Show simple item record

Transport of Mass and Energy in Mercury’s Plasma Sheet

dc.contributor.authorPoh, Gangkai
dc.contributor.authorSlavin, James A.
dc.contributor.authorJia, Xianzhe
dc.contributor.authorSun, Wei‐jie
dc.contributor.authorRaines, Jim M.
dc.contributor.authorImber, Suzanne M.
dc.contributor.authorDiBraccio, Gina A.
dc.contributor.authorGershman, Daniel J.
dc.date.accessioned2019-01-15T20:28:27Z
dc.date.available2020-01-06T16:40:59Zen
dc.date.issued2018-11-28
dc.identifier.citationPoh, Gangkai; Slavin, James A.; Jia, Xianzhe; Sun, Wei‐jie ; Raines, Jim M.; Imber, Suzanne M.; DiBraccio, Gina A.; Gershman, Daniel J. (2018). "Transport of Mass and Energy in Mercury’s Plasma Sheet." Geophysical Research Letters 45(22): 12,163-12,170.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/147033
dc.description.abstractWe examined the transport of mass and energy in Mercury’s plasma sheet (PS) using MESSENGER magnetic field and plasma measurements obtained during 759 PS crossings. Regression analysis of proton density and plasma pressure shows a strong linear relationship. We calculated the polytropic index γ for Mercury’s PS to be ~0.687, indicating that the plasma in the tail PS behaves nonadiabatically as it is transported sunward. Using the average magnetic field intensity of Mercury’s tail lobe as a proxy for magnetotail activity level, we demonstrated that γ is lower during active time periods. A minimum in γ was observed at R ~ 1.4 RM, which coincides with previously observed location of Mercury’s substorm current wedge. We suggest that the nonadiabatic behavior of plasma as it is transported into Mercury’s nearâ tail region is primarily driven by particle precipitation and particle scattering due to large loss cone and particle acceleration effect, respectively.Plain Language SummaryThe transport process of mass and energy within Mercury’s magnetotail remains unexplored until now. The availability of in situ magnetic field and plasma measurements from National Aeronautics and Space Administration’s MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft provides us with the first opportunity to study the thermodynamic properties of particles within sunward convecting closed flux tubes in the plasma sheet. In this study, we study how mass and energy are transported in Mercury’s magnetotail by investigating the relationship between the thermal pressure and number density of the plasma in Mercury’s plasma sheet given by the equation of state in magnetohydrodynamics theory. We determined, for the first time, that the plasma behaves nonadiabatically as it is transported sunward toward Mercury. We suggest that precipitation of particles due to Mercury’s large loss cone and demagnetization of particles due to finite gyroradius effect contributes to this nonadiabatic behavior of plasma in the plasma sheet. Our results have major implications in our understanding of particle sources and sinks mechanisms in Mercury’s magnetotail.Key PointsWe calculated the value of polytropic index γ for Mercury’s plasma sheet to be ~0.687, which is smaller than 5/3 (adiabatic)Nonadiabatic plasma behavior is driven by ion precipitation and ion demagnetization due to large loss cone and finite gyroradius effectWe demonstrated that γ is lower during active time and determined a relationship between γ and the location of flow breaking region
dc.publisherWiley Periodicals, Inc.
dc.publisherImperial Coll. Press
dc.subject.otherMercury’s plasma sheet
dc.subject.otherpolytropic index
dc.subject.otherMercury
dc.titleTransport of Mass and Energy in Mercury’s Plasma Sheet
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147033/1/grl58293_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147033/2/grl58293.pdf
dc.identifier.doi10.1029/2018GL080601
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceSergeev, V. A., Angelopoulos, V., Gosling, J. T., Cattell, C. A., & Russell, C. T. ( 1996 ). Detection of localized, plasmaâ depleted flux tubes or bubbles in the midtail plasma sheet. Journal of Geophysical Research, 101 ( A5 ), 10,817 â 10,826. https://doi.org/10.1029/96JA00460
dc.identifier.citedreferenceOrsini, S., Livi, S., Torkar, K., Barabash, S., Milillo, A., Wurz, P., di Lellis, A. M., & Kallio, E. ( 2010 ). SERENA: A suite of four instruments (ELENA, STROFIO, PICAM and MIPA) on board BepiColomboâ MPO for particle detection in the Hermean environment. Planetary and Space Science, 58 ( 1â 2 ), 166 â 181. https://doi.org/10.1016/j.pss.2008.09.012
dc.identifier.citedreferencePang, X., Cao, J. B., Liu, W. L., Ma, Y. D., Lu, H. Y., Yang, J. Y., Li, L. Y., Liu, X., Wang, J., Wang, T. Y., & Yu, J. ( 2015 ). Science China Earth Sciences, 58 ( 11 ), 1993 â 2001. https://doi.org/10.1007/s11430â 015â 5122â 6
dc.identifier.citedreferencePoh, G., Slavin, J. A., Jia, X., Raines, J. M., Imber, S. M., Sun, W.â J., Gershman, D. J., DiBraccio, G. A., Genestreti, K. J., & Smith, A. W. ( 2017a ). Mercury’s crossâ tail current sheet: Structure, Xâ line location and stress balance. Geophysical Research Letters, 44, 678 â 686. https://doi.org/10.1002/2016GL071612
dc.identifier.citedreferencePoh, G., Slavin, J. A., Jia, X., Raines, J. M., Imber, S. M., Sun, W.â J., Gershman, D. J., DiBraccio, G. A., Genestreti, K. J., & Smith, A. W. ( 2017b ). Coupling between Mercury and its nightside magnetosphere: Crossâ tail current sheet asymmetry and substorm current wedge formation. Journal of Geophysical Research: Space Physics, 122, 8419 â 8433. https://doi.org/10.1002/2017JA024266
dc.identifier.citedreferenceRaines, J. M., Gershman, D. J., Slavin, J. A., Zurbuchen, T. H., Korth, H., Anderson, B. J., & Solomon, S. C. ( 2014 ). Structure and dynamics of Mercury’s magnetospheric cusp: MESSENGER measurements of protons and planetary ions. Journal of Geophysical Research: Space Physics, 119, 6587 â 6602. https://doi.org/10.1002/2014JA020120
dc.identifier.citedreferenceRaines, J. M., Slavin, J. A., Zurbuchen, T. H., Gloeckler, G., Anderson, B. J., Baker, D. N., Korth, H., Krimigis, S. M., & McNutt, R. L. Jr. ( 2011 ). MESSENGER observations of the plasma environment near Mercury. Planetary and Space Science, 59 ( 15 ), 2004 â 2015. https://doi.org/10.1016/pss.2011.02.004
dc.identifier.citedreferenceRong, Z. J., Ding, Y., Slavin, J. A., Zhong, J., Poh, G., Sun, W. J., Wei, Y., Chai, L. H., Wan, W. X., & Shen, C. ( 2018 ). The magnetic field structure of Mercury’s magnetotail. Journal of Geophysical Research: Space Physics, 123, 548 â 566. https://doi.org/10.1002/2017JA024923
dc.identifier.citedreferenceSaito, Y., Sauvaud, J.â A., Hirahara, M., Barabash, S., Delcourt, D. C., Takashima, T., Asamura, K., & BepiColombo MMO/MPPE team ( 2010 ). Scientific objectives and instrumentation of Mercury Plasma Particle Experiment (MPPE) onboard MMO. Planetary and Space Science, 58 ( 1â 2 ), 182 â 200. https://doi.org/10.1016/j.pss.2008.06.003
dc.identifier.citedreferenceSchindler, K., & Birn, J. ( 1982 ). Selfâ consistent theory of timeâ dependent convection in the Earth’s magnetotail. Journal of Geophysical Research, 87 ( A4 ), 2263 â 2275. https://doi.org/10.1029/JA087iA04p02263
dc.identifier.citedreferenceShiokawa, K., Baumjohann, W., & Haerendel, G. ( 1997 ). Braking of highâ speed flows in the nearâ earth tail. Geophysical Research Letters, 24 ( 10 ), 1179 â 1182. https://doi.org/10.1029/97GL01062
dc.identifier.citedreferenceSiscoe, G. L. ( 1983 ). Solar system magnetohydrodynamics. In R. L. Carovillano & J. M. Forbes (Eds.), Solarâ terrestrial physics, principles and theoretical foundations (pp. 11 â 100 ). Hingham, MA: D. Reidel.
dc.identifier.citedreferenceSlavin, J. A., Acuna, M. H., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gloeckler, G., Gold, R. E., Ho, G. C., Korth, H., Krimigis, S. M., McNutt, R. L., Raines, J. M., Sarantos, M., Schriver, D., Solomon, S. C., Travnicek, P., & Zurbuchen, T. H. ( 2009 ). MESSENGER observations of magnetic reconnection in Mercury’s magnetosphere. Science, 324 ( 5927 ), 606 â 610. https://doi.org/10.1126/science.1172011
dc.identifier.citedreferenceSlavin, J. A., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gloeckler, G., Gold, R. E., Ho, G. C., Korth, H., Krimigis, S. M., McNutt, R. L., Nittler, L. R., Raines, J. M., Sarantos, M., Schriver, D., Solomon, S. C., Starr, R. D., Travnicek, P. M., & Zurbuchen, T. H. ( 2010 ). MESSENGER observations of extreme loading and unloading of Mercury’s magnetic tail. Science, 329 ( 5992 ), 665 â 668. https://doi.org/10.1126/science.1188067
dc.identifier.citedreferenceSlavin, J. A., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gold, R. E., Ho, G. C., Imber, S. M., Korth, H., Krimigis, S. M., McNutt, R. L. Jr., Raines, J. M., Sarantos, M., Schriver, D., Solomon, S. C., TrávnÃ­Ä ek, P., & Zurbuchen, T. H. ( 2012 ). MESSENGER and Mariner 10 flyby observations of magnetotail structure and dynamics at Mercury. Journal of Geophysical Research, 117, A01215. https://doi.org/10.1029/2011JA016900
dc.identifier.citedreferenceSlavin, J. A., Smith, E. J., Sibeck, D. G., Baker, D. N., Zwickl, R. D., & Akasofu, S.â I. ( 1985 ). An ISEE 3 study of average and substorm conditions in the distant magnetotail. Journal of Geophysical Research, 90 ( A11 ), 10,875 â 10,895. https://doi.org/10.1029/JA090iA11p10875
dc.identifier.citedreferenceSmith, A. W., Slavin, J. A., Jackman, C. M., Fear, R. C., Poh, G.â K., DiBraccio, G. A., Jasinski, J. M., & Trenchi, L. ( 2017 ). Automated forceâ free flux rope identification. Journal of Geophysical Research: Space Physics, 122, 780 â 791. https://doi.org/10.1002/2016JA022994
dc.identifier.citedreferenceSpence, H. E., Kivelson, M. G., Walker, R. J., & McComas, D. J. ( 1989 ). Magnetospheric plasma pressures in the midnight meridian: Observations from 2.5 to 35  R E. Journal of Geophysical Research, 94 ( A5 ), 5264 â 5272. https://doi.org/10.1029/JA094iA05p05264
dc.identifier.citedreferenceSun, W. J., Fu, S. Y., Slavin, J. A., Raines, J. M., Zong, Q. G., Poh, G. K., & Zurbuchen, T. H. ( 2016 ). Spatial distribution of Mercury’s flux ropes and reconnection fronts: MESSENGER observations. Journal of Geophysical Research: Space Physics, 121, 7590 â 7607. https://doi.org/10.1002/2016JA022787
dc.identifier.citedreferenceSun, W. J., Raines, J. M., Fu, S. Y., Slavin, J. A., Wei, Y., Poh, G. K., Pu, Z. Y., Yao, Z. H., Zong, Q. G., & Wan, W. X. ( 2017 ). MESSENGER observations of the energization and heating of protons in the nearâ Mercury magnetotail. Geophysical Research Letters, 44, 8149 â 8158. https://doi.org/10.1002/2017GL074276
dc.identifier.citedreferenceSun, W. J., Slavin, J. A., Dewey, R. M., Raines, J. M., Fu, S. Y., Wei, Y., Karlsson, T., Poh, G. K., Jia, X., Gershman, D. J., Zong, Q. G., Wan, W. X., Shi, Q. Q., Pu, Z. Y., & Zhao, D. ( 2018 ). A comparative study of the proton properties of magnetospheric substorms at Earth and Mercury in the near magnetotail. Geophysical Research Letters, 45, 7933 â 7941. https://doi.org/10.1029/2018GL079181
dc.identifier.citedreferenceSun, W.â J., Slavin, J. A., Fu, S., Raines, J. M., Zong, Q.â G., Imber, S. M., Shi, Q., Yao, Z., Poh, G., Gershman, D. J., Pu, Z., Sundberg, T., Anderson, B. J., Korth, H., & Baker, D. N. ( 2015 ). MESSENGER observations of magnetospheric substorm activity in Mercury’s near magnetotail. Geophysical Research Letters, 42, 3692 â 3699. https://doi.org/10.1002/2015GL064052
dc.identifier.citedreferenceSundberg, T., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., Ho, G. C., Schriver, D., Uritsky, V. M., Zurbuchen, T. H., Raines, J. M., Baker, D. N., Krimigis, S. M., McNutt, R. L. Jr., & Solomon, S. C. ( 2012 ). MESSENGER observations of dipolarization events in Mercury’s magnetotail. Journal of Geophysical Research, 117, A00M03. https://doi.org/10.1029/2012JA017756
dc.identifier.citedreferenceZelenyi, L., Oka, M., Malova, H., Fujimoto, M., Delcourt, D., & Baumjohann, W. ( 2007 ). Particle acceleration in Mercury’s magnetosphere. Space Science Reviews, 132 ( 2â 4 ), 593 â 609. https://doi.org/10.1007/s11214â 007â 9169â 3
dc.identifier.citedreferenceZhong, J., Wei, Y., Pu, Z. Y., Wang, X. G., Wan, W. X., Slavin, J. A., Cao, X., Raines, J. M., Zhang, H., Xiao, C. J., Du, A. M., Wang, R. S., Dewey, R. M., Chai, L. H., Rong, Z. J., & Li, Y. ( 2018 ). MESSENGER observations of rapid and impulsive magnetic reconnection in Mercury’s magnetotail. The Astrophysical Journal, 860 ( 2 ), L20. https://doi.org/10.3847/2041â 8213/aaca92
dc.identifier.citedreferenceZhu, X. M. ( 1990 ). Plasma sheet polytropic index as inferred from the FPE measurements. Geophysical Research Letters, 17 ( 13 ), 2321 â 2324. https://doi.org/10.1029/GL017i013p02321
dc.identifier.citedreferenceAnderson, B. J., Acuña, M. H., Lohr, D. A., Scheifele, J., Raval, A., Korth, H., & Slavin, J. A. ( 2007 ). The Magnetometer instrument on MESSENGER. Space Science Reviews, 131 ( 1â 4 ), 417 â 450. https://doi.org/10.1007/s11214â 007â 9246â 7
dc.identifier.citedreferenceAnderson, B. J., Johnson, C. L., & Korth, H. ( 2013 ). A magnetic disturbance index for Mercury’s magnetic field derived from MESSENGER Magnetometer data. Geochemistry, Geophysics, Geosystems, 14, 3875 â 3886. https://doi.org/10.1002/ggge.20242
dc.identifier.citedreferenceAnderson, B. J., Johnson, C. L., Korth, H., Purucker, M. E., Winslow, R. M., Slavin, J. A., Solomon, S. C., McNutt, R. L. Jr., Raines, J. M., & Zurbuchen, T. H. ( 2011 ). The global magnetic field of Mercury from MESSENGER orbital observations. Science, 333 ( 6051 ), 1859 â 1862. https://doi.org/10.1126/science.1211001
dc.identifier.citedreferenceAndrews, G. B., Zurbuchen, T. H., Mauk, B. H., Malcom, H., Fisk, L. A., Gloeckler, G., Ho, G. C., Kelley, J. S., Koehn, P. L., LeFevere, T. W., Livi, S. S., Lundgren, R. A., & Raines, J. M. ( 2007 ). The Energetic Particle and Plasma Spectrometer instrument on the MESSENGER spacecraft. Space Science Reviews, 131 ( 1â 4 ), 523 â 556. https://doi.org/10.1007/s11214â 007â 9272â 5
dc.identifier.citedreferenceAngelopoulos, V., Kennel, C. F., Coroniti, F. V., Pellat, R., Kivelson, M. G., Walker, R. J., Russell, C. T., Baumjohann, W., Feldman, W. C., & Gosling, J. T. ( 1994 ). Statistical characteristics of bursty bulk flow events. Journal of Geophysical Research, 99 ( A11 ), 21,257 â 21,280. https://doi.org/10.1029/94JA01263
dc.identifier.citedreferenceBaumjohann, W., & Paschmann, G. ( 1989 ). Determination of the polytropic index in the plasma sheet. Geophysical Research Letters, 16 ( 4 ), 295 â 298. https://doi.org/10.1029/GL016i004p00295
dc.identifier.citedreferenceBaumjohann, W., & Treumann, R. A. ( 1996 ). Basic space plasma physics (p. 329 ). London: Imperial Coll. Press.
dc.identifier.citedreferenceBorovsky, J. E., Thomsen, M. F., & Elphic, R. C. ( 1998 ). The driving of the plasma sheet by the solar wind. Journal of Geophysical Research, 103 ( A8 ), 17,617 â 17,639. https://doi.org/10.1029/97JA02986
dc.identifier.citedreferenceBüchner, J., & Zelenyi, L. M. ( 1989 ). Regular and chaotic charged particle motion in magnetotaillike field reversals: 1. Basic theory of trapped motion. Journal of Geophysical Research, 94 ( A9 ), 11,821 â 11,842. https://doi.org/10.1029/JA094iA09p11821
dc.identifier.citedreferenceChappell, C. R., Moore, T. E., & Waite, J. H. Jr. ( 1987 ). The ionosphere as a fully adequate source of plasma for the Earth’s magnetosphere. Journal of Geophysical Research, 92 ( A6 ), 5896 â 5910. https://doi.org/10.1029/JA092iA06p05896
dc.identifier.citedreferenceChen, C. X., & Wolf, R. A. ( 1993 ). Interpretation of highâ speed flows in the plasma sheet. Journal of Geophysical Research, 98 ( A12 ), 21,409 â 21,419. https://doi.org/10.1029/93JA02080
dc.identifier.citedreferenceDelcourt, D. C., Grimald, S., Leblanc, F., Berthelier, J.â J., Millilo, A., Mura, A., Orsini, S., & Moore, T. E. ( 2003 ). A quantitative model of planetary Na + contribution to Mercury’s magnetosphere. Annales de Geophysique, 21 ( 8 ), 1723 â 1736. https://doi.org/10.5194/angeoâ 21â 1723â 2003
dc.identifier.citedreferenceDelcourt, D. C., Sauvaud, J.â A., Martin, R. F. Jr., & Moore, T. E. ( 1996 ). On the nonadiabatic precipitation of ions from the nearâ Earth plasma sheet. Journal of Geophysical Research, 101 ( A8 ), 17,409 â 17,418. https://doi.org/10.1029/96JA01006
dc.identifier.citedreferenceDeming, W. E. ( 1943 ). Statistical adjustment of data. New York: John Wiley.
dc.identifier.citedreferenceDewey, R. M., Slavin, J. A., Raines, J. M., Baker, D. N., & Lawrence, D. J. ( 2017 ). Energetic electron acceleration and injection during dipolarization events in Mercury’s magnetotail. Journal of Geophysical Research: Space Physics, 122, 12,170 â 12,188. https://doi.org/10.1002/2017JA024617
dc.identifier.citedreferenceDiBraccio, G. A., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., Raines, J. M., Baker, D. N., McNutt, R. L. Jr., & Solomon, S. C. ( 2013 ). MESSENGER observations of magnetopause structure and dynamics at Mercury. Journal of Geophysical Research: Space Physics, 118, 997 â 1008. https://doi.org/10.1002/jgra.50123
dc.identifier.citedreferenceDiBraccio, G. A., Slavin, J. A., Imber, S. M., Gershman, D. J., Raines, J. M., Jackman, C. M., Boardsen, S. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., McNutt, R. L. Jr., & Solomon, S. C. ( 2015 ). MESSENGER observations of flux ropes in Mercury’s magnetotail. Planetary and Space Science, 115, 77 â 89. https://doi.org/10.1016/j.pss.2014.12.016
dc.identifier.citedreferenceDiBraccio, G. A., Slavin, J. A., Raines, J. M., Gershman, D. J., Tracy, P. J., Boardsen, S. A., Zurbuchen, T. H., Anderson, B. J., Korth, H., McNutt, R. L. Jr., McNutt, R. L. Jr., & Solomon, S. C. ( 2015 ). First observations of Mercury’s plasma mantle by MESSENGER. Geophysical Research Letters, 42, 9666 â 9675. https://doi.org/10.1002/2015GL065805
dc.identifier.citedreferenceErickson, G. M., & Wolf, R. A. ( 1980 ). Is steady convection possible in the Earth’s magnetotail? Geophysical Research Letters, 7 ( 11 ), 897 â 900. https://doi.org/10.1029/GL007i011p00897
dc.identifier.citedreferenceFrühauff, D., Mieth, J. Z. D., & Glassmeier, K. H. ( 2017 ). Average plasma sheet polytropic index as observed by THEMIS. Annales Geophysicae, 35 ( 2 ), 253 â 262. https://doi.org/10.5194/angeoâ 35â 253â 2017
dc.identifier.citedreferenceGershman, D. J., Slavin, J. A., Raines, J. M., Zurbuchen, T. H., Anderson, B. J., Korth, H., Baker, D. N., & Solomon, S. C. ( 2013 ). Magnetic flux pileup and plasma depletion in Mercury’s subsolar magnetosheath. Journal of Geophysical Research: Space Physics, 118, 7181 â 7199. https://doi.org/10.1002/2013JA019244
dc.identifier.citedreferenceGershman, D. J., Slavin, J. A., Raines, J. M., Zurbuchen, T. H., Anderson, B. J., Korth, H., Baker, D. N., & Solomon, S. C. ( 2014 ). Ion kinetic properties in Mercury’s preâ midnight plasma sheet. Geophysical Research Letters, 41, 5740 â 5747. https://doi.org/10.1002/2014GL060468
dc.identifier.citedreferenceGoldstein, B. E., Suess, S. T., & Walker, R. J. ( 1981 ). Mercury: Magnetospheric processes and the atmospheric supply and loss rates. Journal of Geophysical Research, 86 ( A7 ), 5485 â 5499. https://doi.org/10.1029/JA086iA07p05485
dc.identifier.citedreferenceHuang, C. Y., Goertz, C. K., Frank, L. A., & Rostoker, G. ( 1989 ). Observational determination of the adiabatic index in the quiet time plasma sheet. Geophysical Research Letters, 16 ( 6 ), 563 â 566. https://doi.org/10.1029/GL016i006p00563
dc.identifier.citedreferenceImber, S. M., & Slavin, J. A. ( 2017 ). MESSENGER observations of magnetotail loading and unloading: Implications for substorms at Mercury. Journal of Geophysical Research: Space Physics, 122, 11,402 â 11,412. https://doi.org/10.1002/2017JA024332
dc.identifier.citedreferenceJia, X., Slavin, J. A., Gombosi, T. I., Daldorff, L. K. S., Toth, G., & van der Holst, B. ( 2015 ). Global MHD simulations of Mercury’s magnetosphere with coupled planetary interior: Induction effect of the planetary conducting core on the global interaction. Journal of Geophysical Research: Space Physics, 120, 4763 â 4775. https://doi.org/10.1002/2015JA021143
dc.identifier.citedreferenceKivelson, M. G., & Spence, H. E. ( 1988 ). On the possibility of quasiâ static convection in the quiet magnetotail. Geophysical Research Letters, 15 ( 13 ), 1541 â 1544. https://doi.org/10.1029/GL015i013p01541
dc.identifier.citedreferenceKorth, H., Anderson, B. J., Gershman, D. J., Raines, J. M., Slavin, J. A., Zurbuchen, T. H., Solomon, S. C., & McNutt, R. L. Jr. ( 2014 ). Plasma distribution in Mercury’s magnetosphere derived from MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer observations. Journal of Geophysical Research: Space Physics, 119, 2917 â 2932. https://doi.org/10.1002/2013JA019567
dc.identifier.citedreferenceLinnet, K. ( 1990 ). Estimation of the linear relationship between the measurements of two methods with proportional errors. Statistics in Medicine, 9 ( 12 ), 1463 â 1473. https://doi.org/10.1002/sim.4780091210
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.