Xception: deep learning with depthwise separable convolutions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017: 1800 – 1807.
dc.identifier.citedreferenceSzegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2016: 2818 – 2826.
dc.identifier.citedreferenceGulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016; 316: 2402 – 2410.
dc.identifier.citedreferenceKooi T, Litjens G, van Ginneken B, et al. Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal. 2017; 35: 303 – 312.
dc.identifier.citedreferenceLiu Y, Gadepalli K, Norouzi M, et al. Detecting cancer metastases on gigapixel pathology images; 2017. arXiv:1703.02442.
dc.identifier.citedreferenceRibli D, Horváth A, Unger Z, Pollner P, Csabai I. Detecting and classifying lesions in mammograms with deep learning. Sci Rep. 2018; 8: 4165.
dc.identifier.citedreferenceTajbakhsh N, Shin JY, Gurudu SR, et al. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging. 2016; 35: 1299 – 1312.
dc.identifier.citedreferenceCoates A, Huval B, Wang T, Wu D, Catanzaro B, Andrew N. Deep learning with COTS HPC systems. Int Conf Mach Learn. 2013; 1337–1345.
dc.identifier.citedreferenceAmazon Web Services. https://aws.amazon.com/.
dc.identifier.citedreferenceNVidia GPU Cloud. https://www.nvidia.com/en-us/gpu-cloud/.
dc.identifier.citedreferenceGoogle Cloud TPU. https://cloud.google.com/tpu/.
dc.identifier.citedreferenceAbadi M, Barham P, Chen J, et al. TensorFlow: a system for large‐scale machine learning. OSDI. 2016;265–283.
dc.identifier.citedreferenceJia Y, Shelhamer E, Donahue J, et al. Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM international conference on Multimedia; 2014: 675 – 678.
dc.identifier.citedreferenceCollobert R, Kavukcuoglu K, Farabet C. Torch7: a matlab‐like environment for machine learning. In: BigLearn, NIPS Workshop; 2011.
dc.identifier.citedreferenceBastien F, Lamblin P, Pascanu R, et al. Theano: new features and speed improvements; 2012. arXiv:1211.5590.
dc.identifier.citedreferenceCha KH, Hadjiiski L, Samala RK, Chan HP, Caoili EM, Cohan RH. Urinary bladder segmentation in CT urography using deep‐learning convolutional neural network and level sets. Med Phys. 2016; 43: 1882.
dc.identifier.citedreferenceCha KH, Hadjiiski LM, Samala RK, et al. Bladder cancer segmentation in CT for treatment response assessment: application of deep‐learning convolution neural network – a pilot study. Tomography. 2016; 2: 421 – 429.
dc.identifier.citedreferenceAvendi MR, Kheradvar A, Jafarkhani H. Automatic segmentation of the right ventricle from cardiac MRI using a learning‐based approach. Magn Reson Med. 2017; 78: 2439 – 2448.
dc.identifier.citedreferenceNgo TA, Lu Z, Carneiro G. Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance. Med Image Anal. 2017; 35: 159 – 171.
dc.identifier.citedreferenceLu F, Wu F, Hu P, Peng Z, Kong D. Automatic 3D liver location and segmentation via convolutional neural network and graph cut. Int J Comput Assist Radiol Surg. 2017; 12: 171 – 182.
dc.identifier.citedreferenceLiu F, Zhou Z, Jang H, Samsonov A, Zhao G, Kijowski R. Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging. Magn Reson Med. 2018; 79: 2379 – 2391.
dc.identifier.citedreferenceAvendi MR, Kheradvar A, Jafarkhani H. A combined deep‐learning and deformable‐model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med Image Anal. 2016; 30: 108 – 119.
dc.identifier.citedreferenceIbragimov B, Xing L. Segmentation of organs‐at‐risks in head and neck CT images using convolutional neural networks. Med Phys. 2017; 44: 547 – 557.
dc.identifier.citedreferenceRonneberger O, Fischer P, Brox T. U‐Net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer‐Assisted Intervention (MICCAI), Cham; 2015: 234 – 241.
dc.identifier.citedreferenceDalmis MU, Litjens G, Holland K, et al. Using deep learning to segment breast and fibroglandular tissue in MRI volumes. Med Phys. 2017; 44: 533 – 546.
dc.identifier.citedreferenceNie D, Wang L, Trullo R, et al. Segmentation of craniomaxillofacial bony structures from MRI with a 3D deep‐learning based cascade framework. Mach Learn Med Imaging. 2017; 10541: 266 – 273.
dc.identifier.citedreferenceCheng R, Roth HR, Lay N, et al. Automatic magnetic resonance prostate segmentation by deep learning with holistically nested networks. J Med Imaging (Bellingham). 2017; 4: 041302.
dc.identifier.citedreferenceZhuge Y, Krauze AV, Ning H, et al. Brain tumor segmentation using holistically nested neural networks in MRI images. Med Phys. 2017; 44: 5234 – 5243.
dc.identifier.citedreferenceLee H, Troschel FM, Tajmir S, et al. Pixel‐level deep segmentation: artificial intelligence quantifies muscle on computed tomography for body morphometric analysis. J Digit Imaging. 2017; 30: 487 – 498.
dc.identifier.citedreferenceWang Y, Qiu Y, Thai T, Moore K, Liu H, Zheng B. A two‐step convolutional neural network based computer‐aided detection scheme for automatically segmenting adipose tissue volume depicting on CT images. Comput Methods Programs Biomed. 2017; 144: 97 – 104.
dc.identifier.citedreferenceHu P, Wu F, Peng J, Bao Y, Chen F, Kong D. Automatic abdominal multi‐organ segmentation using deep convolutional neural network and time‐implicit level sets. Int J Comput Assist Radiol Surg. 2017; 12: 399 – 411.
dc.identifier.citedreferenceMansoor A, Cerrolaza JJ, Idrees R, et al. Deep learning guided partitioned shape model for anterior visual pathway segmentation. IEEE Trans Med Imaging. 2016; 35: 1856 – 1865.
dc.identifier.citedreferenceChoi H, Jin KH. Fast and robust segmentation of the striatum using deep convolutional neural networks. J Neurosci Methods. 2016; 274: 146 – 153.
dc.identifier.citedreferenceMoeskops P, Viergever MA, Mendrik AM, de Vries LS, Benders MJ, Isgum I. Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans Med Imaging. 2016; 35: 1252 – 1261.
dc.identifier.citedreferenceWachinger C, Reuter M, Klein T. DeepNAT: deep convolutional neural network for segmenting neuroanatomy. NeuroImage. 2018; 170: 434 – 445.
dc.identifier.citedreferenceChen H, Dou Q, Yu L, Qin J, Heng PA. VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images. NeuroImage. 2018; 170: 446 – 455.
dc.identifier.citedreferenceDolz J, Desrosiers C, Ben I. Ayed, “3D fully convolutional networks for subcortical segmentation in MRI: a large‐scale study”. NeuroImage. 2018; 170: 456 – 470.
dc.identifier.citedreferenceKallenberg M, Petersen K, Nielsen M, et al. Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans Med Imaging. 2016; 35: 1322 – 1331.
dc.identifier.citedreferenceTan LK, McLaughlin RA, Lim E, Abdul Aziz YF, Liew YM. Fully automated segmentation of the left ventricle in cine cardiac MRI using neural network regression. J Magn Reson Imaging. 2018; 48: 140 – 452.
dc.identifier.citedreferenceTan LK, Liew YM, Lim E, McLaughlin RA. Convolutional neural network regression for short‐axis left ventricle segmentation in cardiac cine MR sequences. Med Image Anal. 2017; 39: 78 – 86.
dc.identifier.citedreferenceYu L, Guo Y, Wang Y, Yu J, Chen P. Segmentation of fetal left ventricle in echocardiographic sequences based on dynamic convolutional neural networks. IEEE Trans Biomed Eng. 2017; 64: 1886 – 1895.
dc.identifier.citedreferenceKline TL, Korfiatis P, Edwards ME, et al. Performance of an artificial multi‐observer deep neural network for fully automated segmentation of polycystic kidneys. J Digit Imaging. 2017; 30: 442 – 448.
dc.identifier.citedreferenceSharma K, Rupprecht C, Caroli A, et al. Automatic segmentation of kidneys using deep learning for total kidney volume quantification in autosomal dominant polycystic kidney disease. Sci Rep. 2017; 7: 2049.
dc.identifier.citedreferenceHu P, Wu F, Peng J, Liang P, Kong D. Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution. Phys Med Biol. 2016; 61: 8676 – 8698.
dc.identifier.citedreferenceKovacs W, Hsieh N, Roth H, et al. Holistic segmentation of the lung in cine MRI. J Med Imaging (Bellingham). 2017; 4: 041310.
dc.identifier.citedreferenceFarag A, Lu L, Roth HR, Liu J, Turkbey E, Summers RM. A bottom‐up approach for pancreas segmentation using cascaded superpixels and (Deep) image patch labeling. In: IEEE Transactions on Image Processing; 2016.
dc.identifier.citedreferenceRoth HR, Lu L, Farag A, et al. Deeporgan: multi‐level deep convolutional networks for automated pancreas segmentation. In: International Conference on Medical Image Computing and Computer‐Assisted Intervention (MICCAI); 2015: 556 – 564.
dc.identifier.citedreferenceGuo Y, Gao Y, Shen D. Deformable MR prostate segmentation via deep feature learning and sparse patch matching. IEEE Trans Med Imaging. 2016; 35: 1077 – 1089.
dc.identifier.citedreferenceLiao S, Gao Y, Oto A, Shen D. Representation learning: a unified deep learning framework for automatic prostate MR segmentation. In: International Conference on Medical Image Computing and Computer‐Assisted Intervention (MICCAI); 2013; 254 – 261.
dc.identifier.citedreferenceTian Z, Liu L, Zhang Z, Fei B. PSNet: prostate segmentation on MRI based on a convolutional neural network. J Med Imaging (Bellingham). 2008; 5: 021208.
dc.identifier.citedreferenceMen K, Dai J, Li Y. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks. Med Phys. 2017; 44: 6377.
dc.identifier.citedreferenceLi X, Dou Q, Chen H, et al. 3D multi‐scale FCN with random modality voxel dropout learning for Intervertebral disc localization and segmentation from multi‐modality MR images. Med Image Anal. 2018; 45: 41 – 54.
dc.identifier.citedreferenceZhou X, Takayama R, Wang S, Hara T, Fujita H. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method. Med Phys. 2017; 44: 5221 – 5233.
dc.identifier.citedreferenceDou Q, Yu L, Chen H, et al. 3D deeply supervised network for automated segmentation of volumetric medical images. Med Image Anal. 2017; 41: 40 – 54.
dc.identifier.citedreferenceAlex V, Vaidhya K, Thirunavukkarasu S, Kesavadas C, Krishnamurthi G. Semisupervised learning using denoising autoencoders for brain lesion detection and segmentation. J Med Imaging (Bellingham). 2017; 4: 041311.
dc.identifier.citedreferenceKorfiatis P, Kline TL, Erickson BJ. Automated segmentation of hyperintense regions in FLAIR MRI using deep learning. Tomography. 2016; 2: 334 – 340.
dc.identifier.citedreferenceIqbal S, Ghani MU, Saba T, Rehman A. Brain tumor segmentation in multi‐spectral MRI using convolutional neural networks (CNN). Microsc Res Tech. 2018; 81: 419 – 427.
dc.identifier.citedreferenceAl‐antari MA, Al‐masni MA, Choi M‐T, Han S‐M, Kim T‐S. A fully integrated computer‐aided diagnosis system for digital X‐ray mammograms via deep learning detection, segmentation, and classification. Int J Med Inform. 2018; 117: 44 – 54.
dc.identifier.citedreferenceZhang R, Huang L, Xia W, Zhang B, Qiu B, Gao X. Multiple supervised residual network for osteosarcoma segmentation in CT images. Comput Med Imaging Graph. 2018; 63: 1 – 8.
dc.identifier.citedreferenceHuang L, Xia W, Zhang B, Qiu B, Gao X. MSFCN‐multiple supervised fully convolutional networks for the osteosarcoma segmentation of CT images. Comput Methods Programs Biomed. 2017; 143: 67 – 74.
dc.identifier.citedreferenceKamnitsas K, Ledig C, Newcombe VFJ, et al. Efficient multi‐scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal. 2017; 36: 61 – 78.
dc.identifier.citedreferenceLiu Y, Stojadinovic S, Hrycushko B, et al. A deep convolutional neural network‐based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery. PLoS ONE. 2017; 12: e0185844.
dc.identifier.citedreferenceHavaei M, Davy A, Warde‐Farley D, et al. Brain tumor segmentation with deep neural networks. Med Image Anal. 2017; 35: 18 – 31.
dc.identifier.citedreferenceZhao X, Wu Y, Song G, Li Z, Zhang Y, Fan Y. A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Med Image Anal. 2018; 43: 98 – 111.
dc.identifier.citedreferenceChen L, Bentley P, Rueckert D. Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks. Neuroimage Clin. 2017; 15: 633 – 643.
dc.identifier.citedreferenceBrosch T, Tang LY, Youngjin Y, Li DK, Traboulsee A, Tam R. Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans Med Imaging. 2016; 35: 1229 – 1239.
dc.identifier.citedreferenceGhafoorian M, Karssemeijer N, Heskes T, et al. Location sensitive deep convolutional neural networks for segmentation of white matter hyperintensities. Sci Rep. 2017; 7: 5110.
dc.identifier.citedreferenceMen K, Chen X, Zhang Y, et al. Deep deconvolutional neural network for target segmentation of nasopharyngeal cancer in planning computed tomography images. Front Oncol. 2017; 7: 315.
dc.identifier.citedreferenceMa J, Wu F, Jiang T, Zhao Q, Kong D. Ultrasound image‐based thyroid nodule automatic segmentation using convolutional neural networks. Int J Comput Assist Radiol Surg. 2017; 12: 1895 – 1910.
dc.identifier.citedreferenceLi W, Jia F, Hu Q. Automatic segmentation of liver tumor in CT images with deep convolutional neural networks. J Comput Commun. 2015; 3: 146.
dc.identifier.citedreferenceWang S, Zhou M, Liu Z, et al. Central focused convolutional neural networks: developing a data‐driven model for lung nodule segmentation. Med Image Anal. 2017; 40: 172 – 183.
dc.identifier.citedreferenceNogues I, Lu L, Wang X, et al. Automatic lymph node cluster segmentation using holistically‐nested neural networks and structured optimization in CT images. In: International Conference on Medical Image Computing and Computer‐Assisted Intervention (MICCAI); 2016: 388 – 397.
dc.identifier.citedreferenceTrebeschi S, van Griethuysen JJM, Lambregts DMJ, et al. Deep learning for fully‐automated localization and segmentation of rectal cancer on multiparametric MR. Sci Rep. 2017; 7: 9.
dc.identifier.citedreferenceJafari MH, Nasr‐Esfahani E, Karimi N, Soroushmehr SMR, Samavi S, Najarian K. Extraction of skin lesions from non‐dermoscopic images for surgical excision of melanoma. Int J Comput Assist Radiol Surg. 2017; 12: 1021 – 1030.
dc.identifier.citedreferenceYang D, Zhang S, Yan Z, Tan C, Li K, Metaxas D. Automated anatomical landmark detection on distal femur surface using convolutional neural network. In: 2015 IEEE 12th International Symposium on Biomedical Imaging; 2005: 17 – 21.
dc.identifier.citedreferenceChen H, Ni D, Qin J, et al. Standard plane localization in fetal ultrasound via domain transferred deep neural networks. IEEE J Biomed Health Inform. 2015; 19: 1627 – 1636.
dc.identifier.citedreferenceBaumgartner CF, Kamnitsas K, Matthew J, Smith S, Kainz B, Rueckert D. Real‐time standard scan plane detection and localisation in fetal ultrasound using fully convolutional neural networks. In: International Conference on Medical Image Computing and Computer‐Assisted Intervention (MICCAI); 2016: 203 – 211.
dc.identifier.citedreferenceKumar A, Sridar P, Quinton A, et al. Plane identification in fetal ultrasound images using saliency maps and convolutional neural networks. In: 2016 IEEE 13th International Symposium on Biomedical Imaging; 2016: 791 – 794.
dc.identifier.citedreferenceGhesu FC, Krubasik E, Georgescu B, et al. Marginal space deep learning: efficient architecture for volumetric image parsing. IEEE Trans Med Imaging. 2016; 35: 1217 – 1228.
dc.identifier.citedreferenceWu H, Bailey C, Rasoulinejad P, Li S. Automatic landmark estimation for adolescent idiopathic scoliosis assessment using BoostNet. In: International Conference on Medical Image Computing and Computer‐Assisted Intervention (MICCAI); 2017: 127 – 135.
dc.identifier.citedreferenceYan K, Lu L, Summers RM. Unsupervised body part regression using convolutional neural network with self‐organization; 2017. arXiv:1707.03891.
dc.identifier.citedreferenceYan Z, Zhan Y, Peng Z, et al. Multi‐instance deep learning: discover discriminative local anatomies for bodypart recognition. IEEE Trans Med Imaging. 2016; 35: 1332 – 1343.
dc.identifier.citedreferenceGhesu FC, Georgescu B, Mansi T, Neumann D, Hornegger J, Comaniciu D. An artificial agent for anatomical landmark detection in medical images. In: International Conference on Medical Image Computing and Computer‐Assisted Intervention (MICCAI); 2016: 229 – 237.
dc.identifier.citedreferenceGhesu FC, Georgescu B, Zheng Y, et al. Multi‐scale deep reinforcement learning for real‐time 3D‐landmark detection in CT scans. IEEE Trans Patt Anal Mach Intell. 2017. [Epub ahead of print]. https://doi.org/10.1109/TPAMI.2017.2782687
dc.identifier.citedreferenceGhesu FC, Georgescu B, Grbic S, Maier AK, Hornegger J, Comaniciu D. Robust multi‐scale anatomical landmark detection in incomplete 3D‐CT data. In: International Conference on Medical Image Computing and Computer‐Assisted Intervention (MICCAI); 2017: 194 – 202.
dc.identifier.citedreferenceXu Z, Huang Q, Park J, et al. Supervised action classifier: approaching landmark detection as image partitioning. In: International Conference on Medical Image Computing and Computer‐Assisted Intervention (MICCAI); 2017: 338 – 346.
dc.identifier.citedreferencePayer C, Štern D, Bischof H, Urschler M. Regressing heatmaps for multiple landmark localization using CNNs. In: International Conference on Medical Image Computing and Computer‐Assisted Intervention (MICCAI); 2016: 230 – 238.
dc.identifier.citedreferenceCai Y, Landis M, Laidley DT, Kornecki A, Lum A, Li S. Multi‐modal vertebrae recognition using transformed deep convolution network. Comput Med Imaging Graph. 2016; 51: 11 – 19.
dc.identifier.citedreferenceBaka N, Leenstra S, Walsum TV. Ultrasound aided vertebral level localization for lumbar surgery. IEEE Trans Med Imaging. 2017; 36: 2138 – 2147.
dc.identifier.citedreferenceZheng Y, Liu D, Georgescu B, Nguyen H, Comaniciu D. 3D Deep learning for efficient and robust landmark detection in volumetric data. In: International Conference on Medical Image Computing and Computer‐Assisted Intervention (MICCAI); 2015: 565 – 572.
dc.identifier.citedreferenceChen H, Dou Q, Ni D, et al. Automatic fetal ultrasound standard plane detection using knowledge transferred recurrent neural networks. In: International Conference on Medical Image Computing and Computer‐Assisted Intervention (MICCAI); 2015: 507 – 514.
dc.identifier.citedreferenceLu X, Xu D, Liu D. Robust 3D organ localization with dual learning architectures and fusion. In: Deep Learning and Data Labeling for Medical Applications. Berlin: Springer. 2016: 12 – 20.
dc.identifier.citedreferenceRoth HR, Lee CT, Shin H‐C, et al. Anatomy‐specific classification of medical images using deep convolutional nets. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI); 2015: 101 – 104.
dc.identifier.citedreferencede Vos BD, Wolterink JM, de Jong PA, Leiner T, Viergever MA, Išgum I. ConvNet‐based localization of anatomical structures in 3‐D medical images. IEEE Trans Med Imaging. 2017; 36: 1470 – 1481.
dc.identifier.citedreferenceZhang J, Liu M, Shen D. Detecting anatomical landmarks from limited medical imaging data using two‐stage task‐oriented deep neural networks. IEEE Trans Image Process. 2017; 26: 4753 – 4764.
dc.identifier.citedreferenceHarrison AP, Xu Z, George K, Lu L, Summers RM, Mollura DJ. Progressive and multi‐path holistically nested neural networks for pathological lung segmentation from CT images. In: International Conference on Medical Image Computing and Computer‐Assisted Intervention; 2017: 621 – 629.
dc.identifier.citedreferenceYao J, Kovacs W, Hsieh N, Liu C‐Y, Summers RM. Holistic segmentation of intermuscular adipose tissues on thigh MRI. In: International Conference on Medical Image Computing and Computer‐Assisted Intervention; 2017: 737 – 745.
dc.identifier.citedreferenceGiger ML, Chan HP, Boone J. Anniversary paper: history and status of CAD and quantitative image analysis: the role of medical physics and AAPM. Med Phys. 2008; 35: 5799 – 5820.
dc.identifier.citedreferenceGiger, M. L., Karssemeijer, N., & Schnabel, J. A. ( 2013 ). Breast image analysis for risk assessment, detection, diagnosis, and treatment of cancer. Annual review of biomedical engineering., 15, 327 ‐ 357.
dc.identifier.citedreferenceShin H‐C, Roth HR, Gao M, et al. Deep convolutional neural networks for computer‐aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging. 2016; 35: 1285 – 1298.
dc.identifier.citedreferenceYap MH, Pons G, Martí J, et al. Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J Biomed Health Inform. 2017: 22; 1218 – 1226.
dc.identifier.citedreferenceCheng PM, Tejura TK, Tran KN, Whang G. Detection of high‐grade small bowel obstruction on conventional radiography with convolutional neural networks. Abdom Radiol. 2017; 43: 1120 – 1127.
dc.identifier.citedreferenceBelharbi S, Chatelain C, Hérault R, et al. Spotting L3 slice in CT scans using deep convolutional network and transfer learning. Comput Biol Med. 2017; 87: 95 – 103.
dc.identifier.citedreferenceAlbarqouni S, Baur C, Achilles F, Belagiannis V, Demirci S, Navab N. Aggnet: deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans Med Imaging. 2016; 35: 1313 – 1321.
dc.identifier.citedreferenceOrlando JI, Prokofyeva E, del Fresno M, Blaschko MB. An ensemble deep learning based approach for red lesion detection in fundus images. Comput Methods Programs Biomed. 2018; 153: 115 – 127.
dc.identifier.citedreferenceRoth HR, Lu L, Liu J, et al. Improving computer‐aided detection using convolutional neural networks and random view aggregation. IEEE Trans Med Imaging. 2016; 35: 1170 – 1181.
dc.identifier.citedreferenceYang X, Liu C, Wang Z, et al. Co‐trained convolutional neural networks for automated detection of prostate cancer in multi‐parametric MRI. Med Image Anal. 2017; 42: 212 – 227.
dc.identifier.citedreferenceSetio AA, Ciompi F, Litjens G, et al. Pulmonary nodule detection in CT images: false positive reduction using multi‐view convolutional networks. IEEE Trans Med Imaging. 2016; 35: 1160 – 1169.
dc.identifier.citedreferenceDou Q, Chen H, Yu L, Qin J, Heng PA. Multilevel contextual 3‐D CNNs for false positive reduction in pulmonary nodule detection. IEEE Trans Biomed Eng. 2017; 64: 1558 – 1567.
dc.identifier.citedreferenceGhafoorian M, Karssemeijer N, Heskes T, et al. Deep multi‐scale location‐aware 3D convolutional neural networks for automated detection of lacunes of presumed vascular origin. Neuroimage Clin. 2017; 14: 391 – 399.
dc.identifier.citedreferenceLong J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2015: 3431 – 3440.
dc.identifier.citedreferenceQi D, Hao C, Lequan Y, et al. Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks. IEEE Trans Med Imaging. 2016; 35: 1182 – 1195.
dc.identifier.citedreferenceCiompi F, de Hoop B, van Riel SJ, et al. Automatic classification of pulmonary peri‐fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out‐of‐the‐box. Med Image Anal. 2015; 26: 195 – 202.
dc.identifier.citedreferenceChen S, Qin J, Ji X, et al. Automatic scoring of multiple semantic attributes with multi‐task feature leverage: a study on pulmonary nodules in CT images. IEEE Trans Med Imaging. 2017; 36: 802 – 814.
dc.identifier.citedreferenceTeramoto A, Fujita H, Yamamuro O, Tamaki T. Automated detection of pulmonary nodules in PET/CT images: ensemble false‐positive reduction using a convolutional neural network technique. Med Phys. 2016; 43: 2821 – 2827.
dc.identifier.citedreferenceJiang H, Ma H, Qian W, Gao M, Li Y. An automatic detection system of lung nodule based on multi‐group patch‐based deep learning network. IEEE J Biomed Health Inform. 2017; 22: 1227 – 1237.
dc.identifier.citedreferenceBar Y, Diamant I, Wolf L, Lieberman S, Konen E, Greenspan H. Chest pathology detection using deep learning with non‐medical training. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI); 2015: 294 – 297.
dc.identifier.citedreferenceCicero M, Bilbily A, Colak E, et al. Training and validating a deep convolutional neural network for computer‐aided detection and classification of abnormalities on frontal chest radiographs. Invest Radiol. 2017; 52: 281 – 287.
dc.identifier.citedreferenceLakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. 2017; 284: 574 – 582.
dc.identifier.citedreferenceWang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM. Chestx‐ray8: hospital‐scale chest x‐ray database and benchmarks on weakly‐supervised classification and localization of common thorax diseases. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017: 3462 – 3471.
dc.identifier.citedreferenceBar Y, Diamant I, Wolf L, Greenspan H. Deep learning with non‐medical training used for chest pathology identification. In: Hadjiiski LM, Tourassi GD, eds. Proc. SPIE Medical Imaging, Vol. 9414; 2015: 94140V.
dc.identifier.citedreferenceNakao T, Hanaoka S, Nomura Y, et al. Deep neural network‐based computer‐assisted detection of cerebral aneurysms in MR angiography. J Magn Reson Imaging. 2018; 47: 948 – 953.
dc.identifier.citedreferenceDalmış MU, Vreemann S, Kooi T, Mann RM, Karssemeijer N, Gubern‐Mérida A. Fully automated detection of breast cancer in screening MRI using convolutional neural networks. J Med Imaging. 2018; 5: 014502.
dc.identifier.citedreferenceLiu J, Wang D, Lu L, et al. Detection and diagnosis of colitis on computed tomography using deep convolutional neural networks. Med Phys. 2017; 44: 4630 – 4642.
dc.identifier.citedreferenceNappi JJ, Pickhardt P, Kim DH, Hironaka T, Yoshida H. Deep learning of contrast‐coated serrated polyps for computer‐aided detection in CT colonography. In: Armato SG, Petrick NA, eds. Medical Imaging 2017: Computer‐Aided Diagnosis, Vol. 10134; 2017.
dc.identifier.citedreferenceRoth HR, Lu L, Seff A, et al. A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. In: International Conference on Medical Image Computing and Computer‐Assisted Intervention (MICCAI); 2014: 520 – 527.
dc.identifier.citedreferenceVivanti R, Szeskin A, Lev‐Cohain N, Sosna J, Joskowicz L. Automatic detection of new tumors and tumor burden evaluation in longitudinal liver CT scan studies. Int J Comput Assist Radiol Surg. 2017; 12: 1945 – 1957.
dc.identifier.citedreferenceMa J, Wu F, Jiang TA, Zhu J, Kong D. Cascade convolutional neural networks for automatic detection of thyroid nodules in ultrasound images. Med Phys. 2017; 44: 1678 – 1691.
dc.identifier.citedreferenceTsehay Y, Lay N, Wang X, et al. Biopsy‐guided learning with deep convolutional neural networks for prostate cancer detection on multiparametric MRI. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017); 2017: 642 – 645.
dc.identifier.citedreferenceLiu J, Chellamuthu K, Lu L, Bagheri M, Summers RM. A coarse‐to‐fine approach for pericardial effusion localization and segmentation in chest CT scans. In: Petrick N, Mori K, eds. Proc. SPIE Medical Imaging, Vol. 10575; 2018: 105753B.
dc.identifier.citedreferenceChellamuthu K, Liu J, Yao J, et al. Atherosclerotic vascular calcification detection and segmentation on low dose computed tomography scans using convolutional neural networks. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017); 2017: 388 – 391.
dc.identifier.citedreferenceLi H, Giger ML, Huynh BQ, Antropova NO. Deep learning in breast cancer risk assessment: evaluation of convolutional neural networks on a clinical dataset of full‐field digital mammograms. J Med Imaging (Bellingham). 2017; 4: 041304.
dc.identifier.citedreferenceMohamed AA, Berg WA, Peng H, Luo Y, Jankowitz RC, Wu S. A deep learning method for classifying mammographic breast density categories. Med Phys. 2018; 45: 314 – 321.
dc.identifier.citedreferenceLi SF, Wei J, Chan HP, et al. Computer‐aided assessment of breast density: comparison of supervised deep learning and feature‐based statistical learning. Phys Med Biol. 2018; 63: 2.
dc.identifier.citedreferenceLee J, Nishikawa RM. Automated mammographic breast density estimation using a fully convolutional network. Med Phys. 2018; 45: 1178 – 1190.
dc.identifier.citedreferenceHuynh BQ, Li H, Giger ML. Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. J Med Imaging (Bellingham). 2016; 3: 034501.
dc.identifier.citedreferenceAntropova N, Huynh BQ, Giger ML. A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. Med Phys. 2017; 44: 5162 – 5171.
dc.identifier.citedreferenceSamala RK, Chan HP, Hadjiiski LM, Helvie MA, Richter C, Cha K. Evolutionary pruning of transfer learned deep convolutional neural network for breast cancer diagnosis in digital breast tomosynthesis. Phys Med Biol. 2018; 63: 095005.
dc.identifier.citedreferenceSamala RK, Chan HP, Hadjiiski LM, Helvie MA, Cha KH, Richter CD. Multi‐task transfer learning deep convolutional neural network: application to computer‐aided diagnosis of breast cancer on mammograms. Phys Med Biol. 2017; 62: 8894 – 8908.
dc.identifier.citedreferenceAntropova N, Abe H, Giger ML. Use of clinical MRI maximum intensity projections for improved breast lesion classification with deep convolutional neural networks. J Med Imaging (Bellingham). 2018; 5: 014503.
dc.identifier.citedreferenceAntropova N, Huynh B, Giger ML. Long short‐term memory networks for efficient breast DCE‐MRI classification. In: NIPS: Neural Information Processing Systems, Medical Imaging Meets NIPS; 2017.
dc.identifier.citedreferenceKooi T, van Ginneken B, Karssemeijer N, den Heeten A. Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network. Med Phys. 2017; 44: 1017 – 1027.
dc.identifier.citedreferenceShi BB, Grimm LJ, Mazurowski MA, et al. Prediction of occult invasive disease in ductal carcinoma in situ using deep learning features. J Am Coll Radiol. 2018; 15: 527 – 534.
dc.identifier.citedreferenceNibali A, He Z, Wollersheim D. Pulmonary nodule classification with deep residual networks. Int J Comput Assist Radiol Surg. 2017; 12: 1799 – 1808.
dc.identifier.citedreferenceSchlegl T, Ofner J, Langs G. Unsupervised pre‐training across image domains improves lung tissue classification. In: Medical Computer Vision: Algorithms for Big Data; 2014: 82 – 93.
dc.identifier.citedreferenceGao M, Bagci U, Lu L, et al. Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks. Comput Methods Biomech Biomed Eng. 2018; 6: 1 – 6.
dc.identifier.citedreferenceAnthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S. Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging. 2016; 35: 1207 – 1216.
dc.identifier.citedreferenceKim GB, Jung KH, Lee Y, et al. Comparison of shallow and deep learning methods on classifying the regional pattern of diffuse lung disease. J Digit Imaging. 2017; 31: 415 – 424.
dc.identifier.citedreferenceChristodoulidis S, Anthimopoulos M, Ebner L, Christe A, Mougiakakou S. Multisource transfer learning with convolutional neural networks for lung pattern analysis. IEEE J Biomed Health Inform. 2017; 21: 76 – 84.
dc.identifier.citedreferenceMasood A, Sheng B, Li P, et al. Computer‐assisted decision support system in pulmonary cancer detection and stage classification on CT images. J Biomed Inform. 2018; 79: 117 – 128.
dc.identifier.citedreferenceGonzalez G, Ash SY, Vegas‐Sanchez‐Ferrero G, et al. Disease staging and prognosis in smokers using deep learning in chest computed tomography. Am J Respir Crit Care Med. 2018; 197: 193 – 203.
dc.identifier.citedreferenceLessmann N, van Ginneken B, Zreik M, et al. Automatic calcium scoring in low‐dose chest CT using deep neural networks with dilated convolutions. IEEE Trans Med Imaging. 2018; 37: 615 – 625.
dc.identifier.citedreferenceXue WF, Brahm G, Pandey S, Leung S, Li S. Full left ventricle quantification via deep multitask relationships learning. Med Image Anal. 2018; 43: 54 – 65.
dc.identifier.citedreferenceCheng PM, Malhi HS. Transfer learning with convolutional neural networks for classification of abdominal ultrasound images. J Digit Imaging. 2017; 30: 234 – 243.
dc.identifier.citedreferenceFrid‐Adar M, Klang E, Amitai M, Goldberger J, Greenspan H. Synthetic data augmentation using GAN for improved liver lesion classification. In: IEEE International Symposium on Biomedical Imaging; 2018.
dc.identifier.citedreferenceYasaka K, Akai H, Abe O, Kiryu S. Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast‐enhanced CT: a preliminary study. Radiology. 2018; 286: 899 – 908.
dc.identifier.citedreferenceBharath R, Rajalakshmi P. Deep scattering convolution network based features for ultrasonic fatty liver tissue characterization. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2017: 1982 – 1985.
dc.identifier.citedreferenceLao J, Chen Y, Li ZC, et al. A deep learning‐based radiomics model for prediction of survival in glioblastoma multiforme. Sci Rep. 2017; 7: 10353.
dc.identifier.citedreferenceLarson DB, Chen MC, Lungren MP, Halabi SS, Stence NV, Langlotz CP. Performance of a deep‐learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology. 2018; 287: 313 – 322.
dc.identifier.citedreferenceLi H, Zhu Y, Burnside ES, et al. Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set. NPJ Breast Cancer. 2016; 2: 16012.
dc.identifier.citedreferenceBurnside ES, Drukker K, Li H, et al. Using computer‐extracted image phenotypes from tumors on breast magnetic resonance imaging to predict breast cancer pathologic stage. Cancer. 2016; 122: 748 – 757.
dc.identifier.citedreferenceZhu YT, Li H, Guo WT, et al. Deciphering genomic underpinnings of quantitative MRI‐based radiomic phenotypes of invasive breast carcinoma. Sci Rep. 2015; 5: 17787.
dc.identifier.citedreferenceLi H, Zhu YT, Burnside ES, et al. MR imaging radiomics signatures for predicting the risk of breast cancer recurrence as given by research versions of MammaPrint, Oncotype DX, and PAM50 Gene Assays. Radiology. 2016; 281: 382 – 391.
dc.identifier.citedreferenceGuo W, Li H, Zhu Y, et al. Prediction of clinical phenotypes in invasive breast carcinomas from the integration of radiomics and genomics data. J Med Imaging (Bellingham). 2015; 2: 041007.
dc.identifier.citedreferenceSun WQ, Tseng TL, Zhang JY, Qian W. Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data. Comput Med Imaging Graph. 2017; 57: 4 – 9.
dc.identifier.citedreferenceJamieson AR, Giger ML, Drukker K, Pesce LL. Enhancement of breast CADx with unlabeled data. Med Phys. 2010; 37: 4155 – 4172.
dc.identifier.citedreferenceKatsuragawa S, Doi K, MacMahon H, MonnierCholley L, Ishida T, Kobayashi T. Classification of normal and abnormal lungs with interstitial diseases by rule‐based method and artificial neural networks. J Digit Imaging. 1997; 10: 108 – 114.
dc.identifier.citedreferencevan Ginneken B, Katsuragawa S, Romeny BMT, Doi K, Viergever MA. Automatic detection of abnormalities in chest radiographs using local texture analysis. IEEE Trans Med Imaging. 2002; 21: 139 – 149.
dc.identifier.citedreferenceLi H, Giger ML, Lan L, et al. Computerized analysis of mammographic parenchymal patterns on a large clinical dataset of full‐field digital mammograms: robustness study with two high‐risk datasets. J Digit Imaging. 2015; 25: 591 – 598.
dc.identifier.citedreferenceHe H, Yang X, Wu L, et al. Dual long short‐term memory networks for sub‐character representation learning; 2018. arXiv:1712.08841.
dc.identifier.citedreferenceGarapati SS, Hadjiiski L, Cha KH, et al. Urinary bladder cancer staging in CT urography using machine learning. Med Phys. 2017; 44: 5814 – 5823.
dc.identifier.citedreferenceHenglin M, Stein G, Hushcha PV, Snoek J, Wiltschko AB, Cheng S. Machine learning approaches in cardiovascular imaging. Circ Cardiovasc Imaging. 2017; 10: e005614.
dc.identifier.citedreferenceZhang L, Lu L, Summers RM, Kebebew E, Yao J. Convolutional invasion and expansion networks for tumor growth prediction. IEEE Trans Med Imaging. 2018; 37: 638 – 648.
dc.identifier.citedreferenceSuzuki K. A supervised ‘lesion‐enhancement’ filter by use of a massive‐training artificial neural network (MTANN) in computer‐aided diagnosis (CAD). Phys Med Biol. 2009; 54: S31 – S45.
dc.identifier.citedreferenceYang W, Chen YY, Liu YB, et al. Cascade of multi‐scale convolutional neural networks for bone suppression of chest radiographs in gradient domain. Med Image Anal. 2017; 35: 421 – 433.
dc.identifier.citedreferenceMori S. Deep architecture neural network‐based real‐time image processing for image‐guided radiotherapy. Phys Med. 2017; 40: 79 – 87.
dc.identifier.citedreferenceChen H, Zhang Y, Zhang W, et al. Low‐dose CT via convolutional neural network. Biomed Opt Express. 2017; 8: 679 – 694.
dc.identifier.citedreferenceChen H, Zhang Y, Kalra MK, et al. Low‐dose CT with a residual encoder‐decoder convolutional neural network. IEEE Trans Med Imaging. 2017; 36: 2524 – 2535.
dc.identifier.citedreferenceKang E, Min J, Ye JC. A deep convolutional neural network using directional wavelets for low‐dose X‐ray CT reconstruction. Med Phys. 2017; 44: e360 – e375.
dc.identifier.citedreferenceYang X, De Andrade V, Scullin W, et al. Low‐dose x‐ray tomography through a deep convolutional neural network. Sci Rep. 2018; 8: 2575.
dc.identifier.citedreferenceXiang L, Qiao Y, Nie D, An L, Wang Q, Shen D. Deep auto‐context convolutional neural networks for standard‐dose PET image estimation from low‐dose PET/MRI. Neurocomputing. 2017; 267: 406 – 416.
dc.identifier.citedreferenceJin KH, McCann MT, Froustey E, Unser M. Deep convolutional neural network for inverse problems in imaging. IEEE Trans Image Process. 2017; 26: 4509 – 4522.
dc.identifier.citedreferenceZhang YB, Chu Y, Yu HY. Reduction of metal artifacts in x‐ray CT images using a convolutional neural network. In: Muller B, Wang G, eds. Proc. SPIE Developments in X‐Ray Tomography XI, Vol. 10391. 2017: 103910V.
dc.identifier.citedreferenceHan Y, Yoo J, Kim HH, Shin HJ, Sung K, Ye JC. Deep learning with domain adaptation for accelerated projection‐reconstruction MR. Magn Reson Med. 2018; 80: 1189 – 1205.
dc.identifier.citedreferenceGolkov V, Dosovitskiy A, Sper JI, et al. q‐space deep learning: twelve‐fold shorter and model‐free diffusion MRI scans. IEEE Trans Med Imaging. 2016; 35: 1344 – 1351.
dc.identifier.citedreferenceHammernik K, Klatzer T, Kobler E, et al. Learning a variational network for reconstruction of accelerated MRI data. Magn Reson Med. 2018; 79: 3055 – 3071.
dc.identifier.citedreferenceSchlemper J, Caballero J, Hajnal JV, Price AN, Rueckert D. A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans Med Imaging. 2018; 37: 491 – 503.
dc.identifier.citedreferenceZhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS. Image reconstruction by domain‐transform manifold learning. Nature. 2018; 555: 487 – 492.
dc.identifier.citedreferenceWu G, Kim M, Wang Q, Gao Y, Liao S, Shen D. Unsupervised deep feature learning for deformable registration of MR brain images. In: International Conference on Medical Image Computing and Computer‐Assisted Intervention (MICCAI); 2013: 649 – 656.
dc.identifier.citedreferenceWu G, Kim M, Wang Q, Munsell BC, Shen D. Scalable high‐performance image registration framework by unsupervised deep feature representations learning. IEEE Trans Biomed Eng. 2016; 63: 1505 – 1516.
dc.identifier.citedreferenceYang X, Kwitt R, Styner M, Niethammer M. Quicksilver: fast predictive image registration – a deep learning approach. NeuroImage. 2017; 158: 378 – 396.
dc.identifier.citedreferenceLv J, Yang M, Zhang J, Wang XY. Respiratory motion correction for free‐breathing 3D abdominal MRI using CNN‐based image registration: a feasibility study. Br J Radiol. 2018; 91: 99.
dc.identifier.citedreferenceMiao S, Wang ZJ, Liao R. A CNN regression approach for real‐time 2D/3D registration. IEEE Trans Med Imaging. 2016; 35: 1352 – 1363.
dc.identifier.citedreferenceZheng J, Miao S, Jane Wang Z, Liao R. Pairwise domain adaptation module for CNN‐based 2‐D/3‐D registration. J Med Imaging (Bellingham). 2018; 5: 021204.
dc.identifier.citedreferenceNie D, Cao X, Gao Y, Wang L, Shen D. Estimating CT image from MRI data using 3D fully convolutional networks. Deep Learn Data Label Med Appl. 2016; 2016: 170 – 178.
dc.identifier.citedreferenceHan X. MR‐based synthetic CT generation using a deep convolutional neural network method. Med Phys. 2017; 44: 1408 – 1419.
dc.identifier.citedreferenceLeynes AP, Yang J, Wiesinger F, et al. Direct PseudoCT generation for pelvis PET/MRI attenuation correction using deep convolutional neural networks with multi‐parametric MRI: zero echo‐time and dixon deep pseudoCT (ZeDD‐CT). J Nucl Med. 2017; 59: 852 – 858.
dc.identifier.citedreferenceLiu F, Jang H, Kijowski R, Bradshaw T, McMillan AB. Deep learning MR imaging‐based attenuation correction for PET/MR imaging. Radiology. 2018; 286: 676 – 684.
dc.identifier.citedreferenceNie D, Trullo R, Lian J, et al. Medical image synthesis with context‐aware generative adversarial networks. In: International Conference on Medical Image Computing and Computer‐Assisted Intervention (MICCAI); 2017: 417 – 425.
dc.identifier.citedreferenceChoi H, Lee DS. Generation of structural MR images from amyloid PET: application to MR‐less quantification. J Nucl Med. 2017; 59: 1111 – 1117.
dc.identifier.citedreferenceBen‐Cohen A, Klang E, Raskin SP, Amitai MM, Greenspan H. Virtual PET images from CT data using deep convolutional networks: initial results. In: International Workshop on Simulation and Synthesis in Medical Imaging; 2017; 49 – 57.
dc.identifier.citedreferenceWu L, Cheng JZ, Li S, Lei B, Wang T, Ni D. FUIQA: fetal ultrasound image quality assessment with deep convolutional networks. IEEE Trans Cybern. 2017; 47: 1336 – 1349.
dc.identifier.citedreferenceNeylon J, Min YG, Low DA, Santhanam A. A neural network approach for fast, automated quantification of DIR performance. Med Phys. 2017; 44: 4126 – 4138.
dc.identifier.citedreferenceLee JH, Grant BR, Chung JH, Reiser I, Giger ML. Assessment of diagnostic image quality of computed tomography (CT) images of the lung using deep learning. In: Proc. SPIE Medical Imaging, Vol. 10573; 2018: 105731M
dc.identifier.citedreferenceEsses SJ, Lu X, Zhao T, et al. Automated image quality evaluation of T2‐weighted liver MRI utilizing deep learning architecture. J Magn Reson Imaging. 2018; 47: 723 – 728.
dc.identifier.citedreferenceMcCollough C. Low dose CT grand challenge, the Mayo Clinic, the American Association of Physicists in Medicine, and grants EB017095 and grants EB017185 from the National Institute of Biomedical Imaging and Bioengineering; 2016.
dc.identifier.citedreferenceDelso G, Wiesinger F, Sacolick LI, et al. Clinical evaluation of zero‐echo‐time MR imaging for the segmentation of the skull. J Nucl Med. 2015; 56: 417 – 422.
dc.identifier.citedreferenceCha KH, Hadjiiski L, Chan HP, et al. Bladder cancer treatment response assessment in CT using radiomics with deep‐learning. Sci Rep. 2017; 7: 8738.
dc.identifier.citedreferenceNielsen A, Hansen MB, Tietze A, Mouridsen K. Prediction of tissue outcome and assessment of treatment effect in acute ischemic stroke using deep learning. Stroke. 2018; 49: 1394 – 1401.
dc.identifier.citedreferenceHuynh BQ, Antropova N, Giger ML. Comparison of breast DCE‐MRI contrast time points for predicting response to neoadjuvant chemotherapy using deep convolutional neural network features with transfer learning. In: Armato SG, Petrick NA, eds. Proc. SPIE Medical Imaging, Vol. 10134; 2017: 101340U.
dc.identifier.citedreferenceRavichandran K, Braman N, Janowczyk A, Madabhushi A. A deep learning classifier for prediction of pathological complete response to neoadjuvant chemotherapy from baseline breast DCE‐MRI. In: Petrick N, Mori K, eds. Proc. SPIE Medical Imaging, Vol. 10575; 2018: 105750C.
dc.identifier.citedreferenceMen K, Boimel P, Janopaul‐Naylor J, et al. Cascaded atrous convolution and spatial pyramid pooling for more accurate tumor target segmentation for rectal cancer radiotherapy. Phys Med Biol. 2018; 63: 185016.
dc.identifier.citedreferenceDing MQ, Chen LJ, Cooper GF, Young JD, Lu XH. Precision oncology beyond targeted therapy: combining omics data with machine learning matches the majority of cancer cells to effective therapeutics. Mol Cancer Res. 2018; 16: 269 – 278.
dc.identifier.citedreferenceTong N, Gou S, Yang S, Ruan D, Sheng K. Fully automatic multi‐organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Med Phys. 2018; 45: 4558 – 4567.
dc.identifier.citedreferenceJackson P, Hardcastle N, Dawe N, Kron T, Hofman MS, Hicks RJ. Deep learning renal segmentation for fully automated radiation dose estimation in unsealed source therapy. Front Oncol. 2018; 8: 215.
dc.identifier.citedreferenceShehata M, Khalifa F, Soliman A, et al. Computer‐aided diagnostic system for early detection of acute renal transplant rejection using diffusion‐weighted MRI. IEEE Trans Biomed Eng. 2018; [Epub ahead of print]. https://doi.org/10.1109/TBME.2018.2849987
dc.identifier.citedreferenceIbragimov B, Toesca D, Chang D, Yuan Y, Koong A, Xing L. Development of deep neural network for individualized hepatobiliary toxicity prediction after liver SBRT. Med Phys. 2018; 45: 4763 – 4774.
dc.identifier.citedreferenceTseng HH, Luo Y, Cui S, Chien JT, Ten Haken RK, El Naqa I. Deep reinforcement learning for automated radiation adaptation in lung cancer. Med Phys. 2017; 44: 6690 – 6705.
dc.identifier.citedreferenceFoote MD, Zimmerman B, Sawant A, Joshi S. Real‐time patient‐specific lung radiotherapy targeting using deep learning. In: International Conference on Medical Imaging with Deep Learning (MIDL); 2018.
dc.identifier.citedreferenceNguyen D, Long T, Jia X, et al. Dose prediction with U‐Net: a feasibility study for predicting dose distributions from contours using deep learning on prostate IMRT patients. 2017; arXiv:1709.09233.
dc.identifier.citedreferenceKajikawa T, Kadoya N, Ito K, et al. Automated prediction of dosimetric eligibility of patients with prostate cancer undergoing intensity‐modulated radiation therapy using a convolutional neural network. Radiol Phys Technol. 2018; 11: 320 – 327.
dc.identifier.citedreferenceMaspero M, Savenije MHG, Dinkla AM, et al. Fast synthetic CT generation with deep learning for general pelvis MR‐only radiotherapy; 2018. arXiv:1802.06468.
dc.identifier.citedreferenceZhen X, Chen JW, Zhong ZC, et al. Deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: a feasibility study. Phys Med Biol. 2017; 62: 8246 – 8263.
dc.identifier.citedreferenceBibault JE, Giraud P, Durdux C, et al. Deep learning and radiomics predict complete response after neo‐adjuvant chemoradiation for locally advanced rectal cancer. Sci Rep. 2018; 8: 12611.
dc.identifier.citedreferenceGiger ML. Machine learning in medical imaging. J Am Coll Radiol. 2018; 15: 512 – 520.
dc.identifier.citedreferenceMen K, Zhang T, Chen X, et al. Fully automatic and robust segmentation of the clinical target volume for radiotherapy of breast cancer using big data and deep learning. Phys Med. 2018; 50: 13 – 19.
dc.identifier.citedreferenceEveringham M, Eslami SMA, Van Gool L, Williams C, Winn J, Zisserman A. The Pascal visual object classes challenge: a retrospective. Int J Comput Vis. 2015; 111: 98 – 136.
dc.identifier.citedreferenceKarpathy A, Fei‐Fei L. Deep visual‐semantic alignments for generating image descriptions. IEEE Trans Pattern Anal Mach Intell. 2017; 39: 664 – 676.
dc.identifier.citedreferenceNam H, Ha J‐W, Kim J. Dual attention networks for multimodal reasoning and matching. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017: 299 – 307.
dc.identifier.citedreferenceDai B, Zhang Y, Lin D. Detecting visual relationships with deep relational networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2014: 3076 – 3086.
dc.identifier.citedreferenceDyson F. A meeting with Enrico Fermi. Nature. 2004; 427: 297.
dc.identifier.citedreferenceMhaskar H, Liao Q, Poggio TA. When and why are deep networks better than shallow ones? In: Proceedings of the Thirty‐First AAAI Conference on Artificial Intelligence. San Francisco, CA; 2017: 2343 – 2349.
dc.identifier.citedreferenceSchwartz‐Ziv R, Tishby N. Opening the black box of deep neural networks via information; 2017. arXiv:1703.00810.
dc.identifier.citedreferenceGoodfellow I, Bengio Y, Courville A. Regularization for deep learning. In: Deep Learning. Cambridge: MIT Press; 2016: 221 – 265.
dc.identifier.citedreferencePrechelt J. Early Stopping – But When? Berlin, Heidelberg: Springer; 2012.
dc.identifier.citedreferenceFukunaga K, Hayes RR. Effects of sample size in classifier design. IEEE Trans Pattern Anal Mach Intell. 1989; 11: 873 – 885.
dc.identifier.citedreferenceWagner RF, Chan H‐P, Sahiner B, Petrick N, Mossoba JT. Finite‐sample effects and resampling plans: applications to linear classifiers in computer‐aided diagnosis. In: Medical Imaging 1997: Image Processing; 1997: 467 – 478.
dc.identifier.citedreferenceChan HP, Sahiner B, Wagner RF, Petrick N. Classifier design for computer‐aided diagnosis: effects of finite sample size on the mean performance of classical and neural network classifiers. Med Phys. 1999; 26: 2654 – 2668.
dc.identifier.citedreferenceSahiner B, Chan HP, Petrick N, Wagner RF, Hadjiiski L. Feature selection and classifier performance in computer‐aided diagnosis: the effect of finite sample size. Med Phys. 2000; 27: 1509 – 1522.
dc.identifier.citedreferenceKupinski MA, Edwards DC, Giger ML, Metz CE. Ideal observer approximation using Bayesian classification neural networks. IEEE Trans Med Imaging. 2001; 20: 886 – 899.
dc.identifier.citedreferenceCho J, Lee K, Shin E, Choy G, Do S. How much data is needed to train a medical image deep learning system to achieve necessary high accuracy?; 2015. arXiv:1511.06348.
dc.identifier.citedreferenceSun C, Shrivastava A, Singh S, Gupta A. Revisiting unreasonable effectiveness of data in deep learning era. In: 2017 IEEE International Conference on Computer Vision (ICCV); 2017: 843 – 852.
dc.identifier.citedreferenceZhang R, Zheng Y, Mak TWC, et al. Automatic detection and classification of colorectal polyps by transferring low‐level CNN features from nonmedical domain. IEEE J Biomed Health Inf. 2017; 21: 41 – 47.
dc.identifier.citedreferencevan Ginneken B, Setio AAA, Jacobs C, Ciompi F. Off‐the‐shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans. In: 2015 IEEE 12th International Symposium on Biomedical Imaging; 2015: 286 – 289.
dc.identifier.citedreferenceLopes UK, Valiati JF. Pre‐trained convolutional neural networks as feature extractors for tuberculosis detection. Comput Biol Med. 2017; 89: 135 – 143.
dc.identifier.citedreferenceBen‐Cohen A, Klang E, Diamant I, et al. CT image‐based decision support system for categorization of liver metastases into primary cancer sites: initial results. Acad Radiol. 2017; 24: 1501 – 1509.
dc.identifier.citedreferenceAbidin AZ, Deng BT, Dsouza AM, Nagarajan MB, Coan P, Wismuller A. Deep transfer learning for characterizing chondrocyte patterns in phase contrast X‐ray computed tomography images of the human patellar cartilage. Comput Biol Med. 2018; 95: 24 – 33.
dc.identifier.citedreferenceLee H, Tajmir S, Lee J, et al. Fully automated deep learning system for bone age assessment. J Digit Imaging. 2017; 30: 427 – 441.
dc.identifier.citedreferenceSamala RK, Chan H‐P, Hadjiiski L, Helvie MA, Richter C, Cha K. Cross‐domain and multi‐task transfer learning of deep convolutional neural network for breast cancer diagnosis in digital breast tomosynthesis. In: Medical Imaging 2018: Computer‐Aided Diagnosis; 2018: 105750Q.
dc.identifier.citedreferenceShin HC, Orton MR, Collins DJ, Doran SJ, Leach MO. Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data. IEEE Trans Pattern Anal Mach Intell. 2013; 35: 1930 – 1943.
dc.identifier.citedreferenceWang S, Cong Y, Fan H, et al. Computer‐aided endoscopic diagnosis without human‐specific labeling. IEEE Trans Biomed Eng. 2016; 63: 2347 – 2358.
dc.identifier.citedreferenceLee J, Wu Y, Kim H. Unbalanced data classification using support vector machines with active learning on scleroderma lung disease patterns. J Appl Stat. 2015; 42: 676 – 689.
dc.identifier.citedreferenceFeng X, Yang J, Laine AF, Angelini ED. Discriminative localization in CNNs for weakly‐supervised segmentation of pulmonary nodules. In: International Conference on Medical Image Computing and Computer‐Assisted Intervention (MICCAI), Vol. 10435; 2017: 568 – 576.
dc.identifier.citedreferenceRajpurkar P, Irvin J, Zhu K, et al. CheXNet: radiologist‐level pneumonia detection on chest x‐rays with deep learning; 2017. arXiv:1711.05225.
dc.identifier.citedreferenceChen X, Shrivastava A, Gupta A. NEIL: extracting visual knowledge from web data. In: Proc. of ICCV; 2013.
dc.identifier.citedreferenceZech J, Pain M, Titano J, et al. Natural language‐based machine learning models for the annotation of clinical radiology reports. Radiology. 2018; 287: 570 – 580.
dc.identifier.citedreferenceGhafoorian M, Teuwen J, Manniesing R, et al. Student beats the teacher: deep neural networks for lateral ventricles segmentation in brain MR. In: Angelini ED, Landman BA, eds. Proc. SPIE Medical Imaging, Vol. 10574; 2018: 105742U.
dc.identifier.citedreferenceZhang L, Gopalakrishnan V, Lu L, Summers RM, Moss J, Yao J. Self‐learning to detect and segment cysts in lung CT images without manual annotation. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018); 2018: 1100 – 1103.
dc.identifier.citedreferenceAsperti A, Mastronardo C. The effectiveness of data augmentation for detection of gastrointestinal diseases from endoscopical images. In: The 5th International Conference on Bioimaging; 2017.
dc.identifier.citedreferencePezeshk A, Petrick N, Chen W, Sahiner B. seamless lesion insertion for data augmentation in CAD training. IEEE Trans Med Imaging. 2017; 36: 1005 – 1015.
dc.identifier.citedreferenceZhang C, Tavanapong W, Wong J, de Groen PC, Oh J. Real data augmentation for medical image classification. In: Cardoso MJ, Arbel T, Lee S‐L, Cheplygina V, Balocco S, Mateus D, et al., eds. Intravascular Imaging and Computer Assisted Stenting and Large‐Scale Annotation of Biomedical Data and Expert Label Synthesis, Springer International Publishing; 2017: 67 – 76.
dc.identifier.citedreferenceBadano A, Badal A, Glick S, et al. In silico imaging clinical trials for regulatory evaluation: initial considerations for VICTRE, a demonstration study. In: Flohr TG, Lo JY, eds. Proc. SPIE Medical Imaging, Vol. 10132, Schmidt TG; 2017: 1013220.
dc.identifier.citedreferenceCui J, Liu X, Wang Y, Liu H. Deep reconstruction model for dynamic PET images. PLoS ONE. 2017; 12: e0184667.
dc.identifier.citedreferenceShin H‐C, Lu L, Summers RM. Natural language processing for large‐scale medical image analysis using deep learning. In: Deep Learning for Medical Image Analysis. San Diego, CA, USA: Elsevier; 2017: 405 – 421.
dc.identifier.citedreferenceSchlegl T, Waldstein SM, Vogl W‐D, Schmidt‐Erfurth U, Langs G. Predicting semantic descriptions from medical images with convolutional neural networks. In: Information Processing in Medical Imaging; 2015: 437 – 448.
dc.identifier.citedreferenceShin H‐C, Roberts K, Lu L, Demner‐Fushman D, Yao J, Summers RM. Learning to read chest x‐rays: recurrent neural cascade model for automated image annotation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2016: 2497 – 2506.
dc.identifier.citedreferenceWang X, Lu L, Shin H‐C, et al. Unsupervised joint mining of deep features and image labels for large‐scale radiology image categorization and scene recognition. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV); 2017: 998 – 1007.
dc.identifier.citedreferenceWang X, Peng Y, Lu L, Lu Z, Summers RM. TieNet: Text‐image embedding network for common thorax disease classification and reporting in chest X‐rays. In: International Conference of Computer Vision and Pattern Recognition; 2018.
dc.identifier.citedreferenceChen MC, Ball RL, Yang L, et al. Deep learning to classify radiology free‐text reports. Radiology. 2018; 286: 845 – 852.
dc.identifier.citedreferenceYan K, Wang X, Lu L, Summers RM. DeepLesion: automated deep mining, categorization and detection of significant radiology image findings using large‐scale clinical lesion annotations; 2017. arXiv preprint arXiv:1710.01766.
dc.identifier.citedreferenceYan K, Wang X, Lu L, et al. Deep lesion graphs in the wild: relationship learning and organization of significant radiology image findings in a diverse large‐scale lesion database. In: International Conference of Computer Vision and Pattern Recognition; 2018.
dc.identifier.citedreferenceBibault JE, Giraud P, Burgun A. Big Data and machine learning in radiation oncology: state of the art and future prospects. Cancer Lett. 2016; 382: 110 – 117.
dc.identifier.citedreferenceDai L, Fang R, Li H, et al. Clinical report guided retinal microaneurysm detection with multi‐sieving deep learning. IEEE Trans Med Imaging. 2018; 37: 1149 – 1161.
dc.identifier.citedreferenceZhang Z, Chen P, Sapkota M, Yang L. TandemNet: distilling knowledge from medical images using diagnostic reports as optional semantic references. In: International Conference on Medical Image Computing and Computer‐Assisted Intervention (MICCAI); 2017: 320 – 328.
dc.identifier.citedreferenceTop A, Hamarneh G, Abugharbieh R. Active learning for interactive 3D image segmentation. In: International Conference on Medical Image Computing and Computer‐Assisted Intervention (MICCAI), Berlin, Heidelberg; 2011: 603 – 610.
dc.identifier.citedreferenceZhu Y, Zhang S, Liu W, Metaxas DN. Scalable histopathological image analysis via active learning. In: International Conference on Medical Image Computing and Computer‐Assisted Intervention (MICCAI); 2014: 369 – 376.
dc.identifier.citedreferenceDwarikanath Mahapatra JMB. Visual saliency‐based active learning for prostate magnetic resonance imaging segmentation. J Med Imaging. 2016; 3: 014003.
dc.identifier.citedreferenceHoi SC, Jin R, Zhu J, Lyu MR. Batch mode active learning and its application to medical image classification. In: Proceedings of the 23rd International Conference on Machine learning; 2006: 417 – 424.
dc.identifier.citedreferenceKonyushkova K, Sznitman R, Fua P. Introducing geometry in active learning for image segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2015: 2974 – 2982.
dc.identifier.citedreferenceYang L, Zhang Y, Chen J, Zhang S, Chen DZ. Suggestive annotation: a deep active learning framework for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer‐Assisted Intervention (MICCAI); 2017: 399 – 407.
dc.identifier.citedreferenceZhou Z, Shin J, Zhang L, Gurudu S, Gotway M, Liang J. Fine‐tuning convolutional neural networks for biomedical image analysis: actively and incrementally. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017: 4761 – 4772.
dc.identifier.citedreferenceGaur U, Kourakis M, Newman‐Smith E, Smith W, Manjunath BS. Membrane segmentation via active learning with deep networks. In: 2016 IEEE International Conference on Image Processing (ICIP); 2016: 1943 – 1947.
dc.identifier.citedreferenceMosinska‐Domanska A, Sznitman R, Glowacki P, Fua P. Active learning for delineation of curvilinear structures. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016: 5231 – 5239.
dc.identifier.citedreferenceHeimann T, Mountney P, John M, Ionasec R. Learning without labeling: domain adaptation for ultrasound transducer localization. In: International Conference on Medical Image Computing and Computer‐Assisted Intervention (MICCAI); 2013: 49 – 56.
dc.identifier.citedreferenceWachinger C, Reuter M. Domain adaptation for Alzheimer’s disease diagnostics. NeuroImage. 2016; 139: 470 – 479.
dc.identifier.citedreferenceConjeti S, Katouzian A, Roy AG, et al. Supervised domain adaptation of decision forests: Transfer of models trained in vitro for in vivo intravascular ultrasound tissue characterization. Med Image Anal. 2016; 32: 1 – 17.
dc.identifier.citedreferenceBermúdez‐Chacón R, Becker C, Salzmann M, Fua P. Scalable unsupervised domain adaptation for electron microscopy. In: International Conference on Medical Image Computing and Computer‐Assisted Intervention (MICCAI); 2016: 326 – 334.
dc.identifier.citedreferenceBecker C, Christoudias CM, Fua P. Domain adaptation for microscopy imaging. IEEE Trans Med Imaging. 2015; 34: 1125 – 1139.
dc.identifier.citedreferenceBaur C, Albarqouni S, Navab N. Semi‐supervised deep learning for fully convolutional networks. In: International Conference on Medical Image Computing and Computer‐Assisted Intervention (MICCAI); 2017: 311 – 319.
dc.identifier.citedreferenceSaunders R, Samei E, Baker J, Delong D. Simulation of mammographic lesions. Acad Radiol. 2006; 13: 860 – 870.
dc.identifier.citedreferenceRashidnasab A, Elangovan P, Yip M, et al. Simulation and assessment of realistic breast lesions using fractal growth model. Phys Med Biol. 2013; 58: 5613 – 5627.
dc.identifier.citedreferenceMartinez‐Murcia FJ, Górriz JM, Ramírez J, et al. Functional Brain Imaging Synthesis Based on Image Decomposition and Kernel Modeling: Application to Neurodegenerative Diseases. Front Neuroinform. 2017; 11: 65.
dc.identifier.citedreferenceCalimeri F, Marzullo A, Stamile C, Terracina G. Biomedical data augmentation using generative adversarial neural networks. In: Artificial Neural Networks and Machine Learning (ICANN); 2017: 626 – 634.
dc.identifier.citedreferenceLahiri A, Ayush K, Biswas PK, Mitra P. Generative adversarial learning for reducing manual annotation in semantic segmentation on large scale miscroscopy images: automated vessel segmentation in retinal fundus image as test case. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops; 2017: 42 – 48.
dc.identifier.citedreferenceZhang L, Gooya A, Frangi AF. Semi‐supervised assessment of incomplete LV coverage in cardiac MRI using generative adversarial nets. In: International Workshop on Simulation and Synthesis in Medical Imaging; 2017: 61 – 68.
dc.identifier.citedreferenceBayramoglu N, Kaakinen M, Eklund L, Heikkila J. Towards virtual H&E staining of hyperspectral lung histology images using conditional generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2017: 64 – 71.
dc.identifier.citedreferenceCosta P, Galdran A, Meyer MI, et al. End‐to‐end adversarial retinal image synthesis. In: IEEE Transactions on Medical Imaging; 2017.
dc.identifier.citedreferenceChartsias A, Joyce T, Dharmakumar R, Tsaftaris SA. Adversarial image synthesis for unpaired multi‐modal cardiac data. In: International Workshop on Simulation and Synthesis in Medical Imaging; 2017: 3 – 13.
dc.identifier.citedreferenceWolterink JM, Dinkla AM, Savenije MH, Seevinck PR, van den Berg CA, Išgum I. Deep MR to CT synthesis using unpaired data. In: International Workshop on Simulation and Synthesis in Medical Imaging; 2017: 14 – 23.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.