Show simple item record

Tumor cell heterogeneity and resistance; report from the 2018 Coffey‐Holden Prostate Cancer Academy Meeting

dc.contributor.authorMiyahira, Andrea K.
dc.contributor.authorDen, Robert B.
dc.contributor.authorCarlo, Maria I.
dc.contributor.authorDe Leeuw, Renée
dc.contributor.authorHope, Thomas A.
dc.contributor.authorKarzai, Fatima
dc.contributor.authorMcKay, Rana R.
dc.contributor.authorSalami, Simpa S.
dc.contributor.authorSimons, Jonathan W.
dc.contributor.authorPienta, Kenneth J.
dc.contributor.authorSoule, Howard R.
dc.date.accessioned2019-01-15T20:29:23Z
dc.date.available2020-04-01T15:06:24Zen
dc.date.issued2019-02
dc.identifier.citationMiyahira, Andrea K.; Den, Robert B.; Carlo, Maria I.; De Leeuw, Renée ; Hope, Thomas A.; Karzai, Fatima; McKay, Rana R.; Salami, Simpa S.; Simons, Jonathan W.; Pienta, Kenneth J.; Soule, Howard R. (2019). "Tumor cell heterogeneity and resistance; report from the 2018 Coffey‐Holden Prostate Cancer Academy Meeting." The Prostate 79(3): 244-258.
dc.identifier.issn0270-4137
dc.identifier.issn1097-0045
dc.identifier.urihttps://hdl.handle.net/2027.42/147081
dc.publisherWiley Periodicals, Inc.
dc.subject.otherbiomarkers
dc.subject.othercancer immunotherapy
dc.subject.othermolecular imaging
dc.subject.othertherapeutics
dc.subject.othertumor genomics
dc.titleTumor cell heterogeneity and resistance; report from the 2018 Coffey‐Holden Prostate Cancer Academy Meeting
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialties
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147081/1/pros23729.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147081/2/pros23729_am.pdf
dc.identifier.doi10.1002/pros.23729
dc.identifier.sourceThe Prostate
dc.identifier.citedreferenceCentenera MM, Raj GV, Knudsen KE, Tilley WD, Butler LM. Ex vivo culture of human prostate tissue and drug development. Nat Rev Urol. 2013; 10: 483 – 487.
dc.identifier.citedreferenceRosenberg JE, Hoffman‐Censits J, Powles T, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum‐based chemotherapy: a single‐arm, multicentre, phase 2 trial. Lancet. 2016; 387: 1909 – 1920.
dc.identifier.citedreferencePowles T, Durán I, van der Heijden MS, et al. Atezolizumab versus chemotherapy in patients with platinum‐treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open‐label, phase 3 randomised controlled trial. Lancet. 2018; 391: 748 – 757.
dc.identifier.citedreferenceBoddupalli CS, Bar N, Kadaveru K, et al. Interlesional diversity of T cell receptors in melanoma with immune checkpoints enriched in tissue‐resident memory T cells. JCI Insight. 2016; 1: e88955.
dc.identifier.citedreferenceIm SJ, Hashimoto M, Gerner MY, et al. Defining CD8+ T cells that provide the proliferative burst after PD‐1 therapy. Nature. 2016; 537: 417.
dc.identifier.citedreferenceDhodapkar MV, Sexton R, Das R, et al. Prospective analysis of antigen‐specific immunity, stem cell antigens and immune checkpoints in monoclonal gammopathy. Blood. 2015; 126: 2475 – 2478.
dc.identifier.citedreferenceHussain M, Daignault‐Newton S, Twardowski PW, et al. Targeting androgen receptor and DNA repair in metastatic castration‐resistant prostate cancer: results from NCI 9012. J Clin Oncol. 2018; 36: 991 – 999.
dc.identifier.citedreferenceClarke N, Wiechno P, Alekseev B, et al. Olaparib combined with abiraterone in patients with metastatic castration‐resistant prostate cancer: a randomised, double‐blind, placebo‐controlled, phase 2 trial. Lancet Oncol. 2018; 19: 975 –986.
dc.identifier.citedreferenceHeller G, McCormack R, Kheoh T, et al. Circulating tumor cell number as a response measure of prolonged survival for metastatic castration‐Resistant prostate cancer: a comparison with prostate‐Specific antigen across five randomized phase III clinical trials. J Clin Oncol. 2018; 36: 572 – 580.
dc.identifier.citedreferenceEggener SE, Scardino PT, Walsh PC. Predicting 15‐year prostate cancer specific mortality after radical prostatectomy. J Urol. 2011; 185: 869 – 875.
dc.identifier.citedreferenceMeeks JJ, Bellmunt J, Bochner BH, et al. A systematic review of neoadjuvant and adjuvant chemotherapy for muscle‐invasive bladder cancer. Eur Urol. 2012; 62: 523 – 533.
dc.identifier.citedreferenceMauri D, Pavlidis N, Ioannidis JP. Neoadjuvant versus adjuvant systemic treatment in breast cancer: a meta‐analysis. J Natl Cancer Inst. 2005; 97: 188 – 194.
dc.identifier.citedreferenceMcKay RR, Choueiri TK, Taplin ME. Rationale for and review of neoadjuvant therapy prior to radical prostatectomy for patients with high‐risk prostate cancer. Drugs. 2013; 73: 1417 – 1430.
dc.identifier.citedreferenceTaplin ME, Montgomery B, Logothetis CJ, et al. Intense androgen‐deprivation therapy with abiraterone acetate plus leuprolide acetate in patients with localized high‐risk prostate cancer: results of a randomized phase II neoadjuvant study. J Clin Oncol. 2014; 32: 3705 – 3715.
dc.identifier.citedreferenceMostaghel EA, Nelson PS, Lange P, et al. Targeted androgen pathway suppression in localized prostate cancer: a pilot study. J Clin Oncol. 2014; 32: 229 – 237.
dc.identifier.citedreferenceMontgomery B, Tretiakova MS, Joshua AM, et al. Neoadjuvant enzalutamide prior to prostatectomy. Clin Cancer Res. 2017; 23: 2169 – 2176.
dc.identifier.citedreferenceMcKay RR, Montgomery B, Xie W, et al. Post prostatectomy outcomes of patients with high‐risk prostate cancer treated with neoadjuvant androgen blockade. Prostate Cancer Prostatic Dis. 2018; 21: 364 –372.
dc.identifier.citedreferenceFossa SD, Wiklund F, Klepp O, et al. Ten‐ and 15‐yr prostate cancer‐specific mortality in patients with nonmetastatic locally advanced or aggressive intermediate prostate cancer, randomized to lifelong endocrine treatment alone or combined with radiotherapy: final results of the scandinavian prostate cancer group‐7. Eur Urol. 2016; 70: 684 – 691.
dc.identifier.citedreferenceMason MD, Parulekar WR, Sydes MR, et al. Final report of the intergroup randomized study of combined androgen‐deprivation therapy plus radiotherapy versus androgen‐deprivation therapy alone in locally advanced prostate cancer. J Clin Oncol. 2015; 33: 2143 – 2150.
dc.identifier.citedreferenceWarde P, Mason M, Ding K, et al. Combined androgen deprivation therapy and radiation therapy for locally advanced prostate cancer: a randomised, phase 3 trial. Lancet. 2011; 378: 2104 – 2111.
dc.identifier.citedreferenceGoodwin JF, Schiewer MJ, Dean JL, et al. A hormone‐DNA repair circuit governs the response to genotoxic insult. Cancer Discov. 2013; 3: 1254 – 1271.
dc.identifier.citedreferencePolkinghorn WR, Parker JS, Lee MX, et al. Androgen receptor signaling regulates DNA repair in prostate cancers. Cancer Discov. 2013; 3: 1245 – 1253.
dc.identifier.citedreferenceDeng L, Liang H, Fu S, Weichselbaum RR, Fu YX. From DNA damage to nucleic acid sensing: a strategy to enhance radiation therapy. Clin Cancer Res. 2016; 22: 20 – 25.
dc.identifier.citedreferenceWoo SR, Fuertes MB, Corrales L, et al. STING‐dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity. 2014; 41: 830 – 842.
dc.identifier.citedreferenceLiang H, Deng L, Chmura S, et al. Radiation‐induced equilibrium is a balance between tumor cell proliferation and T cell‐mediated killing. J Immunol. 2013; 190: 5874 – 5881.
dc.identifier.citedreferenceVatner RE, Formenti SC. Myeloid‐derived cells in tumors: effects of radiation. Semin Radiat Oncol. 2015; 25: 18 – 27.
dc.identifier.citedreferenceSchaue D, Xie MW, Ratikan JA, McBride WH. Regulatory T cells in radiotherapeutic responses. Front Oncol. 2012; 2: 90.
dc.identifier.citedreferenceLiang H, Deng L, Hou Y. Host STING‐dependent MDSC mobilization drives extrinsic radiation resistance. Nat Commun. 2017; 8: 1736.
dc.identifier.citedreferenceMills EJ, Seely D, Rachlis B, et al. Barriers to participation in clinical trials of cancer: a meta‐analysis and systematic review of patient‐reported factors. Lancet Oncol. 2006; 7: 141 – 148.
dc.identifier.citedreferencePienta KJ, Walia G, Simons JW, Soule HR. Beyond the androgen receptor: new approaches to treating metastatic prostate cancer. Report of the 2013 Prouts Neck Prostate Cancer Meeting. Prostate. 2014; 74: 314 – 320.
dc.identifier.citedreferenceMiyahira AK, Kissick HT, Bishop JL, et al. Beyond immune checkpoint blockade: new approaches to targeting host‐tumor interactions in prostate cancer: report from the 2014 Coffey‐Holden Prostate Cancer Academy Meeting. Prostate. 2015; 75: 337 – 347.
dc.identifier.citedreferenceMiyahira AK, Lang JM, Den RB, et al. Multidisciplinary intervention of early, lethal metastatic prostate cancer: Report from the 2015 Coffey‐Holden Prostate Cancer Academy Meeting. Prostate. 2016; 76: 125 – 139.
dc.identifier.citedreferenceMiyahira AK, Roychowdhury S, Goswami S, et al. Beyond seed and soil: understanding and targeting metastatic prostate cancer; Report from the 2016 Coffey‐Holden Prostate Cancer Academy Meeting. Prostate. 2017; 77: 123 – 144.
dc.identifier.citedreferenceMiyahira AK, Cheng HH, Abida W, et al. Beyond the androgen receptor II: new approaches to understanding and treating metastatic prostate cancer; Report from the 2017 Coffey‐Holden Prostate Cancer Academy Meeting. Prostate. 2017; 77: 1478 – 1488.
dc.identifier.citedreferenceKeller ET, Rowley DR, Tomlins SA, et al. Eleventh Prouts Neck Meeting on prostate cancer: emerging strategies in prostate cancer therapy. Cancer Res. 2007; 67: 9613 – 9615.
dc.identifier.citedreferenceKu SY, Rosario S, Wang Y, et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science. 2017; 355: 78 – 83.
dc.identifier.citedreferenceSheahan AV, Ellis L. Epigenetic reprogramming: a key mechanism driving therapeutic resistance. Urol Oncol. 2018; 36: 375 –379.
dc.identifier.citedreferenceBjurlin MA, Carter HB, Schellhammer P, et al. Optimization of initial prostate biopsy in clinical practice: sampling, labeling and specimen processing. J Urol. 2013; 189: 2039 – 2046.
dc.identifier.citedreferenceHong MK, Macintyre G, Wedge DC, et al. Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer. Nat Commun. 2015; 6: 6605.
dc.identifier.citedreferenceGundem G, Van Loo P, Kremeyer B, et al. The evolutionary history of lethal metastatic prostate cancer. Nature. 2015; 520: 353 – 357.
dc.identifier.citedreferenceCooper CS, Eeles R, Wedge DC, et al. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nat Genet. 2015; 47: 367 – 372.
dc.identifier.citedreferenceWei L, Wang J, Lampert E, et al. Intratumoral and intertumoral genomic heterogeneity of multifocal localized prostate cancer impacts molecular classifications and genomic prognosticators. Eur Urol. 2017; 71: 183 – 192.
dc.identifier.citedreferenceVanderWeele DJ, Finney R, Katayama K, et al. Genomic heterogeneity within individual prostate cancer foci impacts predictive biomarkers of targeted therapy. Eur Urol Focus. 2018;pii:S2405‐S4569:30007–30015.
dc.identifier.citedreferencePaoletti C, Cani AK, Larios JM, et al. Comprehensive mutation and copy number profiling in archived circulating Breast cancer tumor cells documents heterogeneous resistance mechanisms. Cancer Res. 2018; 78: 1110 – 1122.
dc.identifier.citedreferenceAugello MA, Den RB, Knudsen KE. AR function in promoting metastatic prostate cancer. Cancer Metastasis Rev. 2014; 33: 399 – 411.
dc.identifier.citedreferenceHuggins C. Effect of orchiectomy and irradiation on cancer of the prostate. Ann Surg. 1942; 115: 1192 – 1200.
dc.identifier.citedreferenceRobinson D, Van Allen EM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015; 162: 454.
dc.identifier.citedreferenceViswanathan SR, Ha G, Hoff AM, et al. Structural alterations driving castration‐resistant prostate cancer revealed by linked‐read genome sequencing. Cell. 2018; 174: 433 – 447 e19.
dc.identifier.citedreferenceTakeda DY, Spisak S, Seo JH, et al. A somatically acquired enhancer of the androgen receptor is a noncoding driver in advanced prostate cancer. Cell. 2018; 174: 422 – 432. e13.
dc.identifier.citedreferenceQuigley DA, Dang HX, Zhao SG, et al. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell. 2018; 174: 758 – 769 e9.
dc.identifier.citedreferenceWu YM, Cieslik M, Lonigro RJ, et al. Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate cancer. Cell. 2018; 173: 1770 – 1782 e14.
dc.identifier.citedreferenceSowalsky AG, Ye H, Bhasin M, et al. Neoadjuvant‐intensive androgen deprivation therapy selects for prostate tumor foci with diverse subclonal oncogenic alterations. Cancer Res. 2018; 78: 4716 – 4730.
dc.identifier.citedreferenceRubio‐Perez C, Tamborero D, Schroeder MP, et al. In silico prescription of anticancer drugs to cohorts of 28 tumor types reveals targeting opportunities. Cancer Cell. 2015; 27: 382 – 396.
dc.identifier.citedreferenceHuang KL, Li S, Mertins P, et al. Proteogenomic integration reveals therapeutic targets in breast cancer xenografts. Nat Commun. 2017; 8: 14864.
dc.identifier.citedreferenceToska E, Osmanbeyoglu HU, Castel P, et al. PI3K pathway regulates ER‐dependent transcription in breast cancer through the epigenetic regulator KMT2D. Science. 2017; 355: 1324 – 1330.
dc.identifier.citedreferenceNelson PS. Molecular states underlying androgen receptor activation: a framework for therapeutics targeting androgen signaling in prostate cancer. J Clin Oncol. 2012; 30: 644 – 646.
dc.identifier.citedreferenceBluemn EG, Coleman IM, Lucas JM, et al. Androgen receptor pathway‐independent prostate cancer is sustained through FGF signaling. Cancer Cell. 2017; 32: 474 – 489 e6.
dc.identifier.citedreferenceBeltran H, Prandi D, Mosquera JM, et al. Divergent clonal evolution of castration‐resistant neuroendocrine prostate cancer. Nat Med. 2016; 22: 298 – 305.
dc.identifier.citedreferenceAggarwal R, Huang J, Alumkal JJ, et al. Clinical and genomic characterization of treatment‐Emergent small‐Cell neuroendocrine prostate cancer: a multi‐institutional prospective study. J Clin Oncol. 2018; 36: 2492 ‐2503.
dc.identifier.citedreferenceAryee MJ, Liu W, Engelmann JC, et al. DNA methylation alterations exhibit intraindividual stability and interindividual heterogeneity in prostate cancer metastases. Sci Transl Med. 2013; 5: 169ra10.
dc.identifier.citedreferenceLiu XF, Olsson P, Wolfgang CD, et al. PRAC: a novel small nuclear protein that is specifically expressed in human prostate and colon. Prostate. 2001; 47: 125 – 131.
dc.identifier.citedreferenceBurns KH. Transposable elements in cancer. Nat Rev Cancer. 2017; 17: 415 – 424.
dc.identifier.citedreferenceSheaffer KL, Elliott EN, Kaestner KH. DNA hypomethylation contributes to genomic instability and intestinal cancer initiation. Cancer Prev Res (Phila). 2016; 9: 534 – 546.
dc.identifier.citedreferenceYegnasubramanian S, Haffner MC, Zhang Y, et al. DNA hypomethylation arises later in prostate cancer progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity. Cancer Res. 2008; 68: 8954 – 8967.
dc.identifier.citedreferenceRoulois D, Loo Yau H, Singhania R, et al. DNA‐demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell. 2015; 162: 961 – 973.
dc.identifier.citedreferenceChiappinelli KB, Strissel PL, Desrichard A, et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell. 2017; 169: 361.
dc.identifier.citedreferenceHaffner MC, Taheri D, Luidy‐Imada E, et al. Hypomethylation, endogenous retrovirus expression, and interferon signaling in testicular germ cell tumors. Proc Natl Acad Sci USA. 2018; 115: E8580 – E8582.
dc.identifier.citedreferenceWeinstein IB. Addiction to oncogenes‐the achilles heal of cancer. Science. 2002; 297: 63 – 64.
dc.identifier.citedreferenceHartwell LH, Szankasi P, Roberts CJ, Murray AW, Friend SH. Integrating genetic approaches into the discovery of anticancer drugs. Science. 1997; 278: 1064 – 1068.
dc.identifier.citedreferenceMateo J, Carreira S, Sandhu S, et al. DNA‐repair defects and olaparib in metastatic prostate cancer. N Engl J Med. 2015; 373: 1697 – 1708.
dc.identifier.citedreferenceMuller FL, Colla S, Aquilanti E, et al. Passenger deletions generate therapeutic vulnerabilities in cancer. Nature. 2012; 488: 337.
dc.identifier.citedreferenceDey P, Baddour J, Muller F, et al. Genomic deletion of malic enzyme 2 confers collateral lethality in pancreatic cancer. Nature. 2017; 542: 119.
dc.identifier.citedreferenceZhao D, DePinho RA. Synthetic essentiality: targeting tumor suppressor deficiencies in cancer. BioEssays. 2017; 39: 1700076.
dc.identifier.citedreferenceZhao D, Lu X, Wang G, et al. Synthetic essentiality of chromatin remodelling factor CHD1 in PTEN‐deficient cancer. Nature. 2017; 542: 484.
dc.identifier.citedreferenceScher HI, Graf RP, Schreiber NA, et al. Phenotypic heterogeneity of circulating tumor cells informs clinical decisions between AR signaling inhibitors and taxanes in metastatic prostate cancer. Cancer Res. 2017; 77: 5687 – 5698.
dc.identifier.citedreferenceScher HI, Graf RP, Schreiber NA, et al. Assessment of the validity of nuclear‐Localized androgen receptor splice variant 7 in circulating tumor cells as a predictive biomarker for castration‐Resistant prostate cancer. JAMA Oncol. 2018; 4: 1179 – 1186.
dc.identifier.citedreferenceKoerber SA, Will L, Kratochwil C, et al. (68)Ga‐PSMA‐11 PET/CT in primary and recurrent prostate carcinoma: implications for radiotherapeutic management in 121 patients. J Nucl Med. 2018;pii:jnumed.118.211086.
dc.identifier.citedreferenceHamed MAG, Basha MAA, Ahmed H, Obaya AA, Afifi AHM, Abdelbary EH. (68)Ga‐PSMA PET/CT in patients with rising prostatic‐Specific antigen after definitive treatment of prostate cancer: detection efficacy and diagnostic accuracy. Acad Radiol. 2018;pii:S1076–S6332:30262–30269.
dc.identifier.citedreferencevan Leeuwen PJ, Donswijk M, Nandurkar R, et al. 68Ga PSMA PET/CT predicts complete biochemical response from radical prostatectomy and lymph node dissection in intermediate and high‐risk prostate cancer. BJU Int. 2018. https://doi.org/10.1111/bju.14506 [Epub ahead of print].
dc.identifier.citedreferenceSeitz AK, Rauscher I, Haller B, et al. Preliminary results on response assessment using (68)Ga‐HBED‐CC‐PSMA PET/CT in patients with metastatic prostate cancer undergoing docetaxel chemotherapy. Eur J Nucl Med Mol Imaging. 2018; 45: 602 – 612.
dc.identifier.citedreferenceHarmon SA, Bergvall E, Mena E, et al. A prospective comparison of (18)F‐Sodium fluoride PET/CT and PSMA‐targeted (18)F‐DCFBC PET/CT in metastatic prostate cancer. J Nucl Med. 2018;pii:jnumed.117.207373. https://doi.org/10.2967/jnumed.117.207373 [Epub ahead of print].
dc.identifier.citedreferenceHofman MS, Violet J, Hicks RJ, et al. [(177)Lu]‐PSMA‐617 radionuclide treatment in patients with metastatic castration‐resistant prostate cancer (LuPSMA trial): a single‐centre, single‐arm, phase 2 study. Lancet Oncol. 2018; 19: 825 – 833.
dc.identifier.citedreferenceMiyahira AK, Pienta KJ. Meeting report from the prostate cancer foundation PSMA‐directed radionuclide scientific working group. Prostate. 2018; 78: 775 – 789.
dc.identifier.citedreferenceKasivisvanathan V, Rannikko AS, Borghi M, et al. MRI‐targeted or standard biopsy for prostate‐cancer diagnosis. N Engl J Med. 2018; 378: 1767 – 1777.
dc.identifier.citedreferenceSalmasi A, Said J, Shindel AW, et al. A 17‐gene genomic prostate score assay provides independent information on adverse pathology in the setting of combined multiparametric magnetic resonance imaging fusion targeted and systematic prostate biopsy. J Urol. 2018;pii:S0022‐S5347:42488–42493.
dc.identifier.citedreferenceTruong M, Feng C, Hollenberg G, et al. A comprehensive analysis of cribriform morphology on magnetic resonance imaging/ultrasound fusion biopsy correlated with radical prostatectomy specimens. J Urol. 2018; 199: 106 – 113.
dc.identifier.citedreferenceStoyanova R, Pollack A, Takhar M, et al. Association of multiparametric MRI quantitative imaging features with prostate cancer gene expression in MRI‐targeted prostate biopsies. Oncotarget. 2016; 7: 53362 – 53376.
dc.identifier.citedreferenceWhite NS, McDonald C, Farid N, et al. Diffusion‐weighted imaging in cancer: physical foundations and applications of restriction spectrum imaging. Cancer Res. 2014; 74: 4638 – 4652.
dc.identifier.citedreferenceSiegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2018; 68: 7 – 30.
dc.identifier.citedreferenceMeiers I, Waters DJ, Bostwick DG. Preoperative prediction of multifocal prostate cancer and application of focal therapy: review 2007. Urology. 2007; 70: 3 – 8.
dc.identifier.citedreferenceFleshner NE, O’Sullivan M, Fair WR. Prevalence and predictors of a positive repeat transrectal ultrasound guided needle biopsy of the prostate. J Urol. 1997; 158: 505 – 58; discussion 508–9.
dc.identifier.citedreferenceSiddiqui MM, Rais‐Bahrami S, Turkbey B, et al. Comparison of MR/ultrasound fusion‐guided biopsy with ultrasound‐guided biopsy for the diagnosis of prostate cancer. JAMA. 2015; 313: 390 – 397.
dc.identifier.citedreferenceAhmed HU, El‐Shater Bosaily A, Brown LC, et al. Diagnostic accuracy of multi‐parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet. 2017; 389: 815 – 822.
dc.identifier.citedreferencePalapattu GS, Salami SS, Cani AK, et al. Molecular profiling to determine clonality of serial magnetic resonance imaging/ultrasound fusion biopsies from men on active surveillance for low‐risk prostate cancer. Clin Cancer Res. 2017; 23: 985 – 991.
dc.identifier.citedreferenceHaffner MC, De Marzo AM, Yegnasubramanian S, Epstein JI, Carter HB. Diagnostic challenges of clonal heterogeneity in prostate cancer. J Clin Oncol. 2015; 33: e38 – e40.
dc.identifier.citedreferenceHaffner MC, Weier C, Xu MM, et al. Molecular evidence that invasive adenocarcinoma can mimic prostatic intraepithelial neoplasia (PIN) and intraductal carcinoma through retrograde glandular colonization. J Pathol. 2016; 238: 31 – 41.
dc.identifier.citedreferenceHussain M, Tangen CM, Higano C, et al. Absolute prostate‐specific antigen value after androgen deprivation is a strong independent predictor of survival in new metastatic prostate cancer: data from Southwest Oncology Group Trial 9346 (INT‐0162). J Clin Oncol. 2006; 24: 3984 – 3990.
dc.identifier.citedreferenceHalabi S, Kelly WK, Ma H, et al. Meta‐analysis evaluating the impact of site of metastasis on overall survival in men with castration‐resistant prostate cancer. J Clin Oncol. 2016; 34: 1652 – 1659.
dc.identifier.citedreferenceScher HI, Lu D, Schreiber NA, et al. Association of AR‐V7 on circulating tumor cells as a treatment‐specific biomarker with outcomes and survival in castration‐resistant prostate cancer. JAMA Oncol. 2016; 2: 1441 – 1449.
dc.identifier.citedreferenceGebhart G, Lamberts LE, Wimana Z, et al. Molecular imaging as a tool to investigate heterogeneity of advanced HER2‐positive breast cancer and to predict patient outcome under trastuzumab emtansine (T‐DM1): the ZEPHIR trial. Ann Oncol. 2016; 27: 619 – 624.
dc.identifier.citedreferenceDijkers EC, Oude Munnink TH, Kosterink JG, et al. Biodistribution of 89Zr‐trastuzumab and PET imaging of HER2‐positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther. 2010; 87: 586 – 592.
dc.identifier.citedreferenceBensch F, Lamberts LE, et al. (89)Zr‐Lumretuzumab PET imaging before and during HER3 antibody lumretuzumab treatment in patients with solid tumors. Clin Cancer Res. 2017; 23: 6128 – 6137.
dc.identifier.citedreferenceMcLaughlin J, Han G, Schalper KA, et al. Quantitative assessment of the heterogeneity of PD‐L1 expression in non‐small‐cell lung cancer. JAMA Oncol. 2016; 2: 46 – 54.
dc.identifier.citedreferenceBroos K, Lecocq Q, Raes G, Devoogdt N, Keyaerts M, Breckpot K. Noninvasive imaging of the PD‐1:PD‐L1 immune checkpoint: embracing nuclear medicine for the benefit of personalized immunotherapy. Theranostics. 2018; 8: 3559 – 3570.
dc.identifier.citedreferenceHettich M, Braun F, Bartholoma MD, Schirmbeck R, Niedermann G. High‐resolution PET imaging with therapeutic antibody‐based PD‐1/PD‐L1 checkpoint tracers. Theranostics. 2016; 6: 1629 – 1640.
dc.identifier.citedreferenceBensch F, Veen Evd, Jorritsma A, et al. Abstract CT017: first‐in‐human PET imaging with the PD‐L1 antibody 89 Zr‐atezolizumab. Cancer Res. 2017; 77: CT017 – CT017.
dc.identifier.citedreferenceDonnelly DJ, Smith RA, Morin P, et al. Synthesis and biologic evaluation of a novel (18)F‐labeled adnectin as a PET radioligand for imaging PD‐L1 expression. J Nucl Med. 2018; 59: 529 – 535.
dc.identifier.citedreferenceHellman S, Weichselbaum RR. Oligometastases. J Clin Oncol. 1995; 13: 8 – 10.
dc.identifier.citedreferenceHope TA, Aggarwal R, B Chee, et al. Impact of (68)Ga‐PSMA‐11 PET on management in patients with biochemically recurrent prostate cancer. J Nucl Med. 2017; 58: 1956 – 1961.
dc.identifier.citedreferenceOst P, Reynders D, Decaestecker K, et al. Surveillance or metastasis‐directed therapy for oligometastatic prostate cancer recurrence: a prospective, randomized, multicenter phase II trial. J Clin Oncol. 2018; 36: 446 – 453.
dc.identifier.citedreferenceRadwan N, Phillips R, Ross A, et al. A phase II randomized trial of observation versus stereotactic ablative radiatIon for oligometastatic prostate cancer (ORIOLE). BMC Cancer. 2017; 17: 453.
dc.identifier.citedreferenceNewton PK, Mason J, Venkatappa N, et al. Spatiotemporal progression of metastatic breast cancer: a Markov chain model highlighting the role of early metastatic sites. NPJ Breast Cancer. 2015; 1: 15018.
dc.identifier.citedreferenceGiuliano AE, Ballman KV, McCall L, et al. Effect of axillary dissection vs no axillary dissection on 10‐year overall survival among women with invasive breast cancer and sentinel node metastasis: the ACOSOG Z0011 (alliance) randomized clinical trial. JAMA. 2017; 318: 918 – 926.
dc.identifier.citedreferenceNewton PK, Mason J, Hurt B, et al. Entropy, complexity, and Markov diagrams for random walk cancer models. Sci Rep. 2014; 4: 7558.
dc.identifier.citedreferenceBarron DA, Rowley DR. The reactive stroma microenvironment and prostate cancer progression. Endocr Relat Cancer. 2012; 19: R187 – R204.
dc.identifier.citedreferenceCunha GR, Hayward SW, Wang YZ. Role of stroma in carcinogenesis of the prostate. Differentiation. 2002; 70: 473 – 485.
dc.identifier.citedreferenceCunha GR, Ricke WA. A historical perspective on the role of stroma in the pathogenesis of benign prostatic hyperplasia. Differentiation. 2011; 82: 168 – 172.
dc.identifier.citedreferenceGuise T. Examining the metastatic niche: targeting the microenvironment. Semin Oncol. 2010; 37: S2 – 14.
dc.identifier.citedreferenceLogothetis C, Morris MJ, Den R, Coleman RE. Current perspectives on bone metastases in castrate‐resistant prostate cancer. Cancer Metastasis Rev. 2018; 37: 189 – 196.
dc.identifier.citedreferenceBarclay WW, Woodruff RD, Hall MC, Cramer SD. A system for studying epithelial‐stromal interactions reveals distinct inductive abilities of stromal cells from benign prostatic hyperplasia and prostate cancer. Endocrinology. 2005; 146: 13 – 18.
dc.identifier.citedreferenceTyekucheva S, Bowden M, Bango C, et al. Stromal and epithelial transcriptional map of initiation progression and metastatic potential of human prostate cancer. Nat Commun. 2017; 8: 420.
dc.identifier.citedreferenceDrost J, Karthaus WR, Gao D. Organoid culture systems for prostate epithelial and cancer tissue. Nat Protoc. 2016; 11: 347 – 358.
dc.identifier.citedreferenceBeshiri ML, Tice CM, Tran C, Nguyen HM, Sowalsky AG. A PDX/organoid biobank of advanced prostate cancers captures genomic and phenotypic heterogeneity for disease modeling and therapeutic screening. Clin Cancer Res. 2018; 24: 4332 – 4345.
dc.identifier.citedreferenceGao D, Vela I, Sboner A, et al. Organoid cultures derived from patients with advanced prostate cancer. Cell. 2014; 159: 176 – 187.
dc.identifier.citedreferencePuca L, Bareja R, Prandi D, et al. Patient derived organoids to model rare prostate cancer phenotypes. Nat Commun. 2018; 9: 2404.
dc.identifier.citedreferenceZong Y, Goldstein AS, Witte ON. Tissue recombination models for the study of epithelial cancer. Cold Spring Harb Protoc. 2015; 2015: pdb top069880.
dc.identifier.citedreferencede Groot AE, Roy S, Brown JS, Pienta KJ, Amend SR. Revisiting seed and soil: examining the primary tumor and cancer cell foraging in metastasis. Mol Cancer Res. 2017; 15: 361 – 370.
dc.identifier.citedreferenceLin KC, Torga G, Wu A, et al. Epithelial and mesenchymal prostate cancer cell population dynamics on a complex drug landscape. Converg Sci Phys Oncol. 2017; 3: pii: 045001. Epub 2017 Aug 30.
dc.identifier.citedreferenceNassar ZD, Aref AT, Miladinovic D, et al. Peri‐prostatic adipose tissue: the metabolic microenvironment of prostate cancer. BJU Int. 2018; 121: 9 – 21.
dc.identifier.citedreferenceRycaj K, Li H, Zhou J, Chen X, Tang DG. Cellular determinants and microenvironmental regulation of prostate cancer metastasis. Semin Cancer Biol. 2017; 44: 83 – 97.
dc.identifier.citedreferenceShafi AA, Schiewer MJ, de Leeuw R, et al. Patient‐derived models reveal impact of the tumor microenvironment on therapeutic response. Eur Urol Oncol. 2018; 1: 325 – 337.
dc.identifier.citedreferenceMarciscano AE, Madan RA. Targeting the tumor microenvironment with immunotherapy for genitourinary malignancies. Curr Treat Options Oncol. 2018; 19: 16.
dc.identifier.citedreferenceMorales‐Kastresana A, Telford B, Musich TA, et al. Labeling extracellular vesicles for nanoscale flow cytometry. Sci Rep. 2017; 7: 1878.
dc.identifier.citedreferenceHellmann MD, Ciuleanu TE, Pluzanski A, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med. 2018; 378: 2093 – 2104.
dc.identifier.citedreferenceMiao D, Margolis CA, Gao W, et al. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science. 2018; 359: 801 – 806.
dc.identifier.citedreferenceAtkins MB, McDermott DF, Powles T, Motzer RJ, Rini BI, Fong L. IMmotion150: a phase II trial in untreated metastatic renal cell carcinoma (mRCC) patients (pts) of atezolizumab (atezo) and bevacizumab (bev) vs and following atezo or sunitinib (sun). [ASCO abstract 4505]. J Clin Oncol. 2017; 35: 4505 – 4505.
dc.identifier.citedreferenceFDA grants accelerated approval to pembrolizumab for first tissue/site agnostic indication. 2017; Available from: https://www.fda.gov/drugs/informationondrugs/approveddrugs/ucm560040.htm
dc.identifier.citedreferenceAlbacker LA, Wu J, Smith P, et al. Loss of function JAK1 mutations occur at high frequency in cancers with microsatellite instability and are suggestive of immune evasion. PLOS ONE. 2017; 12: e0176181.
dc.identifier.citedreferenceZdanov S, Mandapathil M, Abu Eid R. Mutant KRAS conversion of conventional T cells into regulatory T cells. Cancer Immunol Res. 2016; 4: 354 – 365.
dc.identifier.citedreferenceAbida W, Cheng ML, Armenia J, et al. Microsatellite instability in prostate cancer and response to immune checkpoint blockade. J Clin Oncol. 2018; 36: 5020.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.