Show simple item record

Forest gene diversity is correlated with the composition and function of soil microbial communities

dc.contributor.authorSchweitzer, Jennifer A.
dc.contributor.authorFischer, Dylan G.
dc.contributor.authorRehill, Brian J.
dc.contributor.authorWooley, Stuart C.
dc.contributor.authorWoolbright, Scott A.
dc.contributor.authorLindroth, Richard L.
dc.contributor.authorWhitham, Thomas G.
dc.contributor.authorZak, Donald R.
dc.contributor.authorHart, Stephen C.
dc.date.accessioned2019-01-15T20:31:49Z
dc.date.available2019-01-15T20:31:49Z
dc.date.issued2011-01
dc.identifier.citationSchweitzer, Jennifer A.; Fischer, Dylan G.; Rehill, Brian J.; Wooley, Stuart C.; Woolbright, Scott A.; Lindroth, Richard L.; Whitham, Thomas G.; Zak, Donald R.; Hart, Stephen C. (2011). "Forest gene diversity is correlated with the composition and function of soil microbial communities." Population Ecology 53(1): 35-46.
dc.identifier.issn1438-3896
dc.identifier.issn1438-390X
dc.identifier.urihttps://hdl.handle.net/2027.42/147191
dc.description.abstractThe growing field of community and ecosystem genetics indicates that plant genotype and genotypic variation are important for structuring communities and ecosystem processes. Little is known, however, regarding the effects of stand gene diversity on soil communities and processes under field conditions. Utilizing natural genetic variation occurring in Populus spp. hybrid zones, we tested the hypothesis that stand gene diversity structures soil microbial communities and influences soil nutrient pools. We found significant unimodal patterns relating gene diversity to soil microbial community composition, microbial exoenzyme activity of a carbon‐acquiring enzyme, and availability of soil nitrogen. Multivariate analyses indicate that this pattern is due to the correlation between gene diversity, plant secondary chemistry, and the composition of the microbial community that impacts the availability of soil nitrogen. Together, these data from a natural system indicate that stand gene diversity may affect soil microbial communities and soil processes in ways similar to species diversity (i.e., unimodal patterns). Our results further demonstrate that the effects of plant genetic diversity on other organisms may be mediated by plant functional trait variation.
dc.publisherSpringer Japan
dc.publisherWiley Periodicals, Inc.
dc.subject.otherCommunity and ecosystem genetics
dc.subject.otherExtracellular enzyme activity
dc.subject.otherFunctional traits
dc.subject.otherGenetic diversity
dc.subject.otherPopulus
dc.subject.otherUnimodal diversity patterns
dc.titleForest gene diversity is correlated with the composition and function of soil microbial communities
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147191/1/pope0035.pdf
dc.identifier.doi10.1007/s10144-010-0252-3
dc.identifier.sourcePopulation Ecology
dc.identifier.citedreferenceSchweitzer JA, Madritch MD, Bailey JK, LeRoy CJ, Fischer DG, Rehill BJ, Lindroth RL, Hagerman AE, Wooley SC, Hart SC, Whitham TG ( 2008b ) From genes to ecosystems: the genetic basis of condensed tannins and their role in nutrient regulation in a Populus model system. Ecosystems 11: 1005 – 1020
dc.identifier.citedreferenceSchweitzer JA, Bailey JK, Fischer DG, LeRoy CJ, Whitham TG, Hart SC (in press) Functional and heritable consequences of plant genotype on community composition and ecosystem processes. In: Ohgushi T, Schmitz O, Holt R (eds) Ecology and evolution of trait‐mediated indirect interactions: linking evolution, community, and ecosystem. Cambridge University Press, Cambridge
dc.identifier.citedreferenceShuster SM, Lonsdorf EV, Wimp GM, Bailey JK, Whitham TG ( 2006 ) Community heritability measures the evolutionary consequences of indirect genetic effects on community structure. Evolution 60: 991 – 1003
dc.identifier.citedreferenceSimchuk A ( 2008 ) The effect of fodder plant genotype on the variation of larvalfitness traits in genotype classes of green oak leafroller moth. Russ J Gen 44: 418 – 424
dc.identifier.citedreferenceSinsabaugh RL ( 2010 ) Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol Biochem 42: 391 – 404
dc.identifier.citedreferenceSmith KP, Handelsman J, Goodman RM ( 1999 ) Genetic basis in plants for interactions with disease‐suppressive bacteria. Proc Natl Acad Sci 96: 4786 – 4790
dc.identifier.citedreferenceStone AC, Gehring CA, Whitham TG ( 2010 ) Drought negatively affects communities on a foundation tree: growth rings predict diversity. Oecologia 164: 751 – 761
dc.identifier.citedreferenceStrickland MS, Lauber C, Fierer N, Bradford MA ( 2009 ) Testing the functional significance of microbial community composition. Ecology 90: 441 – 451
dc.identifier.citedreferenceSwaty RL, Deckert RJ, Whitham TG, Gehring CA ( 2004 ) Ectomycorrhizal abundance and community composition shifts with drought: predictions from tree rings. Ecology 85: 1072 – 1084
dc.identifier.citedreferenceTabatabai MA, Dick WA ( 2002 ) Enzymes in soil: research and developments in measuring activities. In: Burns RG, Dick RP (eds) Enzymes in the environment. Marcel Dekker, New York, pp 567 – 596
dc.identifier.citedreferenceTilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C ( 2001 ) Diversity and productivity in a long‐term grassland experiment. Science 294: 843 – 845
dc.identifier.citedreferenceTreseder KK, Vitousek PM ( 2001 ) Potential ecosystem‐level effects of genetic variation among populations of Metrosideros polymorpha from a soil fertility gradient in Hawai’i. Oecologia 126: 266 – 275
dc.identifier.citedreferenceVance ED, Brookes PC, Jenkinson DS ( 1987 ) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19: 703 – 707
dc.identifier.citedreferenceWaldrop MP, Balser TC, Firestone MK ( 2000 ) Linking microbial community composition to function in a tropical soil. Soil Biol Biochem 32: 1837 – 1846
dc.identifier.citedreferenceWaldrop MP, Zak DR, Sinsabaugh RL, Gallo ME, Lauber CL ( 2004 ) Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecol Appl 14: 1172 – 1177
dc.identifier.citedreferenceWaldrop MP, Zak DR, Blackwood CB, Curtis CD, Tilman D ( 2006 ) Resource availability controls fungal diversity across a plant diversity gradient. Ecol Lett 9: 1127 – 1135
dc.identifier.citedreferenceWardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH ( 2004 ) Ecological linkages between aboveground and belowground biota. Science 304: 1629 – 1634 (a review)
dc.identifier.citedreferenceWardle DA, Bardgett RD, Walker LR, Bonner KI ( 2009 ) Among‐ and within‐species variation in plant litter decomposition in contrasting long‐term chronosequences. Funct Ecol 23: 442 – 453
dc.identifier.citedreferenceWeir BS ( 1996 ) Genetic data analysis, 2nd edn. Sinauer Associates, Sunderland
dc.identifier.citedreferenceWhite DC, Davis WM, Nichols JS, King JD, Bobbie RJ ( 1979 ) Determination of the sedimentary microbial biomass by extract‐able lipid phosphate. Oecologia 40: 51 – 62
dc.identifier.citedreferenceWhite DC, Ringleberg DB ( 1998 ) Signature lipid biomarker analysis. In: Burlage RS, Atlas R, Stahl D, Gessey G, Sayler G (eds) Techniques in microbial ecology. Oxford University Press, Oxford, pp 255 – 272
dc.identifier.citedreferenceWhitham TG, Young BP, Martinsen GD, Gehring CA, Schweitzer JA, Shuster SM, Wimp GM, Fischer DG, Bailey JK, Lindroth RL, Woolbright SA, Kuske CR ( 2003 ) Community and ecosystem genetics: a consequence of the extended phenotype. Ecology 84: 559 – 573
dc.identifier.citedreferenceWhitham TG, Bailey JK, Schweitzer JA, Shuster SM, Bangert RK, LeRoy CJ, Lonsdorf E, Allan GJ, DiFazio SP, Potts BM, Fischer DG, Gehring CA, Lindroth RL, Marks J, Hart SC, Wimp GM, Wooley SC ( 2006 ) A framework for community and ecosystem genetics: from genes to ecosystems. Nat Rev Genet 7: 510 – 523
dc.identifier.citedreferenceWimp GM, Young WP, Woolbright SA, Martinsen GD, Keim P, Whitham TG ( 2004 ) Conserving plant genetic diversity for dependent animal communities. Ecol Lett 7: 776 – 780
dc.identifier.citedreferenceWilkinson SG ( 1988 ) Gram negative bacteria. In: Ratlidge C, Wilkninson SG (eds) Microbial lipids, vol 1. Academic, London, pp 299 – 488
dc.identifier.citedreferenceZak DR, Pregitzer KS, Host GE ( 1986 ) Landscape variation in nitrogen mineralization and nitrification. Can J For Res 16: 1258 – 1263
dc.identifier.citedreferenceZak DR, Blackwood CB, Waldrop MP ( 2006 ) A molecular dawn for biogeochemistry. TREE 21: 288 – 295
dc.identifier.citedreferenceZelles L ( 1999 ) Fatty acid patterns of phospholipids and lipopoly‐saccharides in the characterization of microbial communities in soil: a review. Biol Fert Soils 29: 111 – 129
dc.identifier.citedreferenceZinke PJ ( 1962 ) The pattern of individual forest trees on soil properties. Ecology 43: 130 – 133
dc.identifier.citedreferenceDang CK, Chauvet E, Gessner MO ( 2005 ) Magnitude and variability of process rates in fungal diversity‐litter decomposition relationships. Ecol Lett 8: 1129 – 1137
dc.identifier.citedreferenceDiab el Arab HG, Vilich V, Sikora RA ( 2001 ) The use of phospholipid fatty acid analysis (PLFA) in the determination of rhizosphere specific microbial communities (RSMC) of two wheat cultivars. Plant Soil 228: 291 – 297
dc.identifier.citedreferenceLeckie SE ( 2005 ) Methods of microbial community profiling and their application to forest soils. For Ecol Manag 220: 88 – 106
dc.identifier.citedreferenceLeRoy CJ, Whitham TG, Keim P, Marks CJ ( 2006 ) Plant genes link forests and streams. Ecology 87: 255 – 261
dc.identifier.citedreferenceBailey JK, Wooley SC, Lindroth RL, Whitham TG ( 2006 ) Importance of species interactions to community heritability: a genetic basis to trophic‐level interactions. Ecol Lett 9: 78 – 85
dc.identifier.citedreferenceBailey JK, Schweitzer JA, Koricheva J, Madritch MD, LeRoy CJ, Rehill BJ, Bangert RK, Fisher DG, Allen G, Whitham TG ( 2009 ) Community and ecosystem consequences of gene flow and genotypic diversity across systems and environments: a meta‐analysis. Phil Trans R Soc B 364: 1607 – 1616
dc.identifier.citedreferenceBarbour RC, O’Reilly‐Wapstra JM, De Little DW, Jordan JG, Steane DA, Humphreys JR, Bailey JK, Whitham TG, Potts BM ( 2009a ) Genetic similarity and hierarchical structure within a foundation tree species drives canopy community variation. Ecology 90: 1762 – 1772
dc.identifier.citedreferenceBarbour BR, Baker SC, O’Reilly‐Wapstra JM, Harvest TM, Potts BM ( 2009b ) A footprint of tree genetics on the biota of the forest floor. Oikos 118: 1917 – 1923
dc.identifier.citedreferenceBartelt‐Ryser J, Joshi J, Schmid B, Brandl H, Balser T ( 2005 ) Soil feedbacks of plant diversity on soil microbial communities and subsequent plant growth. Per Plant Ecol Evol Syst 7: 27 – 49
dc.identifier.citedreferenceBasaraba J, Starkey RL ( 1966 ) Effect of plant tannins on decomposition of organic substances. Soil Sci 101: 17 – 23
dc.identifier.citedreferenceBending GD, Read DJ ( 1996 ) Effects of the soluble polyphenol tannic acid on the activities of ericoid and ectomycorrhizal fungi. Soil Biol Biochem 28: 1595 – 1602
dc.identifier.citedreferenceBever JD, Morton JB, Antonovics J, Schultz PA ( 1996 ) Host‐dependent sporulation and species diversity in arbuscular mychorrizal fungi in a mown grassland. J Ecol 84: 71 – 82
dc.identifier.citedreferenceBinkley D, Hart SC ( 1989 ) The components of nitrogen availability assessment in forest soils. Adv Soil Sci 10: 58 – 112
dc.identifier.citedreferenceBligh EG, Dwyer WJ ( 1959 ) A rapid method of total lipid extraction and purification. Can J Biochem Phys 37: 911 – 917
dc.identifier.citedreferenceBond EM, Chase JM ( 2002 ) Biodiversity and ecosystem functioning and local and regional spatial scales. Ecol Lett 5: 467 – 470
dc.identifier.citedreferenceBossdorf O, Shuja Z, Banta JA ( 2009 ) Genotype and maternal environment affect belowground interactions between Arabidopsis thaliana and its competitors. Oikos 118: 1541 – 1551
dc.identifier.citedreferenceBrookes PC, Landman A, Pruden G, Jenkinson DS ( 1985 ) Chloro‐form fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17: 837 – 842
dc.identifier.citedreferenceChase JM, Leibold MA ( 2002 ) Spatial scale dictates the productivity– biodiversity relationship. Nature 416: 427 – 430
dc.identifier.citedreferenceClark JS ( 2010 ) Individuals and the variation needed for high species diversity in forest trees. Science 327: 1129 – 1132
dc.identifier.citedreferenceCrutsinger GM, Collins MD, Fordyce JA, Gompert Z, Nice CC, Sanders NJ ( 2006 ) Plant genotypic diversity predicts community structure and governs an ecosystem process. Science 313: 966 – 968
dc.identifier.citedreferenceCrutsinger GM, Reynolds W, Classen AT, Sanders NJ ( 2008 ) Disparate effects of host–plant genotypic diversity on above‐and belowground communities. Oecologia 158: 65 – 75
dc.identifier.citedreferenceCrutsinger GM, Sanders NJ, Classen AT ( 2009 ) Comparing intra‐ and inter‐specific variation on litter dynamics. Basic Appl Ecol 10: 535 – 543
dc.identifier.citedreferenceDiaz S, Hodgson JG, Thompson K, Abido M, Cornelissen JHC, Jalil A, Montserrat‐Marti G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro‐Diez P, Prunes G, Hamzehee B, Khoshnevi M, Perez‐Harguindeguy N, Perez‐Rontome MC, Shirvany FA, Vendramini F, Yazdani S, Abbas‐Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, de Torres‐Espuny L, Falczuk V, Guerrero‐Campo J, Hynd A, Jones G, Kowsary E, Kazemi‐Saeed F, Maestro‐Martinez M, Romo‐Diez A, Shaw S, Siavash B, Villar‐Salvador P, Zak MRJ ( 2004 ) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15: 295 – 304
dc.identifier.citedreferenceFierer N, Jackson R ( 2006 ) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103: 626 – 631
dc.identifier.citedreferenceFierer N, Grandy NS, Six J, Paul EA ( 2009 ) Searching for unifying principles in soil biology. Soil Biol Biochem 41: 2249 – 2256
dc.identifier.citedreferenceFischer DG, Hart SC, Whitham TG, Martinsen GD, Keim P ( 2004 ) Ecosystem implications of genetic variation in water‐use of a dominant riparian tree. Oecologia 139: 188 – 197
dc.identifier.citedreferenceFischer DG, Hart SC, Rehill BJ, Lindroth RL, Keim P, Whitham TG ( 2006 ) Do high‐tannin leaves require more roots? Oecologia 149: 668 – 675
dc.identifier.citedreferenceFischer DG, Hart SC, LeRoy CJ, Whitham TG ( 2007 ) Variation in belowground carbon fluxes along a Populus hybridization gradient. New Phytol 176: 415 – 425
dc.identifier.citedreferenceFischer DG, Hart SC, Schweitzer JA, Selmants P, Whitham TG ( 2010 ) Soil nitrogen availability varies with plant genetics across diverse river drainages. Plant Soil 331: 391 – 400
dc.identifier.citedreferenceFrostegård Å, Bååth E, Tunlid A ( 1993 ) Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol Biochem 25: 727 – 730
dc.identifier.citedreferenceFrostegård Å, Bååth E ( 1996 ) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22: 59 – 65
dc.identifier.citedreferenceGessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S ( 2010 ) Diversity meets decomposition. TREE 25: 372 – 380
dc.identifier.citedreferenceGrayston SJ, Prescott CE ( 2005 ) Microbial communities in forest floors under four tree species in coastal British Columbia. Soil Biol Biochem 37: 1157 – 1167
dc.identifier.citedreferenceHagerman AE, Butler LG ( 1989 ) Choosing appropriate methods and standards for assaying tannin. J Chem Ecol 15: 1795 – 1810
dc.identifier.citedreferenceHart SC, Firestone MK ( 1989 ) Evaluation of three in situ nitrogen availability assays. Can J For Res 19: 185 – 191
dc.identifier.citedreferenceHart SC, Stark JM, Davidson AE, Firestone MK ( 1994 ) Nitrogen mineralization, immobilization and nitrification. In: Mickelson SH (ed) Methods of soil analysis, part 2. Soil Science Society of America Book Series, no. 5. Soil Science Society of America, Madison, pp 985 – 1018
dc.identifier.citedreferenceHättenschwiler S, Vitousek PM ( 2000 ) The role of polyphenols in terrestrial ecosystem nutrient cycling. TREE 15: 238 – 243
dc.identifier.citedreferenceHobbie SE ( 1992 ) Effects of plant species on nutrient cycling. TREE 7: 336 – 339
dc.identifier.citedreferenceHoleski LM, Vogelzang A, Stanosz G, Lindroth RL ( 2009 ) Incidence of Venturia shoot blight damage in aspen ( Populus tremuloides Michx.) varies with tree chemistry and genotype. Biochem Syst Ecol 37: 139 – 145
dc.identifier.citedreferenceHooper DU, Bignell EE, Brown VK, Brussaard L, Dangerfield JM, Wall DH, Wardle DA, Coleman DC, Giller KE, Lavelle P, van der Putten WH, de Ruiter PC, Rusek J, Silver WL, Tiedje JM, Wolters V ( 2000 ) Interaction between aboveground and below‐ground biodiversity in terrestrial ecosystems: patterns, mechanisms and feedbacks. BioScience 50: 1049 – 1061
dc.identifier.citedreferenceHorner JD, Gosz JR, Cates RG ( 1988 ) The role of carbon‐based plant secondary metabolites in decomposition in terrestrial ecosystems. Am Nat 132: 869 – 883
dc.identifier.citedreferenceHorner‐Devine MC, Leibold MA, Smith VH, Bohannan BJM ( 2003 ) Bacterial diversity patterns along a gradient of primary productivity. Ecol Lett 6: 613 – 622
dc.identifier.citedreferenceHughes AR, Inouye BD, Johnson MTJ, Underwood N, Vellend M ( 2008 ) Ecological consequences of genetic diversity. Ecol Lett 11: 609 – 623
dc.identifier.citedreferenceHughes AR, Stachowicz JJ, Williams SL ( 2009 ) Morphological and physiological variation among seagrass ( Zostera marina ) genotypes. Oecologia 159: 725 – 733
dc.identifier.citedreferenceIason GR, Lennon JJ, Pakeman RJ ( 2005 ) Does chemical composition of individual Scots pine trees determine the biodiversity of their associated ground vegetation? Ecol Lett 8: 364 – 369
dc.identifier.citedreferenceJohnson MTJ, Vellend M, Stinchcombe JR ( 2009 ) Evolution in plant populations as a driver of ecological changes in arthropod communities. Phil Trans R Soc B 364: 1593 – 1606
dc.identifier.citedreferenceKarst J, Jones MD, Turkington R ( 2009 ) Ectomycorrhiza colonization and intraspecific variation in growth responses to lodgepole pine. Plant Ecol 200: 161 – 165
dc.identifier.citedreferenceKasurinen A, Keinänen MM, Kaipainen S ( 2005 ) Below‐ground response of silver birch trees exposed to elevated CO 2 and O 3 for three growing seasons. Glob Change Biol 11: 1167 – 1179
dc.identifier.citedreferenceKraus TEC, Dahlgren RA, Zasoski RJ ( 2003 ) Tannins in nutrient dynamics of forest ecosystems—a review. Plant Soil 256: 41 – 66
dc.identifier.citedreferenceLojewski NR, Fischer DG, Bailey JK, Schweitzer JA, Whitham TG, Hart SC ( 2009 ) Genetic determination of aboveground net primary productivity in a riparian foundation tree species. Tree Physiol 29: 1133 – 1142
dc.identifier.citedreferenceMadritch M, Donaldson JR, Lindroth RL ( 2006 ) Genetic identity of Populus tremuloides litter influences decomposition and nutrient release in a mixed forest stand. Ecosystems 9: 528 – 537
dc.identifier.citedreferenceMadritch MD, Donaldson JR, Lindroth RL ( 2007 ) Canopy herbivory mediates the influence of plant genotype on soil processes through frass deposition. Soil Biol Biochem 39: 1192 – 1201
dc.identifier.citedreferenceMadritch MD, Greene SL, Lindroth RL ( 2009 ) Genetic mosaics of ecosystem functioning across aspen‐dominated landscapes. Oecologia 160: 119 – 127
dc.identifier.citedreferenceMittelbach GG, Steiner CF, Scheiner SM, Gross KL, Reynolds HL, Waide RB, Willig MR, Dodson SI, Gough L ( 2001 ) What is the observed relationship between productivity and diversity? Ecology 82: 2381 – 2396
dc.identifier.citedreferenceNierop KGJ, Preston CM, Verstraten JM ( 2006 ) Linking the B ring hydroxylation pattern of condensed tannins to C, N and P mineralization. A case study using four tannins. Soil Biol Biochem 38: 2794 – 2802
dc.identifier.citedreferenceNorthup RR, Dahlgren RA, McColl JG ( 1998 ) Polyphenols as regulators of plant–litter–soil interactions in Northern California’s pygmy forest: a positive feedback? Biogeochemistry 42: 189 – 220
dc.identifier.citedreferenceO’Leary WM, Wilkinson SG ( 1988 ) Gram positive bacteria. In: Ratlidge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic, London, pp 117 – 202
dc.identifier.citedreferencePastor J, Aber JD, McClaugherty CA, Melillo JM ( 1984 ) Above‐ground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin. Ecology 65: 256 – 268
dc.identifier.citedreferencePaul EA, Clark FE ( 1996 ) Soil microbiology and biochemistry, 2nd edn. Elsevier Science, USA
dc.identifier.citedreferencePorter LJ, Hrstich LN, Chan BC ( 1986 ) The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 25: 223 – 230
dc.identifier.citedreferencePregitzer CC, Bailey JK, Hart SC, Schweitzer JA ( 2010 ) Soils as agents of selection: feedbacks between plants and soils alter seedling survival and performance. Evol Ecol 24: 1045 – 1059
dc.identifier.citedreferencePriha OS, Grayston L, Hiukka R, Pennanen T, Smolander A ( 2001 ) Microbial community structure and characteristics of the organic matter in soils under Pinus sylvestris, Picea abes and Betula pendula at two forest sites. Biol Fertil Soils 33: 17 – 24
dc.identifier.citedreferenceReed HE, Martiny JBH ( 2007 ) Testing the functional significance of microbial composition in natural communities. FEMS Microbiol Ecol 62: 161 – 170
dc.identifier.citedreferenceRehill BJ, Whitham TG, Martinsen GD, Schweitzer JA, Bailey JK, Lindroth RL ( 2006 ) Developmental trajectories in cottonwood phytochemistry. J Chem Ecol 32: 2269 – 2285
dc.identifier.citedreferenceRhoades C ( 1997 ) Single‐tree influences on soil properties in agroforestry ecosystems: lessons from natural and savanna ecosystems. Agrofor Syst 35: 71 – 94
dc.identifier.citedreferenceSaiya‐Cork KR, Sinsabaugh RL, Zak DR ( 2002 ) Effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem 34: 1309 – 1315
dc.identifier.citedreferenceScalbert A ( 1991 ) Antimicrobial properties of tannins. Phytochem 30: 3875 – 3883
dc.identifier.citedreferenceSchimel JP, Van Cleve K, Cates RG, Clausen TP, Reichardt PB ( 1996 ) Effects of balsam poplar ( Populus balsamifera ) tannins and low molecular‐weight phenolics on microbial activity in tiaga floodplain soil: implications for changes in N cycling during succession. Can J Bot 74: 84 – 90
dc.identifier.citedreferenceSchweitzer JA, Bailey JK, Rehill BJ, Martinsen GD, Hart SC, Lindroth RL, Keim P, Whitham TG ( 2004 ) Genetically based trait in a dominant tree affects ecosystem processes. Ecol Lett 7: 127 – 134
dc.identifier.citedreferenceSchweitzer JA, Bailey JK, Hart SC, Wimp GM, Chapman SC, Whitham TG ( 2005 ) The interaction of plant genotype and herbivory decelerate leaf litter decomposition and alter nutrient dynamics. Oikos 110: 133 – 145
dc.identifier.citedreferenceSchweitzer JA, Bailey JK, Fischer DG, LeRoy CJ, Lonsdorf EV, Whitham TG, Hart SC ( 2008a ) Soil microorganism–plant interactions: heritable relationship between plant genotype and associated microorgansims. Ecology 89: 773 – 781
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.