Show simple item record

Exploiting In Situ Redox and Diffusion of Molybdenum to Enable Thin‐Film Circuitry for Low‐Cost Wireless Energy Harvesting

dc.contributor.authorSon, Youngbae
dc.contributor.authorPeterson, Rebecca L.
dc.date.accessioned2019-02-12T20:22:31Z
dc.date.available2020-04-01T15:06:24Zen
dc.date.issued2019-02
dc.identifier.citationSon, Youngbae; Peterson, Rebecca L. (2019). "Exploiting In Situ Redox and Diffusion of Molybdenum to Enable Thin‐Film Circuitry for Low‐Cost Wireless Energy Harvesting." Advanced Functional Materials 29(5): n/a-n/a.
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.urihttps://hdl.handle.net/2027.42/147743
dc.description.abstractDirect additive fabrication of thin‐film electronics using a high‐mobility, wide‐bandgap amorphous oxide semiconductor (AOS) can pave the way for integration of efficient power circuits with digital electronics. For power rectifiers, vertical thin‐film diodes (V‐TFDs) offer superior efficiency and higher frequency operation compared to lateral thin‐film transistors (TFTs). However, the AOS V‐TFDs reported so far require additional fabrication steps and generally suffer from low voltage handling capability. Here, these challenges are overcome by exploiting in situ reactions of molybdenum (Mo) during the solution‐process deposition of amorphous zinc tin oxide film. The oxidation of Mo forms the rectifying contact of the V‐TFD, while the simultaneous diffusion of Mo increases the diode’s voltage range of operation. The resulting V‐TFDs are demonstrated in a full‐wave rectifier for wireless energy harvesting from a commercial radio‐frequency identification reader. Finally, by using the same Mo film for V‐TFD rectifying contacts and TFT gate electrodes, this process allows simultaneous fabrication of both devices without any additional steps. The integration of TFTs alongside V‐TFDs opens a new fabrication route for future low‐cost and large‐area thin‐film circuitry with embedded power management.A facile solution processing method is developed that can fabricate vertical thin‐film diodes and lateral thin‐film transistors in a single process. By exploiting in situ redox and diffusion of a bottom molybdenum electrode occurring during semiconductor deposition, the thin‐film diodes achieve high voltage and high‐frequency operation. Furthermore, their use in full‐wave rectifiers is demonstrated for wireless energy harvesting.
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.otherlarge‐area electronics
dc.subject.othersolution process
dc.subject.otherthin‐film circuitry
dc.subject.otheramorphous oxide semiconductors
dc.subject.otheradditive fabrication
dc.titleExploiting In Situ Redox and Diffusion of Molybdenum to Enable Thin‐Film Circuitry for Low‐Cost Wireless Energy Harvesting
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147743/1/adfm201806002_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147743/2/adfm201806002-sup-0001-S1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147743/3/adfm201806002.pdf
dc.identifier.doi10.1002/adfm.201806002
dc.identifier.sourceAdvanced Functional Materials
dc.identifier.citedreferenceY. Yang, W. Lu, Nanoscale 2013, 5, 10076.
dc.identifier.citedreferenceR. F. Pierret, Semiconductor Device Fundamentals; Addison‐Wesley Publishing Company, Reading, MA, 1996.
dc.identifier.citedreferenceM. T. Greiner, L. Chai, M. G. Helander, W.‐M. Tang, Z.‐H. Lu, Adv. Funct. Mater. 2013, 23, 215.
dc.identifier.citedreferenceCRC Handbook of Chemistry and Physics (Ed: W. M. Haynes ), CRC Press/Taylor & Francis, Boca Raton, FL, 2017.
dc.identifier.citedreferenceM. T. Greiner, M. G. Helander, Z. B. Wang, W. M. Tang, J. Qiu, Z. H. Lu, Appl. Phys. Lett. 2010, 96, 213302.
dc.identifier.citedreferenceC. R. Valenta, G. D. Durgin, IEEE Microw. Mag. 2014, 15, 108.
dc.identifier.citedreferenceJ.‐Y. Chen, C.‐W. Huang, C.‐H. Chiu, Y.‐T. Huang, W.‐W. Wu, Adv. Mater. 2015, 27, 5028.
dc.identifier.citedreferenceL. D. López‐Carreño, G. Benítez, L. Viscido, J. M. Heras, F. Yubero, J. P. Espinós, A. R. González‐Elipe, Surf. Interface Anal. 1998, 26, 235.
dc.identifier.citedreferenceS. Kim, S. Choi, J. Lee, W. D. Lu, ACS Nano 2014, 8, 10262.
dc.identifier.citedreferenceS. Steudel, S. De Vusser, K. Myny, M. Lenes, J. Genoe, P. Heremans, J. Appl. Phys. 2006, 99, 114519.
dc.identifier.citedreferenceY.‐H. Kim, J.‐S. Heo, T.‐H. Kim, S. Park, M.‐H. Yoon, J. Kim, M. S. Oh, G.‐R. Yi, Y.‐Y. Noh, S. K. Park, Nature 2012, 489, 128.
dc.identifier.citedreferenceC.‐S. Chuang, T.‐C. Fung, B. G. Mullins, K. Nomura, T. Kamiya, H.‐P. D. Shieh, H. Hosono, J. Kanicki, in SID Symp. Digest of Tech. Papers, Vol. 39, Wiley Online Library, John Wiley & Sons, Hoboken, NJ, 2008, 1215.
dc.identifier.citedreferenceS. F. Nelson, D. H. Levy, L. W. Tutt, Appl. Phys. Lett. 2012, 101, 183503.
dc.identifier.citedreferenceY. Wang, J. Yang, H. Wang, J. Zhang, H. Li, G. Zhu, Y. Shi, Y. Li, Q. Wang, Q. Xin, Z. Fan, F. Yang, A. Song, IEEE Trans. Electron Devices 2018, 1, https://doi.org/10.1109/TED.2018.2807621.
dc.identifier.citedreferenceN. Munzenrieder, L. Petti, C. Zysset, T. Kinkeldei, G. A. Salvatore, G. Troster, IEEE Trans. Electron Devices 2013, 60, 2815.
dc.identifier.citedreferenceH. Chen, Y. Cao, J. Zhang, C. Zhou, Nat. Commun. 2014, 5, 4097.
dc.identifier.citedreferenceW. Hu, R. L. Peterson, J. Mater. Res. 2012, 27, 2286.
dc.identifier.citedreferenceY. Son, R. L. Peterson, Semicond. Sci. Technol. 2017, 32, 12LT02.
dc.identifier.citedreferenceK. Song, D. Kim, X.‐S. Li, T. Jun, Y. Jeong, J. Moon, J. Mater. Chem. 2009, 19, 8881.
dc.identifier.citedreferenceK. Song, W. Yang, Y. Jung, S. Jeong, J. Moon, J. Mater. Chem. 2012, 22, 21265.
dc.identifier.citedreferenceX. Li, W. C. H. Choy, F. Xie, S. Zhang, J. Hou, J. Mater. Chem. A 2013, 1, 6614.
dc.identifier.citedreferenceS. R. Hammond, J. Meyer, N. E. Widjonarko, P. F. Ndione, A. K. Sigdel, A. Garcia, A. Miedaner, M. T. Lloyd, A. Kahn, D. S. Ginley, J. J. Berry, D. C. Olson, J. Mater. Chem. 2012, 22, 3249.
dc.identifier.citedreferenceA. C. Arias, J. D. MacKenzie, I. McCulloch, J. Rivnay, A. Salleo, Chem. Rev. 2010, 110, 3.
dc.identifier.citedreferenceK. Myny, Nat. Electron. 2018, 1, 30.
dc.identifier.citedreferenceT. van Breussegem, M. Steyaert, CMOS integrated capacitive DC‐DC converters; Analog Circuits and Signal Processing. Springer, New York, 2013.
dc.identifier.citedreferenceA. Marette, A. Poulin, N. Besse, S. Rosset, D. Briand, H. Shea, Adv. Mater. 2017, 29, 1700880.
dc.identifier.citedreferenceK. Kaneko, N. Inoue, S. Saito, N. Furutake, H. Sunamura, J. Kawahara, M. Hane, Y. Hayashi, in 2011 IEEE Int. IEDM Tech. Dig. IEEE, Piscataway, NJ 2011, 7.4.1.
dc.identifier.citedreferenceC. Allemang, R. L. Peterson, in 2017 75th Annu. Device Res. Conf. (DRC), IEEE, Piscataway, NJ 2017, 1.
dc.identifier.citedreferenceM. L. Schuette, A. J. Green, K. D. Leedy, J. P. McCandless, G. H. Jessen, in Proc. SPIE, Oxide‐based Materials and Devices VIII (Eds: F. H. Teherani, D. C. Look, D. J. Rogers ), SPIE, Bellingham, WA 2017, Vol. 10105, 1010512.
dc.identifier.citedreferenceH. Sunamura, K. Kaneko, N. Furutake, S. Saito, M. Narihiro, M. Hane, Y. Hayashi, in 2013 Symp. VLSI Technol. (VLSIT), IEEE, Piscataway, NJ, 2013, T250.
dc.identifier.citedreferenceT. Kawamura, H. Wakana, K. Fujii, H. Ozaki, K. Watanabe, T. Yamazoe, H. Uchiyama, K. Torii, IEEE Trans. Electron Devices 2012, 59, 3002.
dc.identifier.citedreferenceA. Chasin, V. Volskiy, M. Libois, K. Myny, M. Nag, M. Rockele, G. A. E. Vandenbosch, J. Genoe, G. Gielen, P. Heremans, IEEE Trans. Electron Devices 2014, 61, 3289.
dc.identifier.citedreferenceM. Jung, J. Kim, J. Noh, N. Lim, C. Lim, G. Lee, J. Kim, H. Kang, K. Jung, A. D. Leonard, J. M. Tour, G. Cho, IEEE Trans. Electron Devices 2010, 57, 571.
dc.identifier.citedreferenceV. Fiore, P. Battiato, S. Abdinia, S. Jacobs, I. Chartier, R. Coppard, G. Klink, E. Cantatore, E. Ragonese, G. Palmisano, IEEE Trans. Circuits Syst. I: Regular Papers 2015, 62, 1668.
dc.identifier.citedreferenceK. Myny, M. Rockelé, A. Chasin, D.‐V. Pham, J. Steiger, S. Botnaras, D. Weber, B. Herold, J. Ficker, B. van der Putten, G. H. Gelinck, J. Genoe, W. Dehaene, P. Heremans, IEEE Trans. Electron Devices 2014, 61, 2387.
dc.identifier.citedreferenceC. Kang, J. Wade, S. Yun, J. Lim, H. Cho, J. Roh, H. Lee, S. Nam, D. D. C. Bradley, J.‐S. Kim, C. Lee, Adv. Electron. Mater. 2016, 2, 1500282.
dc.identifier.citedreferenceT. M. Kraft, P. R. Berger, D. Lupo, Flexible Print. Electron. 2017, 2, 033001.
dc.identifier.citedreferenceK. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 2004, 432, 488.
dc.identifier.citedreferenceJ. Semple, D. G. Georgiadou, G. Wyatt‐Moon, G. Gelinck, T. D. Anthopoulos, Semicond. Sci. Technol. 2017, 32, 123002.
dc.identifier.citedreferenceJ. Zhang, Y. Li, B. Zhang, H. Wang, Q. Xin, A. Song, Nat. Commun. 2015, 6, 7561.
dc.identifier.citedreferenceY. Son, R. L. Peterson, in 2017 75th Annu. Device Res. Conf. (DRC), IEEE, Piscataway, NJ 2017, 1.
dc.identifier.citedreferenceY.‐S. Fan, P.‐T. Liu, IEEE Trans. Electron Devices 2014, 61, 1071.
dc.identifier.citedreferenceZ. Q. Wang, H. Y. Xu, X. H. Li, H. Yu, Y. C. Liu, X. J. Zhu, Adv. Funct. Mater. 2012, 22, 2759.
dc.identifier.citedreferenceH.‐W. Yeon, J. Jo, H. Song, Y. Kang, S. Na, H. Yoo, S.‐Y. Lee, H. Cho, H.‐Y. Kang, J.‐K. Jung, S. Han, M. Kim, Y.‐C. Joo, Adv. Funct. Mater. 2017, 27, 1700336.
dc.identifier.citedreferenceA. Chasin, S. Steudel, K. Myny, M. Nag, T.‐H. Ke, S. Schols, J. Genoe, G. Gielen, P. Heremans, Appl. Phys. Lett. 2012, 101, 113505.
dc.identifier.citedreferenceY. Son, J. Li, R. L. Peterson, ACS Appl. Mater. Interfaces 2016, 8, 23801.
dc.identifier.citedreferenceT. Schultz, S. Vogt, P. Schlupp, H. von Wenckstern, N. Koch, M. Grundmann, Phys. Rev. Appl. 2018, 9.
dc.identifier.citedreferenceB. R. McFarlane, P. Kurahashi, D. P. Heineck, R. E. Presley, E. Sundholm, J. F. Wager, IEEE Electron Device Lett. 2010, 31, 314.
dc.identifier.citedreferenceW.‐J. Lee, W.‐T. Park, S. Park, S. Sung, Y.‐Y. Noh, M.‐H. Yoon, Adv. Mater. 2015, 27, 5043.
dc.identifier.citedreferenceW. J. Scheideler, R. Kumar, A. R. Zeumault, V. Subramanian, Adv. Funct. Mater. 2017, 27, 1606062.
dc.identifier.citedreferenceS. K. Garlapati, M. Divya, B. Breitung, R. Kruk, H. Hahn, S. Dasgupta, Adv. Mater. 2018, 30, 1707600.
dc.identifier.citedreferenceY. Son, A. Liao, R. L. Peterson, J. Mater. Chem. C 2017, 5, 8071.
dc.identifier.citedreferenceG. Liu, S. J. Fonash, Appl. Phys. Lett. 1993, 62, 2554.
dc.identifier.citedreferenceS. Sedky, IEEE Trans. Electron Devices 2001, 48, 377.
dc.identifier.citedreferenceK. Park, C.‐H. An, B.‐I. Hwang, H.‐J. Lee, H. Kim, K. Son, J.‐Y. Kwon, S. Lee, J. Mater. Res. 2010, 25, 266.
dc.identifier.citedreferenceW. Hu, R. L. Peterson, Appl. Phys. Lett. 2014, 104, 192105.
dc.identifier.citedreferenceY. Ueoka, Y. Ishikawa, J. P. Bermundo, H. Yamazaki, S. Urakawa, Y. Osada, M. Horita, Y. Uraoka, Jpn. J. Appl. Phys. 2014, 53, 03CC04.
dc.identifier.citedreferenceQ. Wu, L. Xu, J. Xu, H. Xie, C. Dong, Mater. Sci. Semicond. Process. 2016, 48, 23.
dc.identifier.citedreferenceX. Liu, H. Xu, H. Ning, K. Lu, H. Zhang, X. Zhang, R. Yao, Z. Fang, X. Lu, J. Peng, Sci. Rep. 2018, 8, 4160.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.