Reconstructing the basal angiosperm phylogeny: evaluating information content of mitochondrial genes
dc.contributor.author | Qiu, Yin-Long | |
dc.contributor.author | Li, Libo | |
dc.contributor.author | Hendry, Tory A. | |
dc.contributor.author | Li, Ruiqi | |
dc.contributor.author | Taylor, David W. | |
dc.contributor.author | Issa, Michael J. | |
dc.contributor.author | Ronen, Alexander J. | |
dc.contributor.author | Vekaria, Mona L. | |
dc.contributor.author | White, Adam M. | |
dc.date.accessioned | 2019-01-15T20:30:48Z | |
dc.date.available | 2019-01-15T20:30:48Z | |
dc.date.issued | 2006-11 | |
dc.identifier.citation | Qiu, Yin-Long; Li, Libo; Hendry, Tory A.; Li, Ruiqi; Taylor, David W.; Issa, Michael J.; Ronen, Alexander J.; Vekaria, Mona L.; White, Adam M. (2006). "Reconstructing the basal angiosperm phylogeny: evaluating information content of mitochondrial genes." TAXON 55(4): 837-856. | |
dc.identifier.issn | 0040-0262 | |
dc.identifier.issn | 1996-8175 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/147147 | |
dc.description.abstract | Three mitochondrial (atp1, matR, nad5), four chloroplast (atpB, matK, rbcL, rpoC2), and one nuclear (18S) genes from 162 seed plants, representing all major lineages of gymnosperms and angiosperms, were analyzed together in a supermatrix or in various partitions using likelihood and parsimony methods. The results show that Amborella + Nymphaeales together constitute the first diverging lineage of angiosperms, and that the topology of Amborella alone being sister to all other angiosperms likely represents a local long branch attraction artifact. The monophyly of magnoliids, as well as sister relationships between Magnoliales and Laurales, and between Canellales and Piperales, are all strongly supported. The sister relationship to eudicots of Ceratophyllum is not strongly supported by this study; instead a placement of the genus with Chloranthaceae receives moderate support in the mitochondrial gene analyses. Relationships among magnoliids, monocots, and eudicots remain unresolved. Direct comparisons of analytic results from several data partitions with or without RNA editing sites show that in multigene analyses, RNA editing has no effect on well supported relationships, but minor effect on weakly supported ones. Finally, comparisons of results from separate analyses of mitochondrial and chloroplast genes demonstrate that mitochondrial genes, with overall slower rates of substitution than chloroplast genes, are informative phylogenetic markers, and are particularly suitable for resolving deep relationships. | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.publisher | Columbia University Press | |
dc.subject.other | Rna editing | |
dc.subject.other | Amborella | |
dc.subject.other | Magnoliids | |
dc.subject.other | Mitochondrial genes | |
dc.subject.other | Nymphaeales | |
dc.subject.other | Basal angiosperms | |
dc.title | Reconstructing the basal angiosperm phylogeny: evaluating information content of mitochondrial genes | |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Biology | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/147147/1/tax25065680.pdf | |
dc.identifier.doi | 10.2307/25065680 | |
dc.identifier.source | TAXON | |
dc.identifier.citedreference | Qiu, Y.-L. & Palmer, J. D. 2004. Many independent origins of trans -splicing of a plant mitochondrial group II intron. J. Molec. Evol. 59: 80 – 89. | |
dc.identifier.citedreference | Savolainen, V., Chase, M. W., Hoot, S. B., Morton, C. M., Soltis, D. E., Bayer, C., Fay, M. F., de Bruijn, A. Y., Sullivan, S. & Qiu, Y.-L. 2000. Phylogenetics of flowering plants based upon a combined analysis of plastid atpB and rbcL gene sequences. Syst. Biol. 49: 306 – 362. | |
dc.identifier.citedreference | Soltis, D. E., Soltis, P. S., Chase, M. W., Mort, M. E., Albach, D. C., Zanis, M., Savolainen, V., Hahn, W. H., Hoot, S. B., Fay, M. F., Axtell, M., Swensen, S. M., Prince, L. M., Kress, W. J., Nixon, K. C. & Farris, J. S. 2000. Angiosperm phylogeny inferred from 18S rDNA, rbcL and atpB sequences. Bot. J. Linn. Soc. 133: 381 – 461. | |
dc.identifier.citedreference | Soltis, D. E., Soltis, P. S., Nickrent, D. L., Johnson, L. A., Hahn, W. J., Hoot, S. B., Sweere, J. A., Kuzoff, R. K., Kron, K. A., Chase, M. W., Swensen, S. M., Zimmer, E. A., Chaw, S.-M., Gillespie, L. J., Kress, W. J. & Sytsma, K. J. 1997. Angiosperm phylogeny inferred from 18S ribosomal DNA sequences. Ann. Missouri Bot. Gard. 84: 1 – 49. | |
dc.identifier.citedreference | Soltis, P. S., Soltis, D. E. & Chase, M. W. 1999. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402: 402 – 404. | |
dc.identifier.citedreference | Stebbins, G. L. 1965. The probable growth habit of the earliest flowering plants. Ann. Missouri Bot. Gard. 52: 457 – 468. | |
dc.identifier.citedreference | Stebbins, G. L. 1974. Flowering Plants: Evolution above the Species Level. Belknap Press of Harvard University Press, Cambridge, Massachusetts. | |
dc.identifier.citedreference | Stefanovic, S., Rice, D. W. & Palmer, J. D. 2004. Long branch attraction, taxon sampling, and the earliest angiosperms: Amborella or monocots? BMC Evol. Biol. 4: Art. No. 35. | |
dc.identifier.citedreference | Steinhauser, S., Beckert, S., Capesius, I., Malek, O. & Knoop, V. 1999. Plant mitochondrial RNA editing. J. Molec. Evol. 48: 303 – 312. | |
dc.identifier.citedreference | Sun, G., Ji, Q., Dilcher, D. L., Zheng, S., Nixon, K. C. & Wang, X. 2002. Archaefructaceae, a new basal angiosperm family. Science 296: 899 – 904. | |
dc.identifier.citedreference | Suzuki, K., Tuzi, S., Hasebe, M., Ueda, K., Nishiuchi, T., Nishiyama, T. & Yamaguchi, K. 2005. The plastid genome and RNAediting with a high frequency of Selaginella unci-nata, a microphyllophyte. J. Plant Res. 118: S59 (abstract). | |
dc.identifier.citedreference | Swofford, D. L. 1998. PAUP*4.0b10: Phylogenetic Analysis Using Parsimony. Sinauer, Sunderland, Massachusetts. | |
dc.identifier.citedreference | Takhtajan, A. 1969. Flowering Plants: Origin and Dispersal. Oliver and Boyd, Edinburgh. | |
dc.identifier.citedreference | The Angiosperm Phylogeny Group. 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc. 141: 399 – 436. | |
dc.identifier.citedreference | Thien, L. B., Azuma, H. & Kawano, S. 2000. New perspectives on the pollination biology of basal angiosperms. Int. J. Plant Sci. 161: S225 – S235. | |
dc.identifier.citedreference | Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876 – 4882. | |
dc.identifier.citedreference | Upchurch, G. R. 1984. Cuticle evolution in early Cretaceous angiosperms from the Potomac Group of Virginia and Maryland. Ann. Missouri Bot. Gard. 71: 522 – 550. | |
dc.identifier.citedreference | Vangerow, S., Teekorn, T. & Knoop, V. 1999. Phylogenetic information in the mitochondrial nad5 gene of pterido-phytes: RNA editing and intron sequences. Plant Biol. 1: 235 – 243. | |
dc.identifier.citedreference | von Balthazar, M., Pedersen, K. & Friis, E. M. 2005. Teixeiria lusitanica, a new fossil flower from the Early Cretaceous of Portugal with affinities to Ranunculales. Pl. Syst. Evol. 255: 55 – 75. | |
dc.identifier.citedreference | Walker, J. W. & Doyle, J. A. 1975. The bases of angiosperm phylogeny: palynology. Ann. Missouri Bot. Gard. 62: 664 – 723. | |
dc.identifier.citedreference | Walker, J. W. & Walker, A. G. 1984. Ultrastructure of Lower Cretaceous angiosperm pollen and the origin and early evolution of flowering plants. Ann. Missouri Bot. Gard. 71: 464 – 521. | |
dc.identifier.citedreference | Wang, X.-Q., Tank, D. C. & Sang, T. 2000. Phylogeny and divergence times in Pinaceae: evidence from three genomes. Molec. Biol. Evol. 17: 773 – 781. | |
dc.identifier.citedreference | Wikström, N. & Pryer, K. M. 2005. Incongruence between primary sequence data and the distribution of a mitochon-drial atp1 group II intron among ferns and horsetails. Molec. Phylog. Evol. 36: 484 – 493. | |
dc.identifier.citedreference | Won, H. & Renner, S. S. 2003. Horizontal gene transfer from flowering plants to Gnetum. Proc. Natl. Acad. Sci. U.S.A. 100: 10824 – 10829. | |
dc.identifier.citedreference | Wodehouse, R. P. 1935. Pollen Grains: their Structure, Identification and Significance in Science and Medicine. McGraw-Hill Book Co., Inc. New York. | |
dc.identifier.citedreference | Wodehouse, R. P. 1936. Evolution of pollen grains. Bot. Rev. 2: 67 – 84. | |
dc.identifier.citedreference | Xia, N. & Brach, A. R. 1994. Saururaceae. Pp. 108 – 110 in: Wu, Z.-Y. & Raven, P. H. (eds.), Flora of China. Science Press, Beijing and Missouri Botanical Garden, St. Louis, Missouri. | |
dc.identifier.citedreference | Xia, N. & Jeremie, J. 1994. Chloranthaceae. Pp. 132 – 138 in: Wu, Z.-Y. & Raven, P. H. (eds.), Flora of China. Science Press, Beijing and Missouri Botanical Garden, St. Louis, Missouri. | |
dc.identifier.citedreference | Zanis, M. J., Soltis, D. E., Soltis, P. S., Mathews, S. & Donoghue, M. J. 2002. The root of the angiosperms revisited. Proc. Natl. Acad. Sci. U.S.A. 99: 6848 – 6853. | |
dc.identifier.citedreference | Zanis, M. J., Soltis, P. S., Qiu, Y.-L., Zimmer, E. A. & Soltis, D. E. 2003. Phylogenetic analyses and perianth evolution in basal angiosperms. Ann. Missouri Bot. Gard. 90: 129 – 150. | |
dc.identifier.citedreference | Chase, M. W., Soltis, D. E., Olmstead, R. G., Morgan, D., Les, D. H., Mishler, B. D., Duvall, M. R., Price, R. A., Hills, H. G., Qiu, Y.-L., Kron, K. A., Rettig, J. H., Conti, E., Palmer, J. D., Manhart, J. R., Sytsma, K. J., Michaels, H. J., Kress, W. J., Karol, K. G., Clark, W. D., Hedren, M., Gaut, B. S., Jansen, R. K., Kim, K.-J., Wimpee, C. F., Smith, J. F., Furnier, G R., Strauss, S. H., Xiang, Q.-Y., Plunkett, G. M., Soltis, P. S., Swensen, S, Williams, S. E., Gadek, P. A., Quinn, C. J., Eguiarte, L. E., Golenberg, E., Learn, G. H., Jr., Graham, S. W., Barrett, S. C. H., Dayanandan, S. & Albert, V. A. 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann. Missouri Bot. Gard. 80: 528 – 580. | |
dc.identifier.citedreference | Chaw, S.-M., Parkinson, C. L., Cheng, Y., Vincent, T. M. & Palmer, J. D. 2000. Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gym-nosperms and origin of Gnetales from conifers. Proc. Natl. Acad. Sci. U.S.A. 97: 4086 – 4091. | |
dc.identifier.citedreference | Cho, Y., Mower, J. P., Qiu, Y.-L. & Palmer, J. D. 2004. Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants. Proc. Natl. Acad. Sci. U.S.A. 101: 17741 – 17746. | |
dc.identifier.citedreference | Adams, K. L., Qiu, Y.-L., Stoutemyer, M. & Palmer, J. D. 2002. Punctuated evolution of mitochondrial gene content: High and variable rates of mitochondrial gene loss and transfer during angiosperm evolution. Proc. Natl. Acad. Sci. U.S.A. 99: 9905 – 9912. | |
dc.identifier.citedreference | Anderberg, A. A., Rydin, C. & Källersjö, M 2002. Phylo-genetic relationships in the order Ericales s.l.: Analyses of molecular data from five genes from the plastid and mito-chondrial genomes. Amer. J. Bot. 89: 677 – 687. | |
dc.identifier.citedreference | Aoki, S., Uehara, K., Imafuku, M., Hasebe, M. & Ito, M. 2004. Phylogeny and divergence of basal angiosperms inferred from APETALA3 - and PISTILLATA-like MADS-box genes. J. Plant Res. 117: 229 – 244. | |
dc.identifier.citedreference | Bailey, I. W. & Nast, C. G 1943. The comparative morphology of the Winteraceae I. Pollen and stamens. J. Arnold Arbor. 24: 340 – 346. | |
dc.identifier.citedreference | Barkman, T. J., Chenery, G, McNeal, J. R., Lyons-Weiler, J., Ellisens, W. J., Moore, G, Wolfe, A. D. & dePamphilis, C. W. 2000. Independent and combined analyses of sequences from all three genomic compartments converge on the root of flowering plant phylogeny. Proc. Natl. Acad. Sci. U.S.A. 97: 13166 – 13171. | |
dc.identifier.citedreference | Barkman, T. J., Lim, S. H., Salleh, K. M. & Nais, J. 2004. Mitochondrial DNA sequences reveal the photosynthetic relatives of Rafflesia, the world’s largest flower. Proc. Natl. Acad. Sci. U.S.A. 101: 787 – 792. | |
dc.identifier.citedreference | Beckert, S., Muhle, H., Pruchner, D. & Knoop, V. 2001. The mitochondrial nad2 gene as a novel marker locus for phy-logenetic analysis of early land plants: a comparative analysis in mosses. Mol. Phylog. Evol. 18: 117 – 126. | |
dc.identifier.citedreference | Beckert, S., Steinhauser, S., Muhle, H. & Knoop, V. 1999. A molecular phylogeny of bryophytes based on nucleotide sequences of the mitochondrial nad5 gene. Pl. Syst. Evol. 218: 179 – 192. | |
dc.identifier.citedreference | Bergthorsson, U., Adams, K. L., Thomason, B. & Palmer, J. D. 2003. Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424: 197 – 201. | |
dc.identifier.citedreference | Borsch, T., Hilu, K. W., Quandt, D., Wilde, V., Neinhuis, C. & Barthlott, W. 2003. Noncoding plastid trnT-trnF sequences reveal a well resolved phylogeny of basal angiosperms. J. Evol. Biol. 16: 558 – 576. | |
dc.identifier.citedreference | Borsch, T., Löhne, C., Müller, K., Hilu, K. W., Wanke, S., Worberg, A., Barthlott, W., Neinhuis, C. & Quandt, D. 2005. Towards understanding basal angiosperm diversification: recent insights using rapidly evolving genome regions. Nova Acta Leopoldina 92: 85 – 110. | |
dc.identifier.citedreference | Bowe, L. M & dePamphilis, C. W. 1996. Effects of RNA editing and gene processing on phylogenetic reconstruction. Mol. Biol. Evol. 13: 1159 – 1166. | |
dc.identifier.citedreference | Bowe, L. M., Coat, G. & dePamphilis, C. W. 2000. Phylogeny of seed plants based on all three plant genomic compartments: extant gymnosperms are monophyletic and Gnetales are derived conifers. Proc. Natl. Acad. Sci. U.S.A. 97: 4092 – 1097. | |
dc.identifier.citedreference | Burger, W. C. 1977. The Piperales and the monocots. Alternative hypotheses for the origin of monocotyledonous flowers. Bot. Rev. 43: 345 – 393. | |
dc.identifier.citedreference | Cox, C. J., Goffinet, B., Shaw, A. J. & Boles, S. B. 2004. Phylogenetic relationships among the mosses based on heterogeneous Bayesian analysis of multiple genes from multiple genomic compartments. Syst. Bot. 29: 234 – 250. | |
dc.identifier.citedreference | Crane, P. R. 1989. Paleobotanical evidence on the early radiation of nonmagnoliid dicotyledons. Pl. Syst. Evol. 162: 165 – 191. | |
dc.identifier.citedreference | Davies, T. J., Barraclough, T. G., Chase, M. W., Soltis, P. S., Soltis, D. E. & Savolainen, V. 2004. Darwin’s abominable mystery: Insights from a supertree of the angiosperms. Proc. Natl. Acad. Sci. U.S.A. 101: 19041909. | |
dc.identifier.citedreference | Davis, C. C. & Wurdack, K. J. 2004. Host-to-parasite gene transfer in flowering plants: Phylogenetic evidence from Malpighiales. Science 305: 676 – 678. | |
dc.identifier.citedreference | Davis, J. I., Simmons, M. P., Stevenson, D. W. & Wendel, J. F. 1998. Data decisiveness, data quality, and incongruence in phylogenetic analysis: An example from the monocotyledons using mitochondrial atpA sequences. Syst. Biol. 47: 282 – 310. | |
dc.identifier.citedreference | Davis, J. I., Stevenson, D. W., Petersen, G., Seberg, O., Campbell, L. M., Freudenstein, J. V., Goldman, D. H., Hardy, C. R., Michelangeli, F. A., Simmons, M. P., Specht, C. D., Vergara-Silva, F. & Gandolfo, M. A. 2004. Phylogeny of the monocots, as inferred from rbcL and atpA sequence variation, and a comparison of methods for calculating jackknife and bootstrap values. Syst. Bot. 29: 467 – 510. | |
dc.identifier.citedreference | Dombrovska, O. & Qiu, Y.-L. 2004. Distribution of introns in the mitochondrial gene nad1 in land plants: phylogenetic and molecular evolutionary implications. Mol. Phylog. Evol. 32: 246 – 263. | |
dc.identifier.citedreference | Donoghue, M. J. & Doyle, J. A. 1989. Phylogenetic analysis of angiosperms and the relationships of Hamamelidae. Pp. 17 – 15 in: Crane, P. R. & Blackmore, S. (eds.), Evolution, Systematics, and Fossil History of the Hamamelidae, vol. 1. Clarendon Press, Oxford. | |
dc.identifier.citedreference | Doyle, J. A. 1969. Cretaceous angiosperm pollen of the Atlantic Coastal Plain and its evolutionary significance. J. Arnold Arbor 50: 1 – 35. | |
dc.identifier.citedreference | Doyle, J. A. & Endress, P. K. 2000. Morphological phyloge-netic analysis of basal angiosperms: comparison and combination with molecular data. Int. J. Plant Sci. 161: S121 – S153. | |
dc.identifier.citedreference | Doyle, J. A. & Hickey, L. J. 1976. Pollen and leaves from the mid-Cretaceous Potomac group and their bearing on early angiosperm evolution. Pp. 139 – 206 in: Beck, C. B. (ed.), Origin and Early Evolution of Angiosperms. Columbia University Press, New York. | |
dc.identifier.citedreference | Doyle, J. A. & Hotton, C. L. 1991. Diversification of early angiosperm pollen in a cladistic context. Pp. 169 – 195 in: Blackmore, S. & Barnes, S. H. (eds.), Pollen and Spores. Clarendon Press, Oxford. | |
dc.identifier.citedreference | Duff, R. J. & Nickrent, D. L. 1999. Phylogenetic relationships of land plants using mitochondrial small-subunit rDNA sequences. Amer. J. Bot. 86: 372 – 386. | |
dc.identifier.citedreference | Eklund, H., Doyle, J. A. & Herendeen, P. S. 2004. Morphological phylogenetic analysis of living and fossil Chloranthaceae. Int. J. Plant Sci. 165: 107 – 151. | |
dc.identifier.citedreference | Endress, P. K. 1987. The Chloranthaceae: reproductive structures and phylogenetic position. Bot. Jahrb. Syst. 109: 153 – 226. | |
dc.identifier.citedreference | Endress, P. K. & Hufford, L. D. 1989. The diversity of stamen structures and dehiscence patterns among Magnoliidae. Bot. J. Linn. Soc. 100: 45 – 85. | |
dc.identifier.citedreference | Endress, P. K. & Igersheim, A. 2000. Gynoecium structure and evolution of basal angiosperms. Int. J. Plant Sci. 161: S211 – S213. | |
dc.identifier.citedreference | Feild, T. S., Arens, N. C. & Dawson, T. E. 2003. The ancestral ecology of angiosperms: emerging perspectives from extant basal lineages. Int. J. Plant Sci. 164: S129 – S142. | |
dc.identifier.citedreference | Felsenstein, J. 1978. Cases in which parsimony and compatibility methods will be positively misleading. Syst. Zool. 27: 401 – 410. | |
dc.identifier.citedreference | Floyd, S. K. & Friedman, W. E. 2000. Evolution of endosperm developmental patterns among basal flowering plants. Int. J. Plant Sci. 161: S57 – S81. | |
dc.identifier.citedreference | Friis, E. M., Crane, P. R. & Pedersen, K. R. 1986. Floral evidence for Cretaceous chloranthoid angiosperms. Nature 320: 163 – 164. | |
dc.identifier.citedreference | Friis, E. M., Pedersen, K.R. & Crane, P. R. 1994. Angiosperm floral structures from the Early Cretaceous of Portugal. Pl. Syst. Evol. [Suppl.] 8: 31 – 49. | |
dc.identifier.citedreference | Friis, E. M., Pedersen, K. R. & Crane, P. R. 1999. Early angiosperm diversification: the diversity of pollen associated with angiosperm reproductive structures in Early Cretaceous floras from Portugal. Ann. Missouri Bot. Gard. 86: 259 – 296. | |
dc.identifier.citedreference | Friis, E. M., Pedersen, K.R. & Crane, P. R. 2000. Reproductive structure and organization of basal angio-sperms from the Early Cretaceous (Barremian or Aptian) of western Portugal. Int. J. Plant Sci. 161: S169 – S182. | |
dc.identifier.citedreference | Friis, E. M., Pedersen, K. R. & Crane, P. R. 2001. Fossil evidence of water lilies (Nymphaeales) in the Early Cretaceous. Nature 410: 357 – 360. | |
dc.identifier.citedreference | Friis, E. M., Pedersen, K. R. & Crane, P. R. 2004. Araceae from the Early Cretaceous of Portugal: Evidence on the emergence of monocotyledons. Proc. Natl. Acad. Sci. U.S.A. 101: 16565 – 16570. | |
dc.identifier.citedreference | Goremykin, V. V., Hirsch-Ernst, K. I., WSlfl, S. & Hellwig, F. H. 2003. Analysis of the Amborella trichopoda plastid genome sequence suggests that Amborella is not a basal angiosperm. Mol. Biol. Evol. 20: 1499 – 1505. | |
dc.identifier.citedreference | Goremykin, V. V., Holland, B., Hirsch-Ernst, K. I. & Hellwig, F. H. 2005. Analysis of Acorus calamus chloro-plast genome and its phylogenetic implications. Molec. Biol. Evol. 22: 1813 – 1822. | |
dc.identifier.citedreference | Graham, S. W. & Olmstead, R. G 2000. Utility of 17 plastid genes for inferring the phylogeny of the basal angiosperms. Amer. J. Bot. 87: 1712 – 1730. | |
dc.identifier.citedreference | Graham, S. W., Zgurski, J. M., McPherson, M. A., Cherniawsky, D. M., Saarela, J. M., Horne, E. S. C., Smith, S. Y., Wong, W. A., O’Brien, H. E., Biron, V. L., Pires, J. C., Olmstead, R. G., Chase, M. W. & Rai, H. S. 2006. Robust inference of monocot deep phylogeny using an expanded multigene plastid data set. Pp. 3 – 20 in: Columbus, J. T., Friar, E. A., Hamilton, C. W., Porter, J. M., Prince, L. M. & Simpson, M. G. (eds.), Monocots: Comparative Biology and Evolution. 2 vols. Rancho Santa Ana Botanic Garden, Claremont, California. | |
dc.identifier.citedreference | Groth-Malonek, M., Pruchner, D., Grewe, F. & Knoop, V. 2005. Ancestors of trans -splicing mitochondrial introns support serial sister group relationships of hornworts and mosses with vascular plants. Mol. Biol. Evol. 22: 117 – 125. | |
dc.identifier.citedreference | Gugerli, F., Sperisen, C., Büchler, U., Brunner, I., Brodbeck, S., Palmer, J. D. & Qiu, Y.-L. 2001. The evolutionary split of Pinaceae from other conifers: evidence from an intron loss and a multigene phylogeny. Mol. Phylog. Evol. 21: 167 – 175. | |
dc.identifier.citedreference | Guindon, S. & Gascuel, O. 2003. A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst. Biol. 52: 696 – 704. | |
dc.identifier.citedreference | Guo, Y. L. & Ge, S. 2005. Molecular phylogeny of Oryzeae (Poaceae) based on DNA sequences from chloroplast, mitochondrial, and nuclear genomes. Amer. J. Bot. 92: 1548 – 1558. | |
dc.identifier.citedreference | Hamby, R. K. & Zimmer, E. A. 1992. Ribosomal RNA as a phylogenetic tool in plant systematics. Pp. 50 – 91 in: Soltis, P. S., Soltis, D. E. & Doyle, J. J. (eds.), Molecular Systematics of Plants. Chapman and Hall, New York. | |
dc.identifier.citedreference | Herendeen, P. S. & Crane, P. R. 1995. The fossil history of the monocotyledons. Pp. 1 – 21 in: Rudall, P. J., Cribb, P. J., Cutler, D. F. & Humphries, C. J. (eds.), Monocotyledons: Systematics and Evolution. Royal Botanic Gardens, Kew. | |
dc.identifier.citedreference | Hickey, L. J. & Doyle, J. A. 1977. Early Cretaceous fossil evidence for angiosperm evolution. Bot. Rev. 43: 3 – 104. | |
dc.identifier.citedreference | Hiesel, R., Haseler, A. & Brennicke, A. 1994. Plant mito-chondrial nucleic acid sequences as a tool for phylogenet-ic analysis. Proc. Natl. Acad. Sci. U.S.A. 91: 634 – 638. | |
dc.identifier.citedreference | Hilu, K. W., Borsch, T., Miller, K., Soltis, D. E., Soltis, P. S., Savolainen, V., Chase, M. W., Powell, M. P., Alice, L. A., Evans, R., Sauquet, H., Neinhuis, C., Slotta, T. A. B., Rohwer, J. G., Campbell, C. S., Chatrou, L. W. 2003. Angiosperm phylogeny based on matK sequence information. Amer. J. Bot. 90: 1758 – 1776. | |
dc.identifier.citedreference | Hoot, S. B., Magallon, S. & Crane, P. R. 1999. Phylogeny of basal tricolpates based on three molecular data sets: atpB, rbcL, and 18S nuclear ribosomal DNA sequences. Ann. Missouri Bot. Gard. 86: 1 – 32. | |
dc.identifier.citedreference | Hu, H.-H. 1950. A polyphyletic system of classification of angiosperms. Science Record 3: 221 – 230. | |
dc.identifier.citedreference | Ji, Q., Li, H., Bowe, L. M., Liu, Y. & Taylor, D. W. 2004. Early Cretaceous Archaefructus eoflora sp. nov. with bisexual flowers from Beipiao, western Liaoning, China. Acta Geol. Sin. 78: 883 – 896. | |
dc.identifier.citedreference | Källersjö, M., Albert, V. A. & Farris, J. S. 1999. Homoplasy increases phylogenetic structure. Cladistics 15: 91 – 93. | |
dc.identifier.citedreference | Kim, S. T., Yoo, M. J., Albert, V. A., Farris, J. S., Soltis, P. S. & Soltis, D. E. 2004. Phylogeny and diversification of B-function MADS-box genes in angiosperms: Evolutionary and functional implications of a 260-million-year-old duplication. Amer. J. Bot. 91: 2102 – 2118. | |
dc.identifier.citedreference | Knoop, V. 2004. The mitochondrial DNAof land plants: peculiarities in phylogenetic perspective. Curr. Genet. 46: 123 – 139. | |
dc.identifier.citedreference | Kubitzki, K. 1993. Introduction. Pp. 1 – 12 in: Kubitzki, K. (ed.), The Families and Genera of Vascular Plants, Vol. II (Kubitzki, K., Rohwer, J. G. & Bittrich, V., vol. eds.), Flowering Plants, Dicotyledons: Magnoliid, Hamamelid and Caryophyllid Families. Springer-Verlag, Berlin. | |
dc.identifier.citedreference | Kugita, M., Yamamoto, Y., Fujikawa, T., Matsumoto, T. & Yoshinaga, K. 2003. RNA editing in hornwort plastids makes more than half the genes functional. Nucleic Acids Res. 31: 2417 – 2423. | |
dc.identifier.citedreference | Leebens-Mack, J., Raubeson, L. A., Cui, L. Y., Kuehl, J. V., Fourcade, M. H., Chumley, T. W., Boore, J. L., Jansen, R. K. & dePamphilis, C. W. 2005. Identifying the basal angiosperm node in chloroplast genome phylogenies: Sampling one’s way out of the felsenstein zone. Molec. Biol. Evol. 22: 1948 – 1963. | |
dc.identifier.citedreference | Les, D. H. 1988. The origin and affinities of the Ceratophyllaceae. Taxon 37: 326 – 435. | |
dc.identifier.citedreference | Löhne, C. & Borsch, T. 2005. Molecular evolution and phylogenetic utility of the petD group II intron: a case study in basal angiosperms. Molec. Biol. Evol. | |
dc.identifier.citedreference | Malek, O., Lättig, K., Hiesel, R., Brennicke, A. & Knoop, V. 1996. RNA editing in bryophytes and a molecular phylogeny of land plants. EMBO J. 15: 1403 – 1411. | |
dc.identifier.citedreference | Malek, O. & Knoop, V. 1998. Trans -splicing group II introns in plant mitochondria: the complete set of cis -arranged homologs in ferns, fern allies, and a hornwort. RNA 4: 1599 – 1609. | |
dc.identifier.citedreference | Martin, P. G. & Dowd, J. M. 1991. Studies of angiosperm phylogeny using protein sequences. Ann. Missouri Bot. Gard. 78: 296 – 337. | |
dc.identifier.citedreference | Mathews, S. & Donoghue, M. J. 1999. The root of angiosperm phylogeny inferred from duplicate phy-tochrome genes. Science 286: 947 – 950. | |
dc.identifier.citedreference | Mathews, S. & Donoghue, M. J. 2000. Basal angiosperm phylogeny inferred from duplicated phytochromes A and C. Int. J. Plant Sci. 161: S41 – S55. | |
dc.identifier.citedreference | Mohr, B. A. R. & Friis, E. M. 2000. Early angiosperms from the Lower Cretaceous Crato Formation (Brazil), a preliminary report. Int. J. Plant Sci. 161: S155 – S167. | |
dc.identifier.citedreference | Nei, M., Kumar, S. & Takahashi, K. 1998. The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small. Proc. Natl. Acad. Sci. U.S.A. 95: 12390 – 12397. | |
dc.identifier.citedreference | Nickrent, D. L., Blarer, A., Qiu, Y.-L., Soltis, D. E., Soltis, P. S. & Zanis, M. 2002. Molecular data place Hydnoraceae with Aristolochiaceae. Amer. J. Bot. 89: 1809 – 1817. | |
dc.identifier.citedreference | Palmer, J. D. 1992. Mitochondrial DNA in plant systematics: applications and limitations. Pp. 36 – 49 in: Soltis, P. S., Soltis, D. E. & Doyle, J. J. (eds.), Molecular Systematics of Plants. Chapman and Hall, New York. | |
dc.identifier.citedreference | Parkinson, C. L., Adams, K. L. & Palmer, J. D. 1999. Multigene analyses identify the three earliest lineages of extant flowering plants. Curr. Biol. 9: 1485 – 1488. | |
dc.identifier.citedreference | Parkinson, C. L., Mower, J. P., Qiu, Y.-L., Shirk, A. J., Song, K., Young, N. D., dePamphilis, C. W. & Palmer, J. D. 2005. Multiple major increases and decreases in mitochondrial substitution rates in the plant family Geraniaceae. BMC Evol. Biol. 5: 73. | |
dc.identifier.citedreference | Pedersen, K. R., Crane, P. R. & Friis, E. M. 1991. Fruits from the mid-Cretaceous of North America with pollen grains of the Clavatipollenites types. Grana 30: 577 – 590. | |
dc.identifier.citedreference | Posada, D. & Crandall, K. A. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817 – 818. | |
dc.identifier.citedreference | Qiu, Y.-L., Chase, M. W., Les, D. H. & Parks, C. R. 1993. Molecular phylogenetics of the Magnoliidae: cladistic analyses of nucleotide sequences of the plastid gene rbcL. Ann. Missouri Bot. Gard. 80: 587 – 606. | |
dc.identifier.citedreference | Qiu, Y.-L., Cho, Y., Cox, J. C. & Palmer, J. D. 1998. The gain of three mitochondrial introns identifies liverworts as the earliest land plants. Nature 394: 671 – 674. | |
dc.identifier.citedreference | Qiu, Y.-L., Lee, J., Bernasconi-Quadroni, F., Soltis, D. E., Soltis, P. S., Zanis, M., Zimmer, E. A., Chen, Z., Savolainen, V. & Chase, M. W. 1999. The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402: 404 – 407. | |
dc.identifier.citedreference | Qiu, Y.-L., Lee, J., Bernasconi-Quadroni, F., Soltis, D. E., Soltis, P. S., Zanis, M., Zimmer, E. A., Chen, Z., Savolainen, V. & Chase, M. W. 2000. Phylogeny of basal angiosperms: analyses of five genes from three genomes. Int. J. Plant Sci. 161: S3 – S27. | |
dc.identifier.citedreference | Qiu, Y.-L., Lee, J., Whitlock, B. A., Bernasconi-Quadroni, F. & Dombrovska, O. 2001. Was the ANITA rooting of the angiosperm phylogeny affected by long branch attraction? Molec. Biol. Evol. 18: 1745 – 1753. | |
dc.identifier.citedreference | Qiu, Y.-L. & Palmer, J. D. 1999. Phylogeny of basal land plants: insights from genes and genomes. Trends Plant Sci. 4: 26 – 30. | |
dc.identifier.citedreference | Cronquist, A. 1981. An Integrated System of Classification of Flowering Plants. Columbia University Press, New York. | |
dc.identifier.citedreference | Qiu, Y.-L., Dombrovska, O., Lee, J., Li, L., Whitlock, B. A., Bernasconi-Quadroni, F., Rest, J. S., Davis, C. C., Borsch, T., Hilu, K. W., Renner, S. S., Soltis, D. E., Soltis, P. S., Zanis, M. J., Cannone, J. J., Gutell, R. R., Powell, M., Savolainen, V., Chatrou, L. W. & Chase, M. W. 2005. Phylogenetic analysis of basal angiosperms based on nine plastid, mitochondrial, and nuclear genes. Int. J. Plant Sci. 166: 815 – 842. | |
dc.identifier.citedreference | Qiu, Y.-L., Li, L., Wang, B., Chen, Z., Dombrovska, O., Lee, J., Kent, L., Li, R., Jobson, R. W., Hendry, T. A., Taylor, D. W., Testa, C. M. & Ambros, M. A. In press. Non-flowering land plant phylogeny inferred from nucleotide sequences of seven chloroplast, mitochondrial and nuclear genes. Int. J. Plant Sci. | |
dc.identifier.citedreference | Renner, S. S. 1999. Circumscription and phylogeny of the Laurales: evidence from molecular and morphological data. Amer. J. Bot. 86: 1301 – 1315. | |
dc.identifier.citedreference | Sampson, F. B. 2000. Pollen diversity in some modern magnoliids. Int. J. Plant Sci. 161: S193 – S210. | |
dc.identifier.citedreference | Sanderson, M. J. & Donoghue, M. J. 1994. Shifts in diversification rate with the origin of angiosperms. Science 264: 1590 – 1593. | |
dc.identifier.citedreference | Sanjur, O. I., Piperno, D. R., Andres, T. C. & Wessel-Beaver, L. 2002. Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbita-ceae) inferred from a mitochondrial gene: Implications for crop plant evolution and areas of origin. Proc. Natl. Acad. Sci. U.S.A. 99: 535 – 540. | |
dc.identifier.citedreference | Sauquet, H., Doyle, J. A., Scharaschkin, T., Borsch, T., Hilu, K. W., Chatrou, L. W. & Le Thomas, A. 2003. Phylogenetic analysis of Magnoliales and Myristicaceae based on multiple data sets: implications for character evolution. Bot. J. Linn. Soc. 142: 125 – 186. | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.