Show simple item record

Alternative lengthening of telomeres, ATRX loss and H3â K27M mutations in histologically defined pilocytic astrocytoma with anaplasia

dc.contributor.authorRodriguez, Fausto J.
dc.contributor.authorBrosnan‐cashman, Jacqueline A.
dc.contributor.authorAllen, Sariah J.
dc.contributor.authorVizcaino, M. Adelita
dc.contributor.authorGiannini, Caterina
dc.contributor.authorCamelo‐piragua, Sandra
dc.contributor.authorWebb, Milad
dc.contributor.authorMatsushita, Marcus
dc.contributor.authorWadhwani, Nitin
dc.contributor.authorTabbarah, Abeer
dc.contributor.authorHamideh, Dima
dc.contributor.authorJiang, Liqun
dc.contributor.authorChen, Liam
dc.contributor.authorArvanitis, Leonidas D.
dc.contributor.authorAlnajar, Hussein H.
dc.contributor.authorBarber, John R.
dc.contributor.authorRodríguez‐velasco, Alicia
dc.contributor.authorOrr, Brent
dc.contributor.authorHeaphy, Christopher M.
dc.date.accessioned2019-01-15T20:31:48Z
dc.date.available2020-03-03T21:29:35Zen
dc.date.issued2019-01
dc.identifier.citationRodriguez, Fausto J.; Brosnan‐cashman, Jacqueline A. ; Allen, Sariah J.; Vizcaino, M. Adelita; Giannini, Caterina; Camelo‐piragua, Sandra ; Webb, Milad; Matsushita, Marcus; Wadhwani, Nitin; Tabbarah, Abeer; Hamideh, Dima; Jiang, Liqun; Chen, Liam; Arvanitis, Leonidas D.; Alnajar, Hussein H.; Barber, John R.; Rodríguez‐velasco, Alicia ; Orr, Brent; Heaphy, Christopher M. (2019). "Alternative lengthening of telomeres, ATRX loss and H3â K27M mutations in histologically defined pilocytic astrocytoma with anaplasia." Brain Pathology (1): 126-140.
dc.identifier.issn1015-6305
dc.identifier.issn1750-3639
dc.identifier.urihttps://hdl.handle.net/2027.42/147190
dc.description.abstractAnaplasia may be identified in a subset of tumors with a presumed pilocytic astrocytoma (PA) component or piloid features, which may be associated with aggressive behavior, but the biologic basis of this change remains unclear. Fiftyâ seven resections from 36 patients (23 M, 13 F, mean age 32 years, range 3â 75) were included. A clinical diagnosis of NF1 was present in 8 (22%). Alternative lengthening of telomeres (ALT) was assessed by telomereâ specific FISH and/or CISH. A combination of immunohistochemistry, DNA sequencing and FISH were used to study BRAF, ATRX, CDKN2A/p16, mutant IDH1 p.R132H and H3â K27M proteins. ALT was present in 25 (69%) cases and ATRX loss in 20 (57%), mostly in the expected association of ALT+/ATRXâ (20/24, 83%) or ALTâ /ATRX+ (11/11, 100%). BRAF duplication was present in 8 (of 26) (31%). H3â K27M was present in 5 of 32 (16%) cases, all with concurrent ATRX loss and ALT. ALT was also present in 9 (of 11) cases in the benign PA precursor, 7 of which also had ATRX loss in both the precursor and the anaplastic tumor. In a single pediatric case, ALT and ATRX loss developed in the anaplastic component only, and in another adult case, ALT was present in the PAâ A component only, but ATRX was not tested. Features associated with worse prognosis included subtotal resection, adult vs. pediatric, presence of a PA precursor preceding a diagnosis of anaplasia, necrosis, presence of ALT and ATRX expression loss. ALT and ATRX loss, as well as alterations involving the MAPK pathway, are frequent in PA with anaplasia at the time of development of anaplasia or in their precursors. Additionally, a small subset of PA with anaplasia have H3â K27M mutations. These findings further support the concept that PA with anaplasia is a neoplasm with heterogeneous genetic features and alterations typical of both PA and diffuse gliomas.
dc.publisherWiley Periodicals, Inc.
dc.publisherIARC Press
dc.subject.otheralternative lengthening of telomeres
dc.subject.otherATRX
dc.subject.otherglioma
dc.subject.otherH3â K27M
dc.subject.otherpilocytic astrocytoma
dc.titleAlternative lengthening of telomeres, ATRX loss and H3â K27M mutations in histologically defined pilocytic astrocytoma with anaplasia
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147190/1/bpa12646_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147190/2/bpa12646.pdf
dc.identifier.doi10.1111/bpa.12646
dc.identifier.sourceBrain Pathology
dc.identifier.citedreferencePages M, Beccaria K, Boddaert N, Saffroy R, Besnard A, Castel D et al ( 2016 ) Coâ occurrence of histone H3 K27M and BRAF V600E mutations in paediatric midline grade I ganglioglioma. Brain Pathol.
dc.identifier.citedreferenceGiannini C, Scheithauer BW, Burger PC, Christensen MR, Wollan PC, Sebo TJ et al ( 1999 ) Cellular proliferation in pilocytic and diffuse astrocytomas. J Neuropathol Exp Neurol 58: 46 â 53.
dc.identifier.citedreferenceGutmann DH, McLellan MD, Hussain I, Wallis JW, Fulton LL, Fulton RS et al ( 2013 ) Somatic neurofibromatosis type 1 (NF1) inactivation characterizes NF1â associated pilocytic astrocytoma. Genome Res 23: 431 â 439.
dc.identifier.citedreferenceHeaphy CM, de Wilde RF, Jiao Y, Klein AP, Edil BH, Shi C et al ( 2011 ) Altered telomeres in tumors with ATRX and DAXX mutations. Science 333: 425.
dc.identifier.citedreferenceHeaphy CM, Subhawong AP, Hong SM, Goggins MG, Montgomery EA, Gabrielson E et al ( 2011 ) Prevalence of the alternative lengthening of telomeres telomere maintenance mechanism in human cancer subtypes. Am J Pathol 179: 1608 â 1615.
dc.identifier.citedreferenceHuttâ Cabezas M, Karajannis MA, Zagzag D, Shah S, Horkayneâ Szakaly I, Rushing EJ et al ( 2013 ) Activation of mTORC1/mTORC2 signaling in pediatric lowâ grade glioma and pilocytic astrocytoma reveals mTOR as a therapeutic target. Neuro Oncol 15: 1604 â 1614.
dc.identifier.citedreferenceJones DT, Hutter B, Jager N, Korshunov A, Kool M, Warnatz HJ et al ( 2013 ) Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet 45: 927 â 932.
dc.identifier.citedreferenceJones DT, Ichimura K, Liu L, Pearson DM, Plant K, Collins VP ( 2006 ) Genomic analysis of pilocytic astrocytomas at 0.97 Mb resolution shows an increasing tendency toward chromosomal copy number change with age. J Neuropathol Exp Neurol 65: 1049 â 1058.
dc.identifier.citedreferenceJones DT, Kocialkowski S, Liu L, Pearson DM, Backlund LM, Ichimura K, Collins VP ( 2008 ) Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68: 8673 â 8677.
dc.identifier.citedreferenceKaul A, Chen YH, Emnett RJ, Dahiya S, Gutmann DH ( 2012 ) Pediatric gliomaâ associated KIAA1549:BRAF expression regulates neuroglial cell growth in a cell typeâ specific and mTORâ dependent manner. Genes Dev 26: 2561 â 2566.
dc.identifier.citedreferenceKhuongâ Quang DA, Buczkowicz P, Rakopoulos P, Liu XY, Fontebasso AM, Bouffet E et al ( 2012 ) K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 124: 439 â 447.
dc.identifier.citedreferenceKim JY, Brosnanâ Cashman JA, An S, Kim SJ, Song KB, Kim MS et al ( 2017 ) Alternative lengthening of telomeres in primary pancreatic neuroendocrine tumors is associated with aggressive clinical behavior and poor survival. Clin Cancer Res 23: 1598 â 1606.
dc.identifier.citedreferenceKorshunov A, Capper D, Reuss D, Schrimpf D, Ryzhova M, Hovestadt V et al ( 2016 ) Histologically distinct neuroepithelial tumors with histone 3 G34 mutation are molecularly similar and comprise a single nosologic entity. Acta Neuropathol 131: 137 â 146.
dc.identifier.citedreferenceLassaletta A, Zapotocky M, Mistry M, Ramaswamy V, Honnorat M, Krishnatry R et al ( 2017 ) Therapeutic and prognostic implications of BRAF V600E in pediatric lowâ grade gliomas. J Clin Oncol 35: 2934 â 2941.
dc.identifier.citedreferenceLopez GY, Oberheim Bush NA, Phillips JJ, Bouffard JP, Moshel YA, Jaeckle K et al ( 2017 ) Diffuse midline gliomas with subclonal H3F3A K27M mutation and mosaic H3.3 K27M mutant protein expression. Acta Neuropathol 134: 961 â 963.
dc.identifier.citedreferenceLouis DN, Giannini C, Capper D, Paulus W, Figarellaâ Branger D, Lopes MB et al ( 2018 ) cIMPACTâ NOW update 2: diagnostic clarifications for diffuse midline glioma, H3 K27Mâ mutant and diffuse astrocytoma/anaplastic astrocytoma, IDHâ mutant. Acta Neuropathol.
dc.identifier.citedreferenceLouis DN, Ohgaki H, Wiestler OD, Cavenee WK, Ellison DW, Figarellaâ Branger D et al ( 2016 ) WHO Classification of Tumours of the Central Nervous System. International Agency for Research on Cancer: Lyon, France.
dc.identifier.citedreferenceMartin D, Abba MC, Molinolo AA, Vitaleâ Cross L, Wang Z, Zaida M et al ( 2014 ) The head and neck cancer cell oncogenome: a platform for the development of precision molecular therapies. Oncotarget 5: 8906 â 8923.
dc.identifier.citedreferenceNguyen DN, Heaphy CM, de Wilde RF, Orr BA, Odia Y, Eberhart CG et al ( 2013 ) Molecular and morphologic correlates of the alternative lengthening of telomeres phenotype in highâ grade astrocytomas. Brain Pathol 23: 237 â 243.
dc.identifier.citedreferenceOrillac C, Thomas C, Dastagirzada Y, Hidalgo ET, Golfinos JG, Zagzag D et al ( 2016 ) Pilocytic astrocytoma and glioneuronal tumor with histone H3 K27M mutation. Acta Neuropathol Commun 4: 84.
dc.identifier.citedreferenceOstrom QT, Gittleman H, Xu J, Kromer C, Wolinsky Y, Kruchko C, Barnholtzâ Sloan JS ( 2016 ) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2009â 2013. Neuro Oncol 18 ( Suppl. 5 ): v1 â v75.
dc.identifier.citedreferencePalsgrove DN, Brosnanâ Cashman JA, Giannini C, Raghunathan A, Jentoft M, Bettegowda C et al ( 2018 ) Subependymal giant cell astrocytoma â like astrocytoma: a neoplasm with a distinct phenotype and frequent neurofibromatosis type 1â association. Mod Pathol.
dc.identifier.citedreferencePfister S, Janzarik WG, Remke M, Ernst A, Werft W, Becker N et al ( 2008 ) BRAF gene duplication constitutes a mechanism of MAPK pathway activation in lowâ grade astrocytomas. J Clin Invest 118: 1739 â 1749.
dc.identifier.citedreferencePratt D, Natarajan SK, Banda A, Giannini C, Vats P, Koschmann C et al ( 2018 ) Circumscribed/nonâ diffuse histology confers a better prognosis in H3K27Mâ mutant gliomas. Acta Neuropathol.
dc.identifier.citedreferenceRaabe EH, Lim KS, Kim JM, Meeker A, Mao XG, Nikkhah G et al ( 2011 ) BRAF activation induces transformation and then senescence in human neural stem cells: a pilocytic astrocytoma model. Clin Cancer Res 17: 3590 â 3599.
dc.identifier.citedreferenceReinhardt A, Stichel D, Schrimpf D, Sahm F, Korshunov A, Reuss DE et al ( 2018 ) Anaplastic astrocytoma with piloid features, a novel molecular class of IDH wildtype glioma with recurrent MAPK pathway, CDKN2A/B and ATRX alterations. Acta Neuropathol.
dc.identifier.citedreferenceRodriguez EF, Scheithauer BW, Giannini C, Rynearson A, Cen L, Hoesley B et al ( 2011 ) PI3K/AKT pathway alterations are associated with clinically aggressive and histologically anaplastic subsets of pilocytic astrocytoma. Acta Neuropathol 121: 407 â 420.
dc.identifier.citedreferenceRodriguez FJ, Scheithauer BW, Burger PC, Jenkins S, Giannini C ( 2010 ) Anaplasia in pilocytic astrocytoma predicts aggressive behavior. Am J Surg Pathol 34: 147 â 160.
dc.identifier.citedreferenceRodriguez FJ, Vizcaino MA, Blakeley J, Heaphy CM ( 2016 ) Frequent alternative lengthening of telomeres and ATRX loss in adult NF1â associated diffuse and highâ grade astrocytomas. Acta Neuropathol 132: 761 â 763.
dc.identifier.citedreferenceRyall S, Guzman M, Elbabaa SK, Luu B, Mack SC, Zapotocky M et al ( 2017 ) H3 K27M mutations are extremely rare in posterior fossa group A ependymoma. Childs Nerv Syst 33: 1047 â 1051.
dc.identifier.citedreferenceSchwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K et al ( 2012 ) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482: 226 â 231.
dc.identifier.citedreferenceSievert AJ, Jackson EM, Gai X, Hakonarson H, Judkins AR, Resnick AC et al ( 2009 ) Duplication of 7q34 in pediatric lowâ grade astrocytomas detected by highâ density singleâ nucleotide polymorphismâ based genotype arrays results in a novel BRAF fusion gene. Brain Pathol 19: 449 â 458.
dc.identifier.citedreferenceSinghi AD, Liu TC, Roncaioli JL, Cao D, Zeh HJ, Zureikat AH et al ( 2017 ) Alternative lengthening of telomeres and loss of DAXX/ATRX expression predicts metastatic disease and poor survival in patients with pancreatic neuroendocrine tumors. Clin Cancer Res 23: 600 â 609.
dc.identifier.citedreferenceSolomon DA, Wood MD, Tihan T, Bollen AW, Gupta N, Phillips JJ, Perry A ( 2016 ) Diffuse midline gliomas with histone H3â K27M mutation: a series of 47 cases assessing the spectrum of morphologic variation and associated genetic alterations. Brain Pathol 26: 569 â 580.
dc.identifier.citedreferenceStuer C, Vilz B, Majores M, Becker A, Schramm J, Simon M ( 2007 ) Frequent recurrence and progression in pilocytic astrocytoma in adults. Cancer 110: 2799 â 2808.
dc.identifier.citedreferenceSturm D, Witt H, Hovestadt V, Khuongâ Quang DA, Jones DT, Konermann C et al ( 2012 ) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22: 425 â 437.
dc.identifier.citedreferenceTheeler BJ, Ellezam B, Sadighi ZS, Mehta V, Tran MD, Adesina AM et al ( 2014 ) Adult pilocytic astrocytomas: clinical features and molecular analysis. Neuro Oncol 16: 841 â 847.
dc.identifier.citedreferenceTomlinson FH, Scheithauer BW, Hayostek CJ, Parisi JE, Meyer FB, Shaw EG et al ( 1994 ) The significance of atypia and histologic malignancy in pilocytic astrocytoma of the cerebellum: a clinicopathologic and flow cytometric study. J Child Neurol 9: 301 â 310.
dc.identifier.citedreferenceWu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J et al ( 2012 ) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and nonâ brainstem glioblastomas. Nat Genet 44: 251 â 3.
dc.identifier.citedreferenceBallester LY, Penasâ Prado M, Leeds NE, Huse JT, Fuller GN ( 2018 ) FGFR1 tyrosine kinase domain duplication in pilocytic astrocytoma with anaplasia. Cold Spring Harb Mol Case Stud 4: a002378.
dc.identifier.citedreferenceBar EE, Lin A, Tihan T, Burger PC, Eberhart CG ( 2008 ) Frequent gains at chromosome 7q34 involving BRAF in pilocytic astrocytoma. J Neuropathol Exp Neurol 67: 878 â 887.
dc.identifier.citedreferenceBrat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, Cooper LA et al ( 2015 ) Comprehensive, integrative genomic analysis of diffuse lowerâ grade gliomas. N Engl J Med 372: 2481 â 2498.
dc.identifier.citedreferenceCapper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D et al ( 2018 ) DNA methylationâ based classification of central nervous system tumours. Nature 555: 469 â 474.
dc.identifier.citedreferenceCollins VP, Jones DT, Giannini C ( 2015 ) Pilocytic astrocytoma: pathology, molecular mechanisms and markers. Acta Neuropathol 129: 775 â 788.
dc.identifier.citedreferenceCollins VP, Tihan T, VandenBerg SR, Burger PC, Hawkins C, Jones DT et al ( 2016 ) Pilocytic astrocytoma. In: WHO Classification of Tumours of the Central Nervous System. DN Louis, H Ohgaki, OD Wiestler, WK Cavennee, DW Ellison, D Figarellaâ Branger et al. (eds). IARC Press: Lyon.
dc.identifier.citedreferenceDanussi C, Bose P, Parthasarathy PT, Silberman PC, Van Arnam JS, Vitucci M et al ( 2018 ) Atrx inactivation drives diseaseâ defining phenotypes in glioma cells of origin through global epigenomic remodeling. Nat Commun 9: 1057.
dc.identifier.citedreferenceDirks PB, Jay V, Becker LE, Drake JM, Humphreys RP, Hoffman HJ, Rutka JT ( 1994 ) Development of anaplastic changes in lowâ grade astrocytomas of childhood. Neurosurgery 34: 68 â 78.
dc.identifier.citedreferenceEbrahimi A, Skardelly M, Bonzheim I, Ott I, Muhleisen H, Eckert F et al ( 2016 ) ATRX immunostaining predicts IDH and H3F3A status in gliomas. Acta Neuropathol Commun 4: 60.
dc.identifier.citedreferenceForshew T, Tatevossian RG, Lawson AR, Ma J, Neale G, Ogunkolade BW et al ( 2009 ) Activation of the ERK/MAPK pathway: a signature genetic defect in posterior fossa pilocytic astrocytomas. J Pathol 218: 172 â 181.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.