Show simple item record

Early Pleistocene Obliquity‐Scale pCO2 Variability at ~1.5 Million Years Ago

dc.contributor.authorDyez, Kelsey A.
dc.contributor.authorHönisch, Bärbel
dc.contributor.authorSchmidt, Gavin A.
dc.date.accessioned2019-01-15T20:30:25Z
dc.date.available2020-01-06T16:40:59Zen
dc.date.issued2018-11
dc.identifier.citationDyez, Kelsey A.; Hönisch, Bärbel ; Schmidt, Gavin A. (2018). "Early Pleistocene Obliquity‐Scale pCO2 Variability at ~1.5 Million Years Ago." Paleoceanography and Paleoclimatology 33(11): 1270-1291.
dc.identifier.issn2572-4517
dc.identifier.issn2572-4525
dc.identifier.urihttps://hdl.handle.net/2027.42/147130
dc.description.abstractIn the early Pleistocene, global temperature cycles predominantly varied with ~41‐kyr (obliquity‐scale) periodicity. Atmospheric greenhouse gas concentrations likely played a role in these climate cycles; marine sediments provide an indirect geochemical means to estimate early Pleistocene CO2. Here we present a boron isotope‐based record of continuous high‐resolution surface ocean pH and inferred atmospheric CO2 changes. Our results show that, within a window of time in the early Pleistocene (1.38–1.54 Ma), pCO2 varied with obliquity, confirming that, analogous to late Pleistocene conditions, the carbon cycle and climate covaried at ~1.5 Ma. Pairing the reconstructed early Pleistocene pCO2 amplitude (92 ± 13 μatm) with a comparably smaller global surface temperature glacial/interglacial amplitude (3.0 ± 0.5 K) yields a surface temperature change to CO2 radiative forcing ratio of S[CO2]~0.75 (±0.5) °C−1·W−1·m−2, as compared to the late Pleistocene S[CO2] value of ~1.75 (±0.6) °C−1·W−1·m−2. This direct comparison of pCO2 and temperature implicitly incorporates the large ice sheet forcing as an internal feedback and is not directly applicable to future warming. We evaluate this result with a simple climate model and show that the presumably thinner, though extensive, northern hemisphere ice sheets would increase surface temperature sensitivity to radiative forcing. Thus, the mechanism to dampen actual temperature variability in the early Pleistocene more likely lies with Southern Ocean circulation dynamics or antiphase hemispheric forcing. We also compile this new carbon dioxide record with published Plio‐Pleistocene δ11B records using consistent boundary conditions and explore potential reasons for the discrepancy between Pliocene pCO2 based on different planktic foraminifera.Key PointsEarly Pleistocene pCO2 roughly varied with obliquity cyclesInterglacial pCO2 was similar in the early and late Pleistocene; glacial pCO2 declined over the mid‐Pleistocene transitionDiscrepancies between δ11B values and corresponding pCO2 estimates from G. ruber and T. sacculifer are observed and may indicate evolving vital effects
dc.publisherYale University
dc.publisherWiley Periodicals, Inc.
dc.subject.otherPleistocene
dc.subject.otherPliocene
dc.subject.otherboron isotope
dc.subject.otherpaleo‐pCO2
dc.titleEarly Pleistocene Obliquity‐Scale pCO2 Variability at ~1.5 Million Years Ago
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147130/1/palo20675-sup-0004-2018PA003349-S03.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147130/2/palo20675.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147130/3/palo20675-sup-0002-2018PA003349-S01.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147130/4/palo20675_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147130/5/palo20675-sup-0005-2018PA003349-S04.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147130/6/palo20675-sup-0003-2018PA003349-S02.pdf
dc.identifier.doi10.1029/2018PA003349
dc.identifier.sourcePaleoceanography and Paleoclimatology
dc.identifier.citedreferenceRaitzsch, M., & Hönisch, B. ( 2013 ). Cenozoic boron isotope variations in benthic foraminifers. Geology, 41 ( 5 ), 591 – 594. https://doi.org/10.1130/G34031.1
dc.identifier.citedreferenceShakun, J. D., Raymo, M. E., & Lea, D. W. ( 2016 ). An early Pleistocene Mg/Ca‐ 18 O record from the Gulf of Mexico: Evaluating ice sheet size and pacing in the 41‐kyr world, 1–17. https://doi.org/10.1002/(ISSN)1944‐9186
dc.identifier.citedreferenceShinn, R. A., & Barron, E. J. ( 1989 ). Climate sensitivity to continental ice‐sheet size and configuration. Journal of Climate, 2 ( 12 ), 1517 – 1537. https://doi.org/10.1175/1520‐0442(1989)002<1517:CSTCIS>2.0.CO;2
dc.identifier.citedreferenceShipboard Scientific Party ( 1988 ). Site 668. In W. Ruddiman, M. Sarnthein, J. Baldauf, et al. (Eds.), Proceedings of the ocean drilling program, initial reports (Vol. 108, pp. 931 – 946 ). College Station, TX: Ocean Drilling Program.
dc.identifier.citedreferenceSigman, D. M., Jaccard, S. L., & Haug, G. H. ( 2004 ). Polar ocean stratification in a cold climate. Nature, 428 ( 6978 ), 59 – 63. https://doi.org/10.1038/nature02357
dc.identifier.citedreferenceSnyder, C. W. ( 2016 ). Evolution of global temperature over the past two million years. Nature, 538, 226 – 228. https://doi.org/10.1038/nature19798
dc.identifier.citedreferenceSpero, H. J., Mielke, K. M., Kalve, E. M., Lea, D. W., & Pak, D. K. ( 2003 ). Multispecies approach to reconstructing eastern equatorial Pacific thermocline hydrography during the past 360 kyr. Paleoceanography, 18 ( 1 ), 1022. https://doi.org/10.1029/2002PA000814
dc.identifier.citedreferenceStults, D. Z., Wagner‐Cremer, F., & Axsmith, B. J. ( 2011 ). Atmospheric paleo‐CO 2 estimates based on Taxodium distichum (Cupressaceae) fossils from the Miocene and Pliocene of eastern North America. Palaeogeography Palaeoclimatology Palaeoecology, 309 ( 3–4 ), 327 – 332. https://doi.org/10.1016/j.palaeo.2011.06.017
dc.identifier.citedreferenceTakahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa‐Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., & de Baar, H. J. W. ( 2009 ). Climatological mean and decadal change in surface ocean pCO 2, and net sea–air CO 2 flux over the global oceans. Deep Sea Research, Part II, 56 ( 8–10 ), 554 – 577. https://doi.org/10.1016/j.dsr2.2008.12.009
dc.identifier.citedreferenceThunell, R. C., & Honjo, S. ( 1981 ). Calcite dissolution and the modification of planktonic foraminiferal assemblages. Marine Micropaleontology, 6 ( 2 ), 169 – 182. https://doi.org/10.1016/0377‐8398(81)90004‐9
dc.identifier.citedreferenceTripati, A. K., Roberts, C. D., Eagle, R. A., & Li, G. ( 2011 ). A 20 million year record of planktic foraminiferal B/Ca ratios: Systematics and uncertainties in pCO 2 reconstructions. Geochimica et Cosmochimica Acta, 75 ( 10 ), 2582 – 2610. https://doi.org/10.1016/j.gca.2011.01.018
dc.identifier.citedreferenceTyrrell, T., & Zeebe, R. E. ( 2004 ). History of carbonate ion concentration over the last 100 million years. Geochimica et Cosmochimica Acta, 68 ( 17 ), 3521 – 3530. https://doi.org/10.1016/j.gca.2004.02.018
dc.identifier.citedreferenceTziperman, E., & Gildor, H. ( 2003 ). On the mid‐Pleistocene transition to 100‐kyr glacial cycles and the asymmetry between glaciation and deglaciation times. Paleoceanography, 18 ( 1 ), 1001. https://doi.org/10.1029/2001pa000627
dc.identifier.citedreferencevon der Heydt, A. S., Dijkstra, H. A., van de Wal, R. S. W., Caballero, R., Crucifix, M., Foster, G. L., Huber, M., Köhler, P., Rohling, E., Valdes, P. J., Ashwin, P., Bathiany, S., Berends, T., van Bree, L. G. J., Ditlevsen, P., Ghil, M., Haywood, A. M., Katzav, J., Lohmann, G., Lohmann, J., Lucarini, V., Marzocchi, A., Pälike, H., Baroni, I. R., Simon, D., Sluijs, A., Stap, L. B., Tantet, A., Viebahn, J., & Ziegler, M. ( 2016 ). Lessons on climate sensitivity from past climate changes. Current Climate Change Reports, 2 ( 4 ), 148 – 158. https://doi.org/10.1007/s40641‐016‐0049‐3
dc.identifier.citedreferenceWaddell, L. M., Hendy, I. L., Moore, T. C., & Lyle, M. W. ( 2009 ). Ventilation of the abyssal Southern Ocean during the late Neogene: A new perspective from the subantarctic Pacific. Paleoceanography, 24, PA3206. https://doi.org/10.1029/2008PA001661
dc.identifier.citedreferenceWang, Y., Momohara, A., Wang, L., Lebreton‐Anberrée, J., & Zhou, Z. ( 2015 ). Evolutionary history of atmospheric CO 2 during the late Cenozoic from fossilized Metasequoia needles, edited by W. O. Wong. PLoS One, 10 ( 7 ), 1 – 15. https://doi.org/10.1371/journal.pone.0130941
dc.identifier.citedreferenceWeldeab, S., Schneider, R. R., & Kölling, M. ( 2006 ). Comparison of foraminiferal cleaning procedures for Mg/Ca paleothermometry on core material deposited under varying terrigenous‐input and bottom water conditions. Geochemistry, Geophysics, Geosystems, 7, Q04P12. https://doi.org/10.1029/2005GC000990
dc.identifier.citedreferenceWitze, A. ( 2015 ). Super‐fast drills hunt for oldest ice. Nature, 526, 618 – 619. https://doi.org/10.1038/526618a
dc.identifier.citedreferenceYork, D., Evensen, N. M., Martínez, M. L., & De Basabe Delgado, J. ( 2004 ). Unified equations for the slope, intercept, and standard errors of the best straight line. American Journal of Physics, 72 ( 3 ), 367 – 375. https://doi.org/10.1119/1.1632486
dc.identifier.citedreferenceZeebe, R. E., & Wolf‐Gladrow, D. A. ( 2001 ). CO 2 in seawater: Equilibrium, kinetics, isotopes. Elsevier.
dc.identifier.citedreferenceZhang, Y. G., Pagani, M., Liu, Z., Bohaty, S. M., & DeConto, R. ( 2013 ). A 40‐million‐year history of atmospheric CO 2. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371 ( 2001 ). https://doi.org/10.1098/rsta.2013.0096
dc.identifier.citedreferenceZweng, M. M., Reagan, J. R., Antonov, J. I., Locarnini, R. A., Mishonov, A. V., Boyer, T. P., et al. ( 2013 ). World ocean atlas 2013, Vol. 2: Salinity. In S. Levitus, & A. Mishonov (Eds.), NOAA Atlas NESDIS 73 (pp. 1 – 20 ). Silver Spring, MD: World Ocean Atlas 2013.
dc.identifier.citedreferenceAllen, K. A., Hönisch, B., Eggins, S. M., & Rosenthal, Y. ( 2012 ). Environmental controls on B/Ca in calcite tests of the tropical planktic foraminifer species Globigerinoides ruber and Globigerinoides sacculifer. Earth and Planetary Science Letters, 351‐352 ( C ), 270 – 280. https://doi.org/10.1016/j.epsl.2012.07.004
dc.identifier.citedreferenceAnand, P., Elderfield, H., & Conte, M. H. ( 2003 ). Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanography, 18 ( 2 ), 1050. https://doi.org/10.1029/2002PA000846
dc.identifier.citedreferenceAnderson, R. F., Ali, S., Bradtmiller, L. I., Nielsen, S., Fleisher, M. Q., Anderson, B. E., & Burckle, L. H. ( 2009 ). Wind‐driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO 2. Science, 323 ( 5920 ), 1443 – 1448. https://doi.org/10.1126/science.1167441
dc.identifier.citedreferenceAndré, A., Weiner, A., Quillévéré, F., Aurahs, R., Morard, R., Douady, C. J., et al. ( 2012 ). The cryptic and the apparent reversed: lack of genetic differentiation within the morphologically diverse plexus of the planktonic foraminifer Globigerinoides sacculifer. Paleobiology, 39 ( 1 ), 21 – 39. https://doi.org/10.1666/0094‐8373‐39.1.21
dc.identifier.citedreferenceBadger, M. P. S., Schmidt, D. N., Mackensen, A., & Pancost, R. D. ( 2013 ). High‐resolution alkenone palaeobarometry indicates relatively stable p CO 2 during the Pliocene (3.3‐2.8 Ma). Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 70 ( 15 ), 3883 – 3904. https://doi.org/10.1016/j.gca.2006.06.009
dc.identifier.citedreferenceBailey, I., Liu, Q., Swann, G. E. A., Jiang, Z., Sun, Y., Zhao, X., & Roberts, A. P. ( 2011 ). Iron fertilisation and biogeochemical cycles in the sub‐Arctic northwest Pacific during the late Pliocene intensification of northern hemisphere glaciation. Earth and Planetary Science Letters, 307 ( 3–4 ), 253 – 265. https://doi.org/10.1016/j.epsl.2011.05.029
dc.identifier.citedreferenceBalco, G., & Rovey, C. W. ( 2010 ). Absolute chronology for major Pleistocene advances of the Laurentide ice sheet. Geology, 38 ( 9 ), 795 – 798. https://doi.org/10.1130/G30946.1
dc.identifier.citedreferenceBarker, S., Greaves, M., & Elderfield, H. ( 2003 ). A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochemistry, Geophysics, Geosystems, 4 ( 9 ), 8407. https://doi.org/10.1029/2003GC000559
dc.identifier.citedreferenceBartoli, G., Hönisch, B., & Zeebe, R. E. ( 2011 ). Atmospheric CO 2 decline during the Pliocene intensification of northern hemisphere glaciations. Paleoceanography, 26, PA3206. https://doi.org/10.1029/2010PA002055
dc.identifier.citedreferenceBé, A. W. H. ( 1980 ). Gametogenic calcification in a spinose planktonic foraminifer, Globigerinoides sacculifer (Brady). Marine Micropaleontology, 5, 283 – 310. https://doi.org/10.1016/0377‐8398(80)90014‐6
dc.identifier.citedreferenceBemis, B. E., Spero, H. J., Bijma, J., & Lea, D. W. ( 1998 ). Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations. Paleoceanography, 13 ( 2 ), 150 – 160. https://doi.org/10.1029/98PA00070
dc.identifier.citedreferenceBereiter, B., Eggleston, S., Schmitt, J., Nehrbass‐Ahles, C., Stocker, T. F., Fischer, H., Kipfstuhl, S., & Chappellaz, J. ( 2015 ). Revision of the EPICA Dome C CO2 record from 800 to 600kyr before present. Geophysical Research Letters, 42, 542 – 549. https://doi.org/10.1002/2014GL061957
dc.identifier.citedreferenceBerger, W. H. ( 1967 ). Foraminiferal ooze: Solution at depths. Science, 156 ( 3773 ), 383 – 385. https://doi.org/10.1126/science.156.3773.383
dc.identifier.citedreferenceBibby, T., Putkonen, J., Morgan, D., Balco, G., & Shuster, D. L. ( 2016 ). Million year old ice found under meter thick debris layer in Antarctica. Geophysical Research Letters, 43, 6995 – 7001. https://doi.org/10.1002/2016GL069889
dc.identifier.citedreferenceBintanja, R., & van de Wal, R. S. W. ( 2008 ). North American ice‐sheet dynamics and the onset of 100,000‐year glacial cycles. Nature, 454 ( 7206 ), 869 – 872. https://doi.org/10.1038/nature07158
dc.identifier.citedreferenceBird, M. I., & Cali, J. A. ( 1998 ). A million‐year record of fire in sub‐Saharan Africa. Nature, 394 ( 6695 ), 767 – 769. https://doi.org/10.1038/29507
dc.identifier.citedreferenceBird, M. I., & Cali, J. A. ( 2002 ). A revised high‐resolution oxygen‐isotope chronology for ODP‐668B: Implications for Quaternary biomass burning in Africa. Global and Planetary Change, 33 ( 1–2 ), 73 – 76. https://doi.org/10.1016/S0921‐8181(02)00062‐0
dc.identifier.citedreferenceBoyle, E. A. ( 1988 ). The role of vertical chemical fractionation in controlling Late Quaternary atmospheric carbon‐dioxide. Journal of Geophysical Research, 93 ( C12 ), 15,701 – 15,714. https://doi.org/10.1029/JC093iC12p15701
dc.identifier.citedreferenceBoyle, E. A., & Keigwin, L. D. ( 1985 ). Comparison of Atlantic and Pacific paleochemical records for the last 215,000 years: Changes in deep ocean circulation and chemical inventories. Earth and Planetary Science Letters, 76 ( 1–2 ), 135 – 150. https://doi.org/10.1016/0012‐821X(85)90154‐2
dc.identifier.citedreferenceBranson, O., Kaczmarek, K., Redfern, S. A. T., Misra, S., Langer, G., Tyliszczak, T., Bijma, J., & Elderfield, H. ( 2015 ). The coordination and distribution of B in foraminiferal calcite. Earth and Planetary Science Letters, 416 ( C ), 67 – 72. https://doi.org/10.1016/j.epsl.2015.02.006
dc.identifier.citedreferenceBrennan, S. T., Lowenstein, T. K., & Cendon, D. I. ( 2013 ). The major‐ion composition of Cenozoic seawater: The past 36 million years from fluid inclusions in marine halite. American Journal of Science, 313 ( 8 ), 713 – 775. https://doi.org/10.2475/08.2013.01
dc.identifier.citedreferenceBroecker, W. S. ( 1971 ). Calcite accumulation rates and glacial to interglacial changes in oceanic mixing. In K. K. Turekian (Ed.), The Late Cenozoic glacial ages (pp. 239 – 265 ). New Haven: Yale University.
dc.identifier.citedreferenceBroecker, W. S., & Peng, T.‐H. ( 1987 ). The role of CaCO 3 compensation in the glacial to interglacial atmospheric CO 2 change. GBC, 1 ( 1 ), 15 – 29. https://doi.org/10.1029/GB001i001p00015
dc.identifier.citedreferenceChalk, T. B., Hain, M. P., Foster, G. L., Rohling, E. J., Sexton, P. F., Badger, M. P. S., Cherry, S. G., Hasenfratz, A. P., Haug, G. H., Jaccard, S. L., Martínez‐García, A., Pälike, H., Pancost, R. D., & Wilson, P. A. ( 2017 ). Causes of ice age intensification across the mid‐Pleistocene transition. PNAS, 114 ( 50 ), 13,114 – 13,119. https://doi.org/10.1073/pnas.1702143114
dc.identifier.citedreferenceClark, P. U., Alley, R. B., & Pollard, D. ( 1999 ). Northern hemisphere ice‐sheet influences on global climate change. Science, 286 ( 5442 ), 1104 – 1111. https://doi.org/10.1126/science.286.5442.1104
dc.identifier.citedreferenceClark, P. U., Archer, D., Pollard, D., Blum, J. D., Rial, J. A., Brovkin, V., Mix, A. C., Pisias, N. G., & Roy, M. ( 2006 ). The middle Pleistocene transition: Characteristics, mechanisms, and implications for long‐term changes in atmospheric pCO 2. Quaternary Science Reviews, 25 ( 23–24 ), 3150 – 3184. https://doi.org/10.1016/j.quascirev.2006.07.008
dc.identifier.citedreferenceClark, P. U., & Pollard, D. ( 1998 ). Origin of the middle Pleistocene transition by ice sheet erosion of regolith. Paleoceanography, 13 ( 1 ), 1 – 9. https://doi.org/10.1029/97pa02660
dc.identifier.citedreferenceDa, J., Zhang, Y. G., Wang, H., Balsam, W., & Ji, J. ( 2015 ). An Early Pleistocene atmospheric CO 2 record based on pedogenic carbonate from the Chinese loess deposits. Earth and Planetary Science Letters, 426 ( C ), 69 – 75. https://doi.org/10.1016/j.epsl.2015.05.053
dc.identifier.citedreferenceDai, Y., Yu, J., & Johnstone, H. J. H. ( 2016 ). Distinct responses of planktonic foraminiferal B/Ca to dissolution on seafloor. Geochemistry, Geophysics, Geosystems, 17, 1339 – 1348. https://doi.org/10.1002/2015GC006199
dc.identifier.citedreferenceDarling, K. F., & Wade, C. M. ( 2008 ). The genetic diversity of planktic foraminifera and the global distribution of ribosomal RNA genotypes. Marine Micropaleontology, 67 ( 3‐4 ), 216 – 238. https://doi.org/10.1016/j.marmicro.2008.01.009
dc.identifier.citedreferencede Villiers, S. ( 2005 ). Foraminiferal shell‐weight evidence for sedimentary calcite dissolution above the lysocline. Deep Sea Research Part I: Oceanographic Research Papers, 52 ( 5 ), 671 – 680. https://doi.org/10.1016/j.dsr.2004.11.014
dc.identifier.citedreferenceDekens, P. S., Lea, D. W., Pak, D. K., & Spero, H. J. ( 2002 ). Core top calibration of Mg/Ca in tropical foraminifera: Refining paleotemperature estimation. Geochemistry, Geophysics, Geosystems, 3 ( 4 ), 1022. https://doi.org/10.1029/2001GC000200
dc.identifier.citedreferenceDelaney, M. L., Bé, A. W. H., & Boyle, E. A. ( 1985 ). Li, Sr, Mg, and Na in foraminiferal calcite shells from laboratory culture, sediment traps, and sediment cores. Geochimica et Cosmochimica Acta, 49, 1327 – 1341. https://doi.org/10.1016/0016‐7037(85)90284‐4
dc.identifier.citedreferenceDickson, A. G. ( 1990 ). Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep Sea Research, Part II, 35, 253 – 257. https://doi.org/10.1021/je00061a009
dc.identifier.citedreferenceDyez, K., & Ravelo, A. C. ( 2013 ). Late Pleistocene tropical Pacific temperature sensitivity to radiative greenhouse gas forcing. Geology, 41 ( 1 ), 23 – 26. https://doi.org/10.1130/G33425.1
dc.identifier.citedreferenceDyez, K., & Ravelo, A. C. ( 2014 ). Dynamical changes in the tropical Pacific warm pool and zonal SST gradient during the Pleistocene. Geophysical Research Letters, 41, 7626 – 7633. https://doi.org/10.1002/2014GL061639
dc.identifier.citedreferenceEdgar, K. M., Anagnostou, E., Pearson, P. N., & Foster, G. L. ( 2015 ). Assessing the impact of diagenesis on δ 11 B, δ 13 C, δ 18 O, Sr/Ca and B/Ca values in fossil planktic foraminiferal calcite. Geochimica et Cosmochimica Acta, 166 ( C ), 189 – 209. https://doi.org/10.1016/j.gca.2015.06.018
dc.identifier.citedreferenceEvans, D., Brierley, C. M., Raymo, M. E., Erez, J., & Müller, W. ( 2016 ). Planktic foraminifera shell chemistry response to seawater chemistry: Pliocene–Pleistocene seawater Mg/Ca, temperature and sea level change. Earth and Planetary Science Letters, 438 ( C ), 139 – 148. https://doi.org/10.1016/j.epsl.2016.01.013
dc.identifier.citedreferenceEvans, D., & Müller, W. ( 2012 ). Deep time foraminifera Mg/Ca paleothermometry: Nonlinear correction for secular change in seawater Mg/Ca. Paleoceanography, 27, PA4205. https://doi.org/10.1029/2012PA002315
dc.identifier.citedreferenceFantle, M. S., & DePaolo, D. J. ( 2005 ). Variations in the marine Ca cycle over the past 20 million years. Earth and Planetary Science Letters, 237 ( 1–2 ), 102 – 117. https://doi.org/10.1016/j.epsl.2005.06.024
dc.identifier.citedreferenceFantle, M. S., & DePaolo, D. J. ( 2006 ). Sr isotopes and pore fluid chemistry in carbonate sediment of the Ontong Java Plateau: Calcite recrystallization rates and evidence for a rapid rise in seawater Mg over the last 10 million years. Geochimica et Cosmochimica Acta, 70 ( 15 ), 3883 – 3904. https://doi.org/10.1016/j.gca.2006.06.009
dc.identifier.citedreferenceFarmer, E. C., Kaplan, A., de Menocal, P. B., & Lynch‐Stieglitz, J. ( 2007 ). Corroborating ecological depth preferences of planktonic foraminifera in the tropical Atlantic with the stable oxygen isotope ratios of core top specimens. Paleoceanography, 22, PA3205. https://doi.org/10.1029/2006PA001361
dc.identifier.citedreferenceFarmer, J. R., Hönisch, B., & Uchikawa, J. ( 2016 ). Single laboratory comparison of MC‐ICP‐MS and N‐TIMS boron isotope analyses in marine carbonates. Chemical Geology, 447, 173 – 182. https://doi.org/10.1016/j.chemgeo.2016.11.008
dc.identifier.citedreferenceFarrell, J. W., & Prell, W. L. ( 1991 ). Pacific CaCO3 preservation and δ18O since 4 Ma: Paleoceanic and Paleoclimatic implications. Paleoceanography, 6 ( 4 ), 485 – 498. https://doi.org/10.1029/91PA00877
dc.identifier.citedreferenceFischer, H., Schmitt, J., Lüthi, D., Stocker, T. F., Tschumi, T., Parekh, P., Joos, F., Köhler, P., Völker, C., Gersonde, R., Barbante, C., le Floch, M., Raynaud, D., & Wolff, E. ( 2010 ). The role of Southern Ocean processes in orbital and millennial CO 2 variations—A synthesis. Quaternary Science Reviews, 29 ( 1–2 ), 193 – 205. https://doi.org/10.1016/j.quascirev.2009.06.007
dc.identifier.citedreferenceFischer, H., Severinghaus, J., Brook, E., Wolff, E., Albert, M., Alemany, O., Arthern, R., Bentley, C., Blankenship, D., Chappellaz, J., Creyts, T., Dahl‐Jensen, D., Dinn, M., Frezzotti, M., Fujita, S., Gallee, H., Hindmarsh, R., Hudspeth, D., Jugie, G., Kawamura, K., Lipenkov, V., Miller, H., Mulvaney, R., Pattyn, F., Ritz, C., Schwander, J., Steinhage, D., van Ommen, T., & Wilhelms, F. ( 2013 ). Where to find 1.5 million yr old ice for the IPICS “Oldest Ice” ice core. Climate of the Past Discussions, 9 ( 3 ), 2771 – 2815. https://doi.org/10.5194/cpd‐9‐2771‐2013
dc.identifier.citedreferenceFoster, G. L. ( 2008 ). Seawater pH, pCO 2 and [CO 3 −2 ] variations in the Caribbean Sea over the last 130 kyr: A boron isotope and B/Ca study of planktic foraminifera. Earth and Planetary Science Letters, 271 ( 1–4 ), 254 – 266. https://doi.org/10.1016/j.epsl.2008.04.015
dc.identifier.citedreferenceFoster, G. L., Hönisch, B., Paris, G., Dwyer, G. S., Rae, J. W. B., Elliott, T., Gaillardet, J., Hemming, N. G., Louvat, P., & Vengosh, A. ( 2013 ). Interlaboratory comparison of boron isotope analyses of boric acid, seawater and marine CaCO 3 by MC‐ICPMS and NTIMS. Chemical Geology, 358 ( C ), 1 – 14. https://doi.org/10.1016/j.chemgeo.2013.08.027
dc.identifier.citedreferenceFoster, G. L., Pogge von Strandmann, P. A. E., & Rae, J. W. B. ( 2010 ). Boron and magnesium isotopic composition of seawater. Geochemistry, Geophysics, Geosystems, 11, Q08015. https://doi.org/10.1029/2010GC003201
dc.identifier.citedreferenceGloor, M., Gruber, N., Sarmiento, J., Sabine, C. L., Feely, R. A., & Rödenbeck, C. ( 2003 ). A first estimate of present and preindustrial air‐sea CO 2 flux patterns based on ocean interior carbon measurements and models. Geophysical Research Letters, 30 ( 1 ), 1010. https://doi.org/10.1029/2002GL015594
dc.identifier.citedreferenceGreenop, R., Hain, M. P., Sosdian, S. M., Oliver, K. I. C., Goodwin, P., Chalk, T. B., Lear, C. H., Wilson, P. A., & Foster, G. L. ( 2017 ). A record of Neogene seawater δ 11 B reconstructed from paired δ 11 B analyses on benthic and planktic foraminifera. Climate of the Past, 13 ( 2 ), 149 – 170. https://doi.org/10.5194/cp‐13‐149‐2017
dc.identifier.citedreferenceGroeneveld, J. ( 2005 ). Effect of the Pliocene closure of the Panamanian Gateway on Caribbean and east Pacific sea surface temperatures and salinities by applying combined Mg/Ca and, 1–165 pp. Christian Albrechts University, 20 October.
dc.identifier.citedreferenceHansen, J., Lacis, A., Rind, D., Russell, G., Stone, P., Fung, I. Y., Ruedy, R., & Lerner, J. ( 1984 ). Climate sensitivity: Analysis of feedback mechanisms. In E. Hansen & T. Takahashi (Eds.), Climate processes and climate sensitivity (Vol. 29, pp. 130 – 163 ). Washington DC: American Geophysical Union. https://doi.org/10.1029/GM029
dc.identifier.citedreferenceHansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G. A., et al. ( 2005 ). Efficacy of climate forcings. Journal of Geophysical Research, 110, D18104. https://doi.org/10.1029/2005JD005776
dc.identifier.citedreferenceHaug, G. H., Sigman, D. M., Tiedemann, R., Pedersen, T. F., & Sarnthein, M. ( 1999 ). Onset of permanent stratification in the subarctic Pacific Ocean. Nature, 401 ( 6755 ), 779 – 782. https://doi.org/10.1038/44550
dc.identifier.citedreferenceHays, J., Imbrie, J., & Shackleton, N. J. ( 1976 ). Variations in the Earth’s orbit: Pacemaker of the ice ages. Science, 194 ( 4270 ), 1121 – 1132. https://doi.org/10.1126/science.194.4270.1121
dc.identifier.citedreferenceHemming, N. G., & Hanson, G. N. ( 1992 ). Boron isotopic composition and concentration in modern marine carbonates. Geochimica et Cosmochimica Acta, 56 ( 1 ), 537 – 543. https://doi.org/10.1016/0016‐7037(92)90151‐8
dc.identifier.citedreferenceHenehan, M. J., Rae, J. W. B., Foster, G. L., Erez, J., Prentice, K. C., Kucera, M., Bostock, H. C., Martínez‐Botí, M. A., Milton, J. A., Wilson, P. A., Marshall, B. J., & Elliott, T. ( 2013 ). Calibration of the boron isotope proxy in the planktonic foraminifera Globigerinoides ruber for use in palaeo‐CO 2 reconstruction. Earth and Planetary Science Letters, 364, 111 – 122. https://doi.org/10.1016/j.epsl.2012.12.029
dc.identifier.citedreferenceHerbert, T. D., Peterson, L. C., Kucera, M. T., & Liu, Z. ( 2010 ). Tropical ocean temperatures over the past 3.5 million years. Science, 328, 1530 – 1534. https://doi.org/10.1126/science.1185435
dc.identifier.citedreferenceHiggins, J. A., Kurbatov, A. V., Spaulding, N. E., Brook, E. J., Introne, D. S., Chimiak, L. M., Yan, Y., Mayewski, P. A., & Bender, M. L. ( 2015 ). Atmospheric composition 1 million years ago from blue ice in the Allan Hills, Antarctica. PNAS, 112 ( 22 ), 6887 – 6891. https://doi.org/10.1073/pnas.1420232112
dc.identifier.citedreferenceHodell, D. A., & Venz‐Curtis, K. A. ( 2006 ). Late Neogene history of deepwater ventilation in the Southern Ocean. Geochemistry, Geophysics, Geosystems, 7, Q09001. https://doi.org/10.1029/2005GC001211
dc.identifier.citedreferenceHönisch, B., Allen, K. A., Lea, D. W., Spero, H. J., Eggins, S. M., Arbuszewski, J. A., deMenocal, P. B., Rosenthal, Y., Russell, A. D., & Elderfield, H. ( 2013 ). The influence of salinity on Mg/Ca in planktic foraminifers—Evidence from cultures, core‐top sediments and complementary δ 18 O. Geochimica et Cosmochimica Acta, 121 ( C ), 196 – 213. https://doi.org/10.1016/j.gca.2013.07.028
dc.identifier.citedreferenceHönisch, B., & Hemming, N. G. ( 2004 ). Ground‐truthing the boron isotope‐paleo‐pH proxy in planktonic foraminifera shells: Partial dissolution and shell size effects. Paleoceanography, 19, PA4010. https://doi.org/10.1029/2004PA001026
dc.identifier.citedreferenceHönisch, B., & Hemming, N. G. ( 2005 ). Surface ocean pH response to variations in pCO 2 through two full glacial cycles. Earth and Planetary Science Letters, 236 ( 1–2 ), 305 – 314. https://doi.org/10.1016/j.epsl.2005.04.027
dc.identifier.citedreferenceHönisch, B., Hemming, N. G., Archer, D., Siddall, M., & McManus, J. F. ( 2009 ). Atmospheric carbon dioxide concentration across the mid‐Pleistocene transition. Science, 324 ( 5934 ), 1551 – 1554. https://doi.org/10.1126/science.1171477
dc.identifier.citedreferenceHorita, J., Zimmermann, H., & Holland, H. D. ( 2002 ). Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites. Geochimica et Cosmochimica Acta, 66 ( 21 ), 3733 – 3756. https://doi.org/10.1016/S0016‐7037(01)00884‐5
dc.identifier.citedreferenceHuybers, P. ( 2007 ). Glacial variability over the last two million years: An extended depth‐derived agemodel, continuous obliquity pacing, and the Pleistocene progression. Quaternary Science Reviews, 26 ( 1–2 ), 37 – 55. https://doi.org/10.1016/j.quascirev.2006.07.013
dc.identifier.citedreferenceImbrie, J., Boyle, E. A., Clemens, S. C., Duffy, A., Howard, W. R., Kukla, G., Kutzbach, J., Martinson, D. G., McIntyre, A., Mix, A. C., Molfino, B., Morley, J. J., Peterson, L. C., Pisias, N. G., Prell, W. L., Raymo, M. E., Shackleton, N. J., & Toggweiler, J. R. ( 1992 ). On the structure and origin of major glaciation cycles 1. Linear responses to Milankovitch forcing. Paleoceanography, 7 ( 6 ), 701 – 738. https://doi.org/10.1029/92pa02253
dc.identifier.citedreferenceImbrie, J., Hays, J. D., Martinson, D. G., McIntyre, A., Mix, A. C., Morley, J., Pisias, N. G., Prell, W. L., & Shackleton, N. J. ( 1984 ). The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ 18 O record. In A. L. Berger, J. Imbrie, J. Hays, G. Kukla, & B. Saltzman (Eds.), Milankovitch and climate (pp. 269 – 305 ). Dordrecht, Holland: Milankovitch and Climate.
dc.identifier.citedreferenceIshikawa, T., & Nakamura, E. ( 1993 ). Boron isotope systematics of marine‐sediments. Earth and Planetary Science Letters, 117 ( 3–4 ), 567 – 580. https://doi.org/10.1016/0012‐821X(93)90103‐G
dc.identifier.citedreferenceJoannin, S., Cornée, J. J., Münch, P., Fornari, M., Vasiliev, I., Krijgsman, W., Nahapetyan, S., Gabrielyan, I., Ollivier, V., Roiron, P., & Chataigner, C. ( 2010 ). Early Pleistocene climate cycles in continental deposits of the Lesser Caucasus of Armenia inferred from palynology, magnetostratigraphy, and 40 Ar/ 39 Ar dating. Earth and Planetary Science Letters, 291 ( 1–4 ), 149 – 158. https://doi.org/10.1016/j.epsl.2010.01.007
dc.identifier.citedreferenceJouzel, J., Masson‐Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnola, J. M., Chappellaz, J., Fischer, H., Gallet, J. C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J. P., Stenni, B., Stocker, T. F., Tison, J. L., Werner, M., & Wolff, E. W. ( 2007 ). Orbital and millennial Antarctic climate variability over the past 800,000 years. Science, 317 ( 5839 ), 793 – 796. https://doi.org/10.1126/science.1141038
dc.identifier.citedreferenceKey, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister, J. L., Feely, R. A., Millero, F., Mordy, C., & Peng, T. H. ( 2004 ). A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). GBC, 18 ( 4 ), 1 – 23. https://doi.org/10.1029/2004GB002247
dc.identifier.citedreferenceKlochko, K., Kaufman, A. J., Yao, W., Byrne, R. H., & Tossell, J. A. ( 2006 ). Experimental measurement of boron isotope fractionation in seawater. Earth and Planetary Science Letters, 248 ( 1–2 ), 276 – 285. https://doi.org/10.1016/j.epsl.2006.05.034
dc.identifier.citedreferenceKöhler, P., & Bintanja, R. ( 2008 ). The carbon cycle during the mid Pleistocene transition: The Southern Ocean decoupling hypothesis. Climate of the Past, 4 ( 4 ), 311 – 332. https://doi.org/10.5194/cp‐4‐311‐2008
dc.identifier.citedreferenceKöhler, P., Bintanja, R., Fischer, H., Joos, F., Knutti, R., Lohmann, G., & Masson‐Delmotte, V. ( 2010 ). What caused Earth’s temperature variations during the last 800,000 years? Data‐based evidence on radiative forcing and constraints on climate sensitivity. Quaternary Science Reviews, 29 ( 1–2 ), 129 – 145. https://doi.org/10.1016/j.quascirev.2009.09.026
dc.identifier.citedreferenceKöhler, P., de Boer, B., von der Heydt, A. S., Stap, L. B., & van de Wal, R. S. W. ( 2015 ). On the state dependency of the equilibrium climate sensitivity during the last 5 million years. Climate of the Past, 11 ( 12 ), 1801 – 1823. https://doi.org/10.5194/cp‐11‐1801‐2015
dc.identifier.citedreferenceKürschner, W. M., van der Burgh, J., Visscher, H., & Dilcher, D. L. ( 1996 ). Oak leaves as biosensors of late Neogene and early Pleistocene paleoatmospheric CO 2 concentrations. Marine Micropaleontology, 27 ( 1–4 ), 299 – 312. https://doi.org/10.1016/0377‐8398(95)00067‐4
dc.identifier.citedreferenceLaskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., & Levrard, B. ( 2004 ). A long‐term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics, 428 ( 1 ), 261 – 285. https://doi.org/10.1051/0004‐6361:20041335
dc.identifier.citedreferenceLawrence, K., Herbert, T. D., Brown, C. M., Raymo, M. E., & Haywood, A. M. ( 2009 ). High‐amplitude variations in North Atlantic sea surface temperature during the early Pliocene warm period. Paleoceanography, 24, PA2218. https://doi.org/10.1029/2008PA001669
dc.identifier.citedreferenceLea, D. W. ( 2004 ). The 100 000‐yr cycle in tropical SST, greenhouse forcing, and climate sensitivity. Journal of Climate, 17 ( 11 ), 2170 – 2179. https://doi.org/10.1175/1520‐0442(2004)017<2170:TYCITS>
dc.identifier.citedreferenceLee, K., Kim, T.‐W., Byrne, R. H., Millero, F. J., Feely, R. A., & Liu, Y.‐M. ( 2010 ). The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans. Geochimica et Cosmochimica Acta, 74 ( 6 ), 1801 – 1811. https://doi.org/10.1016/j.gca.2009.12.027
dc.identifier.citedreferenceLegrande, A. N., & Schmidt, G. A. ( 2006 ). Global gridded data set of the oxygen isotopic composition in seawater. Geophysical Research Letters, 33, L12604. https://doi.org/10.1029/2006GL026011
dc.identifier.citedreferenceLemarchand, D., Gaillardet, J., Lewin, E., & Allegre, C. J. ( 2000 ). The influence of rivers on marine boron isotopes and implications for reconstructing past ocean pH. Nature, 408 ( 6815 ), 951 – 954. https://doi.org/10.1038/35050058
dc.identifier.citedreferenceLisiecki, L. E. ( 2010 ). A benthic δ 13 C‐based proxy for atmospheric pCO 2 over the last 1.5 Myr. Geophysical Research Letters, 37, L21708. https://doi.org/10.1029/2010GL045109
dc.identifier.citedreferenceLisiecki, L. E., & Raymo, M. E. ( 2005 ). A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ 18 O records. Paleoceanography, 20, PA1003. https://doi.org/10.1029/2004PA001071
dc.identifier.citedreferenceLocarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K., et al. ( 2013 ). World ocean atlas 2013, Vol. 1: Temperature. In S. Levitus & A. Mishonov (Eds.), NOAA Atlas NESDIS 73 (pp. 1 – 21 ). Silver Spring, MD: National Oceanic and Atmospheric Administration (NOAA).
dc.identifier.citedreferenceLueker, T. J., Dickson, A. G., & Keeling, C. D. ( 2000 ). Ocean pCO 2 calculated from dissolved inorganic carbon, alkalinity, and equations for K 1 and K 2: Validation based on laboratory measurements of CO 2 in gas and seawater at equilibrium. Marine Chemistry, 70 ( 1–3 ), 105 – 119. https://doi.org/10.1016/S0304‐4203(00)00022‐0
dc.identifier.citedreferenceLunt, D. J., Foster, G. L., Haywood, A. M., & Stone, E. J. ( 2008 ). Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO 2 levels. Nature, 454 ( 7208 ), 1102 – 1105. https://doi.org/10.1038/nature07223
dc.identifier.citedreferenceLüthi, D., le Floch, M., Bereiter, B., Blunier, T., Barnola, J. M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., & Stocker, T. F. ( 2008 ). High‐resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature, 453 ( 7193 ), 379 – 382. https://doi.org/10.1038/nature06949
dc.identifier.citedreferenceManabe, S., & Broccoli, A. J. ( 1985 ). The influence of continental ice sheets on the climate of an ice‐age. Journal of Geophysical Research, 90 ( ND1 ), 2167 – 2190. https://doi.org/10.1029/JD090iD01p02167
dc.identifier.citedreferenceMartin, P. A., & Lea, D. W. ( 2002 ). A simple evaluation of cleaning procedures on fossil benthic foraminiferal Mg/Ca. Geochemistry, Geophysics, Geosystems, 3 ( 10 ), 8401. https://doi.org/10.1029/2001GC000280
dc.identifier.citedreferenceMartínez‐Botí, M. A., Foster, G. L., Chalk, T. B., Rohling, E. J., Sexton, P. F., Lunt, D. J., Pancost, R. D., Badger, M. P. S., & Schmidt, D. N. ( 2015 ). Plio‐Pleistocene climate sensitivity evaluated using high‐resolution CO 2 records. Nature, 518 ( 7537 ), 49 – 54. https://doi.org/10.1038/nature14145
dc.identifier.citedreferenceMartínez‐Botí, M. A., Marino, G., Foster, G. L., Ziveri, P., Henehan, M. J., Rae, J. W. B., Mortyn, P. G., & Vance, D. ( 2015 ). Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation. Nature, 518 ( 7538 ), 219 – 222. https://doi.org/10.1038/nature14155
dc.identifier.citedreferenceMartínez‐Garcia, A., Rosell‐Melé, A., Jaccard, S. L., Geibert, W., Sigman, D. M., & Haug, G. H. ( 2011 ). Southern Ocean dust‐climate coupling over the past four million years. Nature, 476 ( 7360 ), 312 – 315. https://doi.org/10.1038/nature10310
dc.identifier.citedreferenceMartínez‐Garcia, A., Rosell‐Melé, A., McClymont, E. L., Gersonde, R., & Haug, G. H. ( 2010 ). Subpolar link to the emergence of the modern Equatorial Pacific cold tongue. Science, 328 ( 5985 ), 1550 – 1553. https://doi.org/10.1126/science.1184480
dc.identifier.citedreferenceMashiotta, T., Lea, D. W., & Spero, H. J. ( 1999 ). Glacial‐interglacial changes in Subantarctic sea surface temperature and δ 18 O‐water using foraminiferal Mg. Earth and Planetary Science Letters, 170 ( 4 ), 417 – 432. https://doi.org/10.1016/S0012‐821X(99)00116‐8
dc.identifier.citedreferenceMcClymont, E. L., Rosell‐Melé, A., Haug, G. H., & Lloyd, J. M. ( 2008 ). Expansion of subarctic water masses in the North Atlantic and Pacific oceans and implications for mid‐Pleistocene ice sheet growth. Paleoceanography, 23, PA4214. https://doi.org/10.1029/2008PA001622
dc.identifier.citedreferenceMedina‐Elizalde, M., & Lea, D. W. ( 2005 ). The mid‐Pleistocene transition in the tropical Pacific. Science, 310 ( 5750 ), 1009 – 1012. https://doi.org/10.1126/science.1115933
dc.identifier.citedreferenceMedina‐Elizalde, M., Lea, D. W., & Fantle, M. S. ( 2008 ). Implications of seawater Mg/Ca variability for Plio‐Pleistocene tropical climate reconstruction. Earth and Planetary Science Letters, 269 ( 3–4 ), 585 – 595. https://doi.org/10.1016/j.epsl.2008.03.014
dc.identifier.citedreferenceMillero, F. J. ( 1995 ). Thermodynamics of the carbon dioxide system in the oceans. Geochimica et Cosmochimica Acta, 59 ( 4 ), 661 – 677. https://doi.org/10.1016/0016‐7037(94)00354‐o
dc.identifier.citedreferenceMyhre, G., Highwood, E. J., Shine, K. P., & Stordal, F. ( 1998 ). New estimates of radiative forcing due to well mixed greenhouse gases. Geophysical Research Letters, 25 ( 14 ), 2715 – 2718. https://doi.org/10.1029/98GL01908
dc.identifier.citedreferenceNi, Y., Foster, G. L., Bailey, T., Elliott, T., Schmidt, D. N., Pearson, P. N., Haley, B. A., & Coath, C. ( 2007 ). A core top assessment of proxies for the ocean carbonate system in surface‐dwelling foraminifers. Paleoceanography, 22, PA3212. https://doi.org/10.1029/2006PA001337
dc.identifier.citedreferenceO’Brien, C. L., Foster, G. L., Martínez‐Botí, M. A., Abell, R., Rae, J. W. B., & Pancost, R. D. ( 2014 ). High sea surface temperatures in tropical warm pools during the Pliocene. Nature Geoscience, 7 ( 8 ), 606 – 611. https://doi.org/10.1038/ngeo2194
dc.identifier.citedreferencePaillard, D., Labeyrie, L., & Yiou, P. ( 1996 ). Macintosh program performs time‐series analysis. Eos, Transactions American Geophysical Union, 77 ( 39 ), 379 – 379. https://doi.org/10.1029/96EO00259
dc.identifier.citedreferencePearson, P. N., & Palmer, M. ( 2000 ). Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 406 ( 6797 ), 695 – 699. https://doi.org/10.1038/35021000
dc.identifier.citedreferencePena, L. D., & Goldstein, S. L. ( 2014 ). Thermohaline circulation crisis and impacts during the mid‐Pleistocene transition. Science, 345, 318 – 322. https://doi.org/10.1126/science.1249770
dc.identifier.citedreferencePerez, F. F., & Fraga, F. ( 1987 ). The pH measurements in seawater on the NBS scale. Marine Chemistry, 21 ( 4 ), 315 – 327. https://doi.org/10.1016/0304‐4203(87)90054‐5
dc.identifier.citedreferencePetit, J.‐R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.‐M., Basile, I., Bender, M. L., Chappellaz, J., Davis, M., & Delaygue, G. ( 1999 ). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399 ( 6735 ), 429 – 436. https://doi.org/10.1038/20859
dc.identifier.citedreferencePierrot, D. E. L., Wallace, D. W. R., & Lewis, E. ( 2006 ). MS Excel program developed for CO 2 system calculations. Berkeley, CA: Carbon Dioxide Information Analysis Center.
dc.identifier.citedreferenceRavelo, A. C., & Fairbanks, R. G. ( 1992 ). Oxygen isotopic composition of multiple species of planktonic foraminifera: Recorders of the modern photic zone temperature gradient. Paleoceanography, 7 ( 6 ), 815 – 831. https://doi.org/10.1029/92PA02092
dc.identifier.citedreferenceRaymo, M. E. ( 1994 ). The initiation of northern hemisphere glaciation. Annual Review of Earth and Planetary Sciences, 22 ( 1 ), 353 – 383. https://doi.org/10.1146/annurev.earth.22.1.353
dc.identifier.citedreferenceRaymo, M. E., Lisiecki, L. E., & Nisancioglu, K. ( 2006 ). Plio‐Pleistocene ice volume, Antarctic climate, and the global δ 18 O record. Science, 313 ( 5786 ), 492 – 495. https://doi.org/10.1126/science.1123296
dc.identifier.citedreferenceRaymo, M. E., & Nisancioglu, K. H. ( 2003 ). The 41 kyr world: Milankovitch’s other unsolved mystery. Paleoceanography, 18 ( 1 ), 1011. https://doi.org/10.1029/2002PA000791
dc.identifier.citedreferenceRegenberg, M., Nürnberg, D., Steph, S., Groeneveld, J., Garbe‐Schönberg, D., Tiedemann, R., & Dullo, W.‐C. ( 2006 ). Assessing the effect of dissolution on planktonic foraminiferal Mg/Ca ratios: Evidence from Caribbean core tops. Geochemistry, Geophysics, Geosystems, 7, Q07P15. https://doi.org/10.1029/2005GC001019
dc.identifier.citedreferenceRetallack, G. J. ( 2009 ). Greenhouse crises of the past 300 million years. Geological Society of America Bulletin, 121 ( 9–10 ), 1441 – 1455. https://doi.org/10.1130/B26341.1
dc.identifier.citedreferenceRoy, M., Clark, P. U., Raisbeck, G. M., & Yiou, F. ( 2004 ). Geochemical constraints on the regolith hypothesis for the middle Pleistocene transition. Earth and Planetary Science Letters, 227 ( 3‐4 ), 281 – 296. https://doi.org/10.1016/j.epsl.2004.09.001
dc.identifier.citedreferenceRuddiman, W. F., Raymo, M. E., Martinson, D. G., Clement, B. M., & Backman, J. ( 1989 ). Pleistocene evolution: Northern hemisphere ice sheets and North Atlantic Ocean. Paleoceanography, 4 ( 4 ), 353 – 412. https://doi.org/10.1029/PA004i004p00353
dc.identifier.citedreferenceRusson, T., Elliot, M., Sadekov, A. Y., Cabioch, G., Corrège, T., & De Deckker, P. ( 2010 ). Inter‐hemispheric asymmetry in the early Pleistocene Pacific warm pool. Geophysical Research Letters, 37, L11601. https://doi.org/10.1029/2010GL043191
dc.identifier.citedreferenceSanyal, A., Bijma, J., Spero, H. J., & Lea, D. W. ( 2001 ). Empirical relationship between pH and the boron isotopic composition of Globigerinoides sacculifer: Implications for the boron isotope paleo‐pH proxy. Paleoceanography, 16 ( 5 ), 515 – 519. https://doi.org/10.1029/2000pa000547
dc.identifier.citedreferenceSchiebel, R., & Hemleben, C. ( 2005 ). Modern planktic foraminifera. Paläontologische Zeitschrift, 79 ( 1 ), 135 – 148. https://doi.org/10.1007/BF03021758
dc.identifier.citedreferenceSchlitzer, R. ( 2000 ). Electronic atlas of WOCE hydrographic and tracer data now available. Eos, Transactions American Geophysical Union, 81 ( 5 ), 45 – 45. https://doi.org/10.1029/00EO00028
dc.identifier.citedreferenceSchlitzer, R. ( 2017 ). Ocean Data View, http://www.odv.awi.de, 4 ed.
dc.identifier.citedreferenceSchmidt, G. A., Severinghaus, J., Abe‐Ouchi, A., Alley, R. B., Broecker, W., Brook, E., Etheridge, D., Kawamura, K., Keeling, R. F., Leinen, M., Marvel, K., & Stocker, T. F. ( 2017 ). Overestimate of committed warming. Nature, 547 ( 7662 ), E16 – E17. https://doi.org/10.1038/nature22803
dc.identifier.citedreferenceSeki, O., Foster, G. L., Schmidt, D. N., Mackensen, A., Kawamura, K., & Pancost, R. D. ( 2010 ). Alkenone and boron‐based Pliocene pCO 2 records. Earth and Planetary Science Letters, 292 ( 1–2 ), 201 – 211. https://doi.org/10.1016/j.epsl.2010.01.037
dc.identifier.citedreferenceShackleton, N. J., Berger, A. L., & Peltier, W. ( 1990 ). An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677. Transactions of the Royal Society of Edinburgh Earth Sciences, 81, 251 – 261. https://doi.org/10.1017/s0263593300020782
dc.identifier.citedreferenceShakun, J. D., Clark, P. U., He, F., Marcott, S. A., Mix, A. C., Liu, Z., Otto‐Bliesner, B. L., Schmittner, A., & Bard, E. ( 2012 ). Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature, 484 ( 7392 ), 49 – 54. https://doi.org/10.1038/nature10915
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.