Show simple item record

A bacterial DNA repair pathway specific to a natural antibiotic

dc.contributor.authorBurby, Peter E.
dc.contributor.authorSimmons, Lyle A.
dc.date.accessioned2019-02-12T20:22:38Z
dc.date.available2020-04-01T15:06:24Zen
dc.date.issued2019-02
dc.identifier.citationBurby, Peter E.; Simmons, Lyle A. (2019). "A bacterial DNA repair pathway specific to a natural antibiotic." Molecular Microbiology (2): 338-353.
dc.identifier.issn0950-382X
dc.identifier.issn1365-2958
dc.identifier.urihttps://hdl.handle.net/2027.42/147749
dc.publisherASM Press
dc.publisherWiley Periodicals, Inc.
dc.titleA bacterial DNA repair pathway specific to a natural antibiotic
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147749/1/mmi14158.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147749/2/mmi14158_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147749/3/mmi14158-sup-0001-Supinfo.pdf
dc.identifier.doi10.1111/mmi.14158
dc.identifier.sourceMolecular Microbiology
dc.identifier.citedreferenceSimmons, L.A., Foti, J.J., Cohen, S.E. and Walker, G.C. ( 2008 ) The SOS regulatory network. EcoSal Plus, 3, 1 – 30.
dc.identifier.citedreferenceSimmons, L.A., Goranov, A.I., Kobayashi, H., Davies, B.W., Yuan, D.S., Grossman, A.D. et al. ( 2009 ) Comparison of responses to double‐strand breaks between Escherichia coli and Bacillus subtilis reveals different requirements for SOS induction. Journal of Bacteriology, 191, 1152 – 1161.
dc.identifier.citedreferenceSimmons, L.A., Grossman, A.D. and Walker, G.C. ( 2007 ) Replication is required for the RecA localization response to DNA damage in Bacillus subtilis. Proceedings of the National Academy of Sciences, 104, 1360 – 1365.
dc.identifier.citedreferenceStracy, M., Jaciuk, M., Uphoff, S., Kapanidis, A.N., Nowotny, M., Sherratt, D.J. et al. ( 2016 ) Single‐molecule imaging of UvrA and UvrB recruitment to DNA lesions in living Escherichia coli. Nature Communications, 7, 12568.
dc.identifier.citedreferenceTomasz, M. ( 1995 ) Mitomycin C: small, fast and deadly (but very selective). Chemistry & Biology, 2, 575 – 579.
dc.identifier.citedreferenceTomasz, M., Chowdary, D., Lipman, R., Shimotakahara, S., Veiro, D., Walker, V. et al. ( 1986 ) Reaction of DNA with chemically or enzymatically activated mitomycin‐c ‐ isolation and structure of the major covalent adduct. Proceedings of the National Academy of Sciences, 83, 6702 – 6706.
dc.identifier.citedreferenceTomasz, M., Lipman, R., Chowdary, D., Pawlak, J., Verdine, G.L. and Nakanishi, K. ( 1987 ) Isolation and structure of a covalent cross‐link adduct between mitomycin C and DNA. Science, 235, 1204 – 1208.
dc.identifier.citedreferenceTruglio, J.J., Croteau, D.L., Van Houten, B. and Kisker, C. ( 2006 ) Prokaryotic nucleotide excision repair: the UvrABC system. Chemical Reviews, 106, 233 – 252.
dc.identifier.citedreferenceVan Houten, B., Croteau, D.L., Della Vecchia, M.J., Wang, H. and Kisker, C. ( 2005 ) ‘Close‐fitting sleeves’: DNA damage recognition by the UvrABC nuclease system. Mutation Research, 577, 92 – 117.
dc.identifier.citedreferenceWang, G. and Maier, R.J. ( 2017 ) Molecular basis for the functions of a bacterial MutS2 in DNA repair and recombination. DNA Repair, 57, 161 – 170.
dc.identifier.citedreferenceWarren, A.J., Maccubbin, A.E. and Hamilton, J.W. ( 1998 ) Detection of mitomycin C‐DNA adducts in vivo by 32P‐postlabeling: time course for formation and removal of adducts and biochemical modulation. Cancer Research, 58, 453 – 461.
dc.identifier.citedreferenceWeng, M.W., Zheng, Y., Jasti, V.P., Champeil, E., Tomasz, M., Wang, Y.S., et al. ( 2010 ) Repair of mitomycin C mono‐ and interstrand cross‐linked DNA adducts by UvrABC: a new model. Nucleic Acids Research, 38, 6976 – 6984.
dc.identifier.citedreferenceYakovleva, L. and Shuman, S. ( 2012 ) Mycobacterium smegmatis SftH exemplifies a distinctive clade of superfamily II DNA‐dependent ATPases with 3′ to 5′ translocase and helicase activities. Nucleic Acids Research, 40, 7465 – 7475.
dc.identifier.citedreferenceYang, W. ( 2011 ) Nucleases: diversity of structure, function and mechanism. Quarterly Reviews of Biophysics, 44, 1 – 93.
dc.identifier.citedreferenceYoungman, P., Perkins, J.B. and Losick, R. ( 1984 ) Construction of a cloning site near one end of TN917 into which foreign DNA may be inserted without affecting transposition in Bacillus subtilis or expression of the transposon‐bourne ERM gene. Plasmid, 12, 1 – 9.
dc.identifier.citedreferenceBargonetti, J., Champeil, E. and Tomasz, M. ( 2010 ) Differential toxicity of DNA adducts of mitomycin C. Journal of Nucleic Acids, 2010, 1 – 6.
dc.identifier.citedreferenceBizanek, R., McGuinness, B.F., Nakanishi, K. and Tomasz, M. ( 1992 ) Isolation and structure of an intrastrand cross‐link adduct of mitomycin‐c and DNA. Biochemistry, 31, 3084 – 3091.
dc.identifier.citedreferenceBochman, M.L., Paeschke, K., Chan, A. and Zakian, V.A. ( 2014 ) Hrq1, a homolog of the human RecQ4 helicase, acts catalytically and structurally to promote genome integrity. Cell Reports, 6, 346 – 356.
dc.identifier.citedreferenceBorowyborowski, H., Lipman, R., Chowdary, D. and Tomasz, M. ( 1990 ) Duplex oligodeoxyribonucleotides cross‐linked by mitomycin‐c at a single site ‐ synthesis, properties, and cross‐link reversibility. Biochemistry, 29, 2992 – 2999.
dc.identifier.citedreferenceBorowyborowski, H., Lipman, R. and Tomasz, M. ( 1990 ) Recognition between mitomycin‐c and specific DNA‐sequences for cross‐link formation. Biochemistry, 29, 2999 – 3006.
dc.identifier.citedreferenceBurby, P.E. and Simmons, L.A. ( 2017 ) MutS2 promotes homologous recombination in Bacillus subtilis. Journal of Bacteriology, 199.
dc.identifier.citedreferenceBurby, P.E., Simmons, Z.W., Schroeder, J.W. and Simmons, L.A. ( 2018 ) Discovery of a dual protease mechanism that promotes DNA damage checkpoint recovery. PLoS Genetics, 14, e1007512.
dc.identifier.citedreferenceCroteau, D.L., DellaVecchia, M.J., Wang, H., Bienstock, R.J., Melton, M.A. and Van Houten, B. ( 2006 ) The C‐terminal zinc finger of UvrA does not bind DNA directly but regulates damage‐specific DNA binding. Journal of Biological Chemistry, 281, 26370 – 26381.
dc.identifier.citedreferenceDamke, P.P., Dhanaraju, R., Marsin, S., Radicella, J.P. and Rao, D.N. ( 2015 ) The nuclease activities of both the Smr domain and an additional LDLK motif are required for an efficient anti‐recombination function of Helicobacter pylori MutS2. Molecular Microbiology, 96, 1240 – 1256.
dc.identifier.citedreferenceDemain, A.L. and Vaishnav, P. ( 2011 ) Natural products for cancer chemotherapy. Microbial Biotechnology, 4, 687 – 699.
dc.identifier.citedreferenceDronkert, M.L. and Kanaar, R. ( 2001 ) Repair of DNA interstrand cross‐links. Mutation Research/DNA Repair, 486, 217 – 247.
dc.identifier.citedreferenceEdgar, R.C. ( 2004 ) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792 – 1797.
dc.identifier.citedreferenceFelsenstein, J. ( 1985 ) Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783 – 791.
dc.identifier.citedreferenceFriedberg, E.C., Walker, G.C., Siede, W., Wood, R.D., Schultz, R.A. and Ellenberger, T. ( 2006 ) DNA Repair and Mutagenesis, 2nd edition. Washington, DC: ASM Press.
dc.identifier.citedreferenceFukui, K., Nakagawa, N., Kitamura, Y., Nishida, Y., Masui, R. and Kuramitsu, S. ( 2008 ) Crystal structure of MutS2 endonuclease domain and the mechanism of homologous recombination suppression. Journal of Biological Chemistry, 283, 33417 – 33427.
dc.identifier.citedreferenceGrabarczyk, D.B., Silkenat, S. and Kisker, C. ( 2018 ) Structural basis for the recruitment of Ctf18‐RFC to the replisome. Structure, 26, 137 – 144.
dc.identifier.citedreferenceHata, T., Hoshi, T., Kanamori, K., Matsumae, A., Sano, Y., Shima, T. et al. ( 1956 ) Mitomycin, a new antibiotic from Streptomyces. Journal of Antibiotics (Tokyo), 9, 141 – 146.
dc.identifier.citedreferenceIvancic‐Bace, I., Vlasic, I., Salaj‐Smic, E. and Brcic‐Kostic, K. ( 2006 ) Genetic evidence for the requirement of RecA loading activity in SOS induction after UV irradiation in Escherichia coli. Journal of Bacteriology, 188, 5024 – 5032.
dc.identifier.citedreferenceIyer, V.N. and Szybalski, W. ( 1963 ) A molecular mechanism of mitomycin action: linking of complementary DNA strands. Proceedings of the National Academy of Sciences, 50, 355 – 362.
dc.identifier.citedreferenceJaciuk, M., Nowak, E., Skowronek, K., Tanska, A. and Nowotny, M. ( 2011 ) Structure of UvrA nucleotide excision repair protein in complex with modified DNA. Nature Structural & Molecular Biology, 18, 191 – 197.
dc.identifier.citedreferenceKarimova, G., Gauliard, E., Davi, M., Ouellette, S.P. and Ladant, D. ( 2017 ) Protein–protein interaction: bacterial two‐hybrid. Methods in Molecular Biology, 1615, 159 – 176.
dc.identifier.citedreferenceKarimova, G., Pidoux, J., Ullmann, A. and Ladant, D. ( 1998 ) A bacterial two‐hybrid system based on a reconstituted signal transduction pathway. Proceedings of the National Academy of Sciences, 95, 5752 – 5756.
dc.identifier.citedreferenceKelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N. and Sternberg, M.J. ( 2015 ) The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10, 845 – 858.
dc.identifier.citedreferenceKidane, D. and Graumann, P.L. ( 2005 ) Dynamic formation of RecA filaments at DNA double strand break repair centers in live cells. The Journal of Cell Biology, 170, 357 – 366.
dc.identifier.citedreferenceKisker, C., Kuper, J. and Van Houten, B. ( 2013 ) Prokaryotic nucleotide excision repair. Cold Spring Harbor Perspectives in Biology, 5, 18.
dc.identifier.citedreferenceKreuzer, K.N. ( 2013 ) DNA damage responses in prokaryotes: regulating gene expression, modulating growth patterns, and manipulating replication forks. Cold Spring Harbor Perspectives in Biology, 5, a012674.
dc.identifier.citedreferenceKumar, S., Lipman, R. and Tomasz, M. ( 1992 ) Recognition of specific DNA‐sequences by mitomycin‐c for alkylation. Biochemistry, 31, 1399 – 1407.
dc.identifier.citedreferenceKumar, S., Stecher, G. and Tamura, K. ( 2016 ) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870 – 1874.
dc.identifier.citedreferenceKwon, S.H., Choi, D.H., Lee, R. and Bae, S.H. ( 2012 ) Saccharomyces cerevisiae Hrq1 requires a long 3′‐tailed DNA substrate for helicase activity. Biochemical and Biophysical Research Communications, 427, 623 – 628.
dc.identifier.citedreferenceLage, C., Goncalves, S.R., Souza, L.L., de Padula, M. and Leitao, A.C. ( 2010 ) Differential survival of Escherichia coli uvrA, uvrB, and uvrC mutants to psoralen plus UV‐A (PUVA): evidence for uncoupled action of nucleotide excision repair to process DNA adducts. Journal of Photochemistry and Photobiology B: Biology, 98, 40 – 47.
dc.identifier.citedreferenceLenhart, J.S., Brandes, E.R., Schroeder, J.W., Sorenson, R.J., Showalter, H.D. and Simmons, L.A. ( 2014 ) RecO and RecR are necessary for RecA loading in response to DNA damage and replication fork stress. Journal of Bacteriology, 196, 2851 – 2860.
dc.identifier.citedreferenceLenhart, J.S., Schroeder, J.W., Walsh, B.W. and Simmons, L.A. ( 2012 ) DNA repair and genome maintenance in Bacillus subtilis. Microbiology and Molecular Biology Reviews, 76, 530 – 564.
dc.identifier.citedreferenceLittle, J.W. ( 1981 ) Lambda exonuclease. Gene Amplification Analogy, 2, 135 – 145.
dc.identifier.citedreferenceMoolenaar, G.F., van Rossum‐Fikkert, S., van Kesteren, M. and Goosen, N. ( 2002 ) Cho, a second endonuclease involved in Escherichia coli nucleotide excision repair. Proceedings of the National Academy of Sciences, 99, 1467 – 1472.
dc.identifier.citedreferenceNei, M. and Kumar, S. ( 2000 ) Molecular Evolution and Phylogenetics. New York: Oxford University Press.
dc.identifier.citedreferenceNoll, D.M., Mason, T.M. and Miller, P.S. ( 2006 ) Formation and repair of interstrand cross‐links in DNA. Chemical Reviews, 106, 277 – 301.
dc.identifier.citedreferenceOrren, D.K. and Sancar, A. ( 1989 ) The (A)BC excinuclease of Escherichia coli has only the UvrB and UvrC subunits in the incision complex. Proceedings of the National Academy of Sciences, 86, 5237 – 5241.
dc.identifier.citedreferencePerera, A.V., Mendenhall, J.B., Courcelle, C.T. and Courcelle, J. ( 2016 ) Cho endonuclease functions during DNA interstrand cross‐link repair in Escherichia coli. Journal of Bacteriology, 198, 3099 – 3108.
dc.identifier.citedreferencePetit, C. and Sancar, A. ( 1999 ) Nucleotide excision repair: from E. coli to man. Biochimie, 81, 15 – 25.
dc.identifier.citedreferencePinto, A.V., Mathieu, A., Marsin, S., Veaute, X., Ielpi, L., Labigne, A. et al. ( 2005 ) Suppression of homologous and homeologous recombination by the bacterial MutS2 protein. Molecular Cell, 17, 113 – 120.
dc.identifier.citedreferenceRogers, C.M. and Bochman, M.L. ( 2017 ) Saccharomyces cerevisiae Hrq1 helicase activity is affected by the sequence but not the length of single‐stranded DNA. Biochemical and Biophysical Research Communications, 486, 1116 – 1121.
dc.identifier.citedreferenceRogers, C.M., Wang, J.C., Noguchi, H., Imasaki, T., Takagi, Y. and Bochman, M.L. ( 2017 ) Yeast Hrq1 shares structural and functional homology with the disease‐linked human RecQ4 helicase. Nucleic Acids Research, 45, 5217 – 5230.
dc.identifier.citedreferenceSaitou, N. and Nei, M. ( 1987 ) The neighbor‐joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406 – 425.
dc.identifier.citedreferenceSassanfar, M. and Roberts, J.W. ( 1990 ) Nature of the SOS‐inducing signal in Escherichia coli. The involvement of DNA replication. Journal of Molecular Biology, 212, 79 – 96.
dc.identifier.citedreferenceSayers, J.R. and Eckstein, F. ( 1990 ) Properties of overexpressed phage T5 D15 exonuclease. Similarities with Escherichia coli DNA polymerase I 5’‐3’ exonuclease. Journal of Biological Chemistry, 265, 18311 – 18317.
dc.identifier.citedreferenceSayers, J.R. and Eckstein, F. ( 1991 ) A single‐strand specific endonuclease activity copurifies with overexpressed T5 D15 exonuclease. Nucleic Acids Research, 19, 4127 – 4132.
dc.identifier.citedreferenceShi, W., Punta, M., Bohon, J., Sauder, J.M., D’Mello, R., Sullivan, M., et al. ( 2011 ) Characterization of metalloproteins by high‐throughput X‐ray absorption spectroscopy. Genome Research, 21, 898 – 907.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.