Show simple item record

Carbohydrate‐Based Polymer Brushes Prevent Viral Adsorption on Electrostatically Heterogeneous Interfaces

dc.contributor.authorKumar, Ramya
dc.contributor.authorKratzer, Domenic
dc.contributor.authorCheng, Kenneth
dc.contributor.authorPrisby, Julia
dc.contributor.authorSugai, James
dc.contributor.authorGiannobile, William V.
dc.contributor.authorLahann, Joerg
dc.date.accessioned2019-01-15T20:30:10Z
dc.date.available2020-03-03T21:29:35Zen
dc.date.issued2019-01
dc.identifier.citationKumar, Ramya; Kratzer, Domenic; Cheng, Kenneth; Prisby, Julia; Sugai, James; Giannobile, William V.; Lahann, Joerg (2019). "Carbohydrate‐Based Polymer Brushes Prevent Viral Adsorption on Electrostatically Heterogeneous Interfaces." Macromolecular Rapid Communications 40(1): n/a-n/a.
dc.identifier.issn1022-1336
dc.identifier.issn1521-3927
dc.identifier.urihttps://hdl.handle.net/2027.42/147118
dc.description.abstractChemical heterogeneity on biomaterial surfaces can transform its interfacial properties, rendering nanoscale heterogeneity profoundly consequential during bioadhesion. To examine the role played by chemical heterogeneity in the adsorption of viruses on synthetic surfaces, a range of novel coatings is developed wherein a tunable mixture of electrostatic tethers for viral binding, and carbohydrate brushes, bearing pendant α‐mannose, β‐galactose, or β‐glucose groups, is incorporated. The effects of binding site density, brush composition, and brush architecture on viral adsorption, with the goal of formulating design specifications for virus‐resistant coatings are experimentally evaluated. It is concluded that virus‐coating interactions are shaped by the interplay between brush architecture and binding site density, after quantifying the adsorption of adenoviruses, influenza, and fibrinogen on a library of carbohydrate brushes co‐immobilized with different ratios of binding sites. These insights will be of utility in guiding the design of polymer coatings in realistic settings where they will be populated with defects.A tunable coating comprising nonfouling carbohydrate brushes and electrostatic binding sites for viruses is employed to study the relationship between surface design parameters and viral adsorption. Ultimately, brush architecture determines whether the binding sites are exposed to, or shielded from viruses. These insights will guide the design of polymer coatings that can resist viral binding despite being populated with defects.
dc.publisherWiley‐Blackwell
dc.subject.otheradenovirus
dc.subject.otherinfluenza
dc.subject.otherQCM
dc.subject.otherviral adsorption
dc.subject.otherglycopolymer brushes
dc.subject.othercarbohydrate brushes
dc.subject.otherbioadhesion
dc.titleCarbohydrate‐Based Polymer Brushes Prevent Viral Adsorption on Electrostatically Heterogeneous Interfaces
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147118/1/marc201800530-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147118/2/marc201800530_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147118/3/marc201800530.pdf
dc.identifier.doi10.1002/marc.201800530
dc.identifier.sourceMacromolecular Rapid Communications
dc.identifier.citedreferenceK. Hori, S. Matsumoto, Biochem. Eng. J. 2010, 48, 424.
dc.identifier.citedreferenceR. Barbey, L. Lavanant, D. Paripovic, N. Schüwer, C. Sugnaux, S. Tugulu, H.‐A. Klok, Chem. Rev. 2009, 109, 5437.
dc.identifier.citedreferenceN. Singh, X. Cui, T. Boland, S. M. Husson, Biomaterials 2007, 28, 763.
dc.identifier.citedreferenceJ. Wu, Z. Mao, C. Gao, Biomaterials 2012, 33, 810.
dc.identifier.citedreferenceI. Cringus‐Fundeanu, J. Luijten, H. C. Van Der Mei, H. J. Busscher, A. J. Schouten, Langmuir 2007, 23, 5120.
dc.identifier.citedreferenceS. Choi, B. C. Choi, C. Xue, D. Leckband, Biomacromolecules 2013, 14, 92.
dc.identifier.citedreferenceY. Chang, Y. Chang, A. Higuchi, Y. J. Shih, P. T. Li, W. Y. Chen, E. M. Tsai, G. H. Hsiue, Langmuir 2012, 28, 4309.
dc.identifier.citedreferenceC. Y. Lu, N. L. Zhou, Y. H. Xiao, Y. D. Tang, S. X. Jin, Y. Wu, J. Zhang, J. Shen, Appl. Surf. Sci. 2012, 258, 3920.
dc.identifier.citedreferenceG. Emilsson, R. L. Schoch, L. Feuz, F. Höök, R. Y. Lim, A. B. Dahlin, ACS Appl. Mater. Interfaces 2015, 7, 7505.
dc.identifier.citedreferenceD. F. Marruecos, M. Kastantin, D. K. Schwartz, J. L. Kaar, Biomacromolecules 2016, 17, 1017.
dc.identifier.citedreferenceS. A. Ibanescu, J. Nowakowska, N. Khanna, R. Landmann, H. A. Klok, Macromol. Biosci. 2016, 16, 676.
dc.identifier.citedreferenceK. Yu, J. C. Lo, Y. Mei, E. F. Haney, E. Siren, M. T. Kalathottukaren, R. E. Hancock, D. Lange, J. N. Kizhakkedathu, ACS Appl. Mater. Interfaces 2015, 7, 28591.
dc.identifier.citedreferenceV. Yadav, Y. A. Jaimes‐Lizcano, N. K. Dewangan, N. Park, T.‐H. Li, M. L. Robertson, J. C. Conrad, ACS Appl. Mater. Interfaces 2017, 9, 44900, PMID: 29215264.
dc.identifier.citedreferenceB. Pidhatika, J. Möller, E. M. Benetti, R. Konradi, E. Rakhmatullina, A. Mühlebach, R. Zimmermann, C. Werner, V. Vogel, M. Textor, Biomaterials 2010, 31, 9462.
dc.identifier.citedreferenceK. H. A. Lau, T. S. Sileika, S. H. Park, A. M. L. Sousa, P. Burch, I. Szleifer, P. B. Messersmith, Adv. Mater. Interfaces 2015, 2, 1.
dc.identifier.citedreferenceX. Deng, J. Lahann, J. Appl. Polym. Sci. 2014, 131, 40314.
dc.identifier.citedreferenceX. Jiang, H.‐Y. Chen, G. Galvan, M. Yoshida, J. Lahann, Adv. Funct. Mater. 2008, 18, 27.
dc.identifier.citedreferenceH. Nandivada, H.‐Y. Chen, L. Bondarenko, J. Lahann, Angew. Chem. Int. Ed. 2006, 45, 3360.
dc.identifier.citedreferenceF. Bally, K. Cheng, H. Nandivada, X. Deng, A. M. Ross, A. Panades, J. Lahann, ACS Appl. Mater. Interfaces 2013, 5, 9262.
dc.identifier.citedreferenceX. Deng, J. Lahann, Macromol. Rapid Commun. 2012, 33, 1459.
dc.identifier.citedreferenceB. Y. Elkasabi, H.‐Y. Chen, J. Lahann, Adv. Mater. 2006, 18, 1521.
dc.identifier.citedreferenceB. Michen, T. Graule, J. Appl. Microbiol. 2010, 109, 388.
dc.identifier.citedreferenceW. Norde, J. Lyklema, Colloids Surf. 1989, 38, 1.
dc.identifier.citedreferenceL. E. Wilkins, D. J. Phillips, R. C. Deller, G.‐L. Davies, M. I. Gibson, Carbohydr. Res. 2015, 405, 47.
dc.identifier.citedreferenceK. Yu, J. N. Kizhakkedathu, Biomacromolecules 2010, 11, 3073, PMID: 20954736.
dc.identifier.citedreferenceR. Kumar, I. Kopyeva, K. Cheng, K. Liu, J. Lahann, Langmuir 2017, 33, 6322, PMID: 28574709.
dc.identifier.citedreferenceM. Hermansson, Colloids Surf. B 1999, 14, 105.
dc.identifier.citedreferenceL. Lu, K.‐M. Ku, S. P. Palma‐Salgado, A. P. Storm, H. Feng, J. A. Juvik, T. H. Nguyen, PLOS One 2015, 10, 1.
dc.identifier.citedreferenceC. Dika, M. Ly‐Chatain, G. Francius, J. Duval, C. Gantzer, Colloids Surf. A 2013, 435, 178, Special Issue: IAP 2012.
dc.identifier.citedreferenceA. Armanious, M. Aeppli, R. Jacak, D. Refardt, T. Sigstam, T. Kohn, M. Sander, Environ. Sci. Technol. 2016, 50, 732, PMID: 26636722.
dc.identifier.citedreferenceW. Van Breedam, S. Póhlmann, H. W. Favoreel, R. J. de Groot, H. J. Nauwynck, FEMS Microbiol. Rev. 2014, 38, 598.
dc.identifier.citedreferenceY. Zou, N. A. Rossi, J. N. Kizhakkedathu, D. E. Brooks, Macromolecules 2009, 42, 4817.
dc.identifier.citedreferenceS. Kalasin, J. Dabkowski, K. Nüsslein, M. M. Santore, Colloids Surf. B 2010, 76, 489.
dc.identifier.citedreferenceS. Gon, M. M. Santore, Langmuir 2011, 27, 1487.
dc.identifier.citedreferenceS. Gon, K.‐N. Kumar, K. Nüsslein, M. M. Santore, Macromolecules 2012, 45, 8373.
dc.identifier.citedreferenceG. Cheng, Z. Zhang, S. Chen, J. D. Bryers, S. Jiang, Biomaterials 2007, 28, 4192.
dc.identifier.citedreferenceY. Wang, R. Narain, Y. Liu, Langmuir 2014, 30, 7377.
dc.identifier.citedreferenceJ. Wei, D. B. Ravn, L. Gram, P. Kingshott, Colloids Surf., B 2003, 32, 275.
dc.identifier.citedreferenceR. Madeleine, Polymer and Biopolymer Brushes. Wiley‐Blackwell, Hoboken, NJ 2017, Ch. 19, pp. 515 – 556.
dc.identifier.citedreferenceT. Riedel, C. Rodriguez‐Emmenegger, A. de los Santos Pereira, A. Bedajankova, P. Jinoch, P. M. Boltovets, E. Brynda, Biosens. Bioelectron. 2014, 55, 278.
dc.identifier.citedreferenceM. L. B. Palacio, B. Bhushan, Philos. Trans. Royal Soc. A 2012, 370, 2321.
dc.identifier.citedreferenceD. Wang, S. Harrer, B. Luan, G. Stolovitzky, H. Peng, A. Afzali‐Ardakani, Sci. Rep. 2015, 4, 3985.
dc.identifier.citedreferenceD. Campoccia, L. Montanaro, C. R. Arciola, Biomaterials 2006, 27, 2331.
dc.identifier.citedreferenceM. Seidel, L. Jurzik, I. Brettar, M. G. Hófle, C. Griebler, Environ. Earth Sci. 2016, 75, 1384.
dc.identifier.citedreferenceD. Shoham, Crit. Rev. Microbiol. 2013, 39, 123.
dc.identifier.citedreferenceM. Katsikogianni, Y. F. Missirlis, Eur. Cells Mater. 2004, 8, 37.
dc.identifier.citedreferenceK. L. Prime, G. M. Whitesides, Science 2009, 252, 1164.
dc.identifier.citedreferenceE. Ostuni, R. G. Chapman, M. N. Liang, G. Meluleni, G. Pier, D. E. Ingber, G. M. Whitesides, Langmuir 2001, 17, 6336.
dc.identifier.citedreferenceM. Mrksich, G. M. Whitesides, Annu. Rev. Biophys. Biomol. Struc. 1996, 25, 55.
dc.identifier.citedreferenceL. Srisombat, A. C. Jamison, T. R. Lee, Colloids Surf., A 2011, 390, 1.
dc.identifier.citedreferenceN. T. Flynn, T. N. T. Tran, M. J. Cima, R. Langer, Langmuir 2003, 19, 10909.
dc.identifier.citedreferenceA. Hucknall, S. Rangarajan, A. Chilkoti, Adv. Mater. 2009, 21, 2441.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.