Show simple item record

PET/MRI in Breast Cancer

dc.contributor.authorPujara, Akshat C.
dc.contributor.authorKim, Eric
dc.contributor.authorAxelrod, Deborah
dc.contributor.authorMelsaether, Amy N.
dc.date.accessioned2019-02-12T20:22:39Z
dc.date.available2020-04-01T15:06:24Zen
dc.date.issued2019-02
dc.identifier.citationPujara, Akshat C.; Kim, Eric; Axelrod, Deborah; Melsaether, Amy N. (2019). "PET/MRI in Breast Cancer." Journal of Magnetic Resonance Imaging 49(2): 328-342.
dc.identifier.issn1053-1807
dc.identifier.issn1522-2586
dc.identifier.urihttps://hdl.handle.net/2027.42/147750
dc.publisherAmerican College of Radiology
dc.publisherWiley Periodicals, Inc.
dc.titlePET/MRI in Breast Cancer
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147750/1/jmri26298_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147750/2/jmri26298.pdf
dc.identifier.doi10.1002/jmri.26298
dc.identifier.sourceJournal of Magnetic Resonance Imaging
dc.identifier.citedreferenceGillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology 2016; 278: 563 – 577.
dc.identifier.citedreferenceTateishi U, Miyake M, Nagaoka T, et al. Neoadjuvant chemotherapy in breast cancer: prediction of pathologic response with PET/CT and dynamic contrast‐enhanced MR imaging—prospective assessment. Radiology 2012; 263: 53 – 63.
dc.identifier.citedreferenceJacobs MA, Ouwerkerk R, Wolff AC, et al. Monitoring of neoadjuvant chemotherapy using multiparametric, 23Na sodium MR, and multimodality (PET/CT/MRI) imaging in locally advanced breast cancer. Breast Cancer Res Treat 2011; 128: 119 – 126.
dc.identifier.citedreferenceCho N, Im SA, Kang KW, et al. Early prediction of response to neoadjuvant chemotherapy in breast cancer patients: comparison of single‐voxel (1)H‐magnetic resonance spectroscopy and (18)F‐fluorodeoxyglucose positron emission tomography. Eur Radiol 2016; 26: 2279 – 2290.
dc.identifier.citedreferenceGroheux D, Hindié E, Delord M, et al. Prognostic impact of (18)FDG‐PET‐CT findings in clinical stage III and IIB breast cancer. J Natl Cancer Inst 2012; 104: 1879 – 1887.
dc.identifier.citedreferencePlecha DM, Faulhaber P. PET/MRI of the breast. Eur J Radiol 2017; 94: A26 – A34.
dc.identifier.citedreferenceSawicki LM, Grueneisen J, Schaarschmidt BM, et al. Evaluation of 18F‐FDG PET/MRI, 18F‐FDG PET/CT, MRI, and CT in whole‐body staging of recurrent breast cancer. Eur J Radiol 2016; 85: 459 – 465.
dc.identifier.citedreferenceCatalano OA, Nicolai E, Rosen BR, et al. Comparison of CE‐FDG‐PET/CT with CE‐FDG‐PET/MR in the evaluation of osseous metastases in breast cancer patients. Br J Cancer 2015; 112: 1452 – 1460.
dc.identifier.citedreferenceCatalano OA, Daye D, Signore A. Staging performance of whole‐body DWI, PET/CT and PET/MRI in invasive ductal carcinoma of the breast. Int J Oncol 2017; 51: 281 – 288.
dc.identifier.citedreferenceRaad RA, Friedman KP, Heacock L, Ponzo F, Melsaether A, Chandarana H. Outcome of small lung nodules missed on hybrid PET/MRI in patients with primary malignancy. J Magn Reson Imaging 2016; 43: 504 – 511.
dc.identifier.citedreferenceSasaki M, Tozaki M, Kubota K, et al. Simultaneous whole‐body and breast 18F‐FDG PET/MRI examinations in patients with breast cancer: a comparison of apparent diffusion coefficients and maximum standardized uptake values. Jpn J Radiol 2018; 36: 122 – 133.
dc.identifier.citedreferenceRiola‐Parada C, García‐Cañamaque L, Pérez‐Dueñas V, Garcerant‐Tafur M, Carreras‐Delgado JL. Simultaneous. PET/MRI vs. PET/CT in oncology. A systematic review. Rev Esp Med Nucl Imagen Mol 2016; 35: 306 – 312.
dc.identifier.citedreferenceHeusner TA, Kuemmel S, Koeninger A, et al. Diagnostic value of diffusion‐weighted magnetic resonance imaging (DWI) compared to FDG PET/CT for whole‐body breast cancer staging. Eur J Nucl Med Mol Imaging 2010; 37: 1077 – 1086.
dc.identifier.citedreferenceGrueneisen J, Sawicki LM, Wetter A. Evaluation of PET and MR datasets in integrated 18F‐FDG PET/MRI: A comparison of different MR sequences for whole‐body restaging of breast cancer patients. Eur J Radiol 2017; 89: 14 – 19.
dc.identifier.citedreferenceBeiderwellen K, Huebner M, Heusch P, et al. Whole‐body [18F]FDG PET/MRI vs. PET/CT in the assessment of bone lesions in oncological patients: initial results. Eur Radiol 2014; 24: 2023 – 2030.
dc.identifier.citedreferenceEiber M, Takei T, Souvatzoglou M, et al. Performance of whole‐body integrated 18F‐FDG PET/MR in comparison to PET/CT for evaluation of malignant bone lesions. J Nucl Med 2014; 55: 191 – 197.
dc.identifier.citedreferenceJeong JH, Cho IH, Kong EJ, Chun KA. Evaluation of Dixon sequence on hybrid PET/MR compared with contrast‐enhanced PET/CT for PET‐positive lesions. Nucl Med Mol Imaging 2014; 48: 26 – 32.
dc.identifier.citedreferenceSchäfer JF, Gatidis S, Schmidt H. Simultaneous whole‐body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology 2014; 273: 220 – 231.
dc.identifier.citedreferenceGroheux D, Espié M, Giacchetti S, Hindié E. Performance of FDG PET/CT in the clinical management of breast cancer. Radiology 2013; 266: 388 – 405.
dc.identifier.citedreferenceYamamoto Y, Ozawa Y, Kubouchi K, Nakamura S, Nakajima Y, Inoue T. Comparative analysis of imaging sensitivity of positron emission mammography and whole‐body PET in relation to tumor size. Clin Nucl Med 2015; 40: 21 – 25.
dc.identifier.citedreferenceBerg WA, Zhang Z, Lehrer D, et al. ACRIN 6666 Investigators. Detection of breast cancer with addition of annual screening ultrasound or a single screening MRI to mammography in women with elevated breast cancer risk. JAMA 2012; 307: 1394 – 1404.
dc.identifier.citedreferenceKuhl C, Weigel S, Schrading S, et al. Prospective multicenter cohort study to refine management recommendations for women at elevated familial risk of breast cancer: the EVA trial. J Clin Oncol 2010; 28: 1450 – 1457.
dc.identifier.citedreferenceAmerican College of Radiology: ACR practice guideline for the performance of magnetic resonance imaging (MRI) of the breast. Practice guidelines and technical standards. Reston, VA: American College of Radiology; 2013.
dc.identifier.citedreferenceBotsikas D, Kalovidouri A, Becker M, et al. Clinical utility of 18F‐FDG‐PET/MR for preoperative breast cancer staging. Eur Radiol 2016; 26: 2297 – 2307.
dc.identifier.citedreferenceHeusner TA, Hahn S, Jonkmanns C, et al. Diagnostic accuracy of fused positron emission tomography/magnetic resonance mammography: initial results. Br J Radiol 2011; 84: 126 – 135.
dc.identifier.citedreferenceGrueneisen J, Nagarajah J, Buchbender C, et al. Positron emission tomography/magnetic resonance imaging for local tumor staging in patients with primary breast cancer: a comparison with positron emission tomography/computed tomography and magnetic resonance imaging. Invest Radiol 2015; 50: 505 – 513.
dc.identifier.citedreferenceErgul N, Kadioglu H, Yildiz S, et al. Assessment of multifocality and axillary nodal involvement in early‐stage breast cancer patients using 18F‐FDG PET/CT compared to contrast‐enhanced and diffusion‐weighted magnetic resonance imaging and sentinel node biopsy. Acta Radiol 2015; 56: 917 – 923.
dc.identifier.citedreferenceMoy L, Ponzo F, Noz ME, et al. Improving specificity of breast MRI using prone PET and fused MRI and PET 3D volume datasets. J Nucl Med 2007; 48: 528 – 537.
dc.identifier.citedreferenceMoy L, Noz ME, Maguire GQ, et al. Role of fusion of prone FDG‐PET and magnetic resonance imaging of the breasts in the evaluation of breast cancer. Breast J 2010; 16: 369 – 376.
dc.identifier.citedreferenceGarcia‐Velloso MJ, Ribelles MJ, Rodriguez M, et al. MRI fused with prone FDG PET/CT improves the primary tumour staging of patients with breast cancer. Eur Radiol 2017; 27: 3190 – 3198.
dc.identifier.citedreferenceDomingues RC, Carneiro MP, Lopes FC, da Fonseca LM, Gasparetto EL. Whole‐body MRI and FDG PET fused images for evaluation of patients with cancer. AJR Am J Roentgenol 2009; 192: 1012 – 1020.
dc.identifier.citedreferenceZiegler SI, Pichler BJ, Boening G, et al. A prototype high‐resolution animal positron tomograph with avalanche photodiode arrays and LSO crystals. Eur J Nucl Med 2001; 28: 136 – 143.
dc.identifier.citedreferenceZaidi H, Montandon ML, Slosman DO. Magnetic resonance imaging‐guided attenuation and scatter corrections in three‐dimensional brain positron emission tomography. Med Phys 2003; 30: 937 – 948.
dc.identifier.citedreferenceHofmann M, Bezrukov I, Mantlik F, et al. MRI‐based attenuation correction for whole‐body PET/MRI: quantitative evaluation of segmentation‐ and atlas‐based methods. J Nucl Med 2011; 52: 1392 – 1399.
dc.identifier.citedreferenceAklan B, Paulus DH, Wenkel E, et al. Toward simultaneous PET/MR breast imaging: systematic evaluation and integration of a radiofrequency breast coil. Med Phys 2013; 40: 024301.
dc.identifier.citedreferenceDregely I, Lanz T, Metz S, et al. A 16‐channel MR coil for simultaneous PET/MRI in breast cancer. Eur Radiol 2015; 25: 1154 – 1161.
dc.identifier.citedreferencePace L, Nicolai E, Luongo, et al. Comparison of whole‐body PET/CT and PET/MRI in breast cancer patients: lesion detection and quantitation of 18F‐deoxyglucose uptake in lesions and in normal organ tissues. Eur J Radiol 2014; 83: 289 – 296.
dc.identifier.citedreferencePujara AC, Raad RA, Ponzo F, et al. Standardized uptake values from PET/MRI in metastatic breast cancer: an organ‐based comparison with PET/CT. Breast J 2016; 22: 264 – 273.
dc.identifier.citedreferenceAl‐Nabhani KZ, Syed R, Michopoulou S, et al. Qualitative and quantitative comparison of PET/CT and PET/MR imaging in clinical practice. J Nucl Med 2014; 55: 88 – 94.
dc.identifier.citedreferenceDrzezga A, Souvatzoglou M, Eiber M, et al. First clinical experience with integrated whole‐body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med 2012; 53: 845 – 855.
dc.identifier.citedreferenceHeusch P, Nensa F, Schaarschmidt B, et al. Diagnostic accuracy of whole‐body PET/MRI and whole‐body PET/CT for TNM staging in oncology. Eur J Nucl Med Mol Imaging 2015; 42: 42 – 48.
dc.identifier.citedreferenceHuellner MW, Appenzeller P, Kuhn FP, et al. Whole‐body nonenhanced PET/MR versus PET/CT in the staging and restaging of cancers: preliminary observations. Radiology 2014; 273: 859 – 869.
dc.identifier.citedreferenceBos R, van Der Hoeven JJ, van Der Wall E, et al. Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol 2002; 20: 379 – 387.
dc.identifier.citedreferenceGil‐Rendo A, Martínez‐Regueira F, Zornoza G, García‐Velloso MJ, Beorlegui C, Rodriguez‐Spiteri N. Association between [18F]fluorodeoxyglucose uptake and prognostic parameters in breast cancer. Br J Surg 2009; 96: 166 – 170.
dc.identifier.citedreferenceKumar R, Chauhan A, Zhuang H, Chandra P, Schnall M, Alavi A. Clinicopathologic factors associated with false negative FDG‐PET in primary breast cancer. Breast Cancer Res Treat 2006; 98: 267 – 274.
dc.identifier.citedreferenceKim MY, Cho N, Chang JM, et al. Mammography and ultrasonography evaluation of unexpected focal 18F‐FDG uptakes in breast on PET/CT. Acta Radiol 2012; 53: 249 – 254.
dc.identifier.citedreferenceToney LK, Lam DL, Rahbar H. Drug injection‐related fat necrosis of the breast with FDG PET‐CT uptake. Radiol Case Rep 2015; 10: 12 – 17.
dc.identifier.citedreferencePiccardo A, Puntoni M, Morbelli S, et al. 18F‐FDG PET/CT is a prognostic biomarker in patients affected by bone metastases from breast cancer in comparison with 18F‐NaF PET/CT. Nuklearmedizin 2015; 54: 163 – 172.
dc.identifier.citedreferenceJambor I, Kuisma A, Ramadan S, et al. Prospective evaluation of planar bone scintigraphy, SPECT, SPECT/CT, 18F‐NaF PET/CT and whole body 1.5T MRI, including DWI, for the detection of bone metastases in high risk breast and prostate cancer patients: SKELETA clinical trial. Acta Oncol 2016; 55: 59 – 67.
dc.identifier.citedreferenceCzernin J, Satyamurthy N, Schiepers C. Molecular mechanisms of bone 18F‐NaF deposition. J Nucl Med 2010; 51: 1826 – 1829.
dc.identifier.citedreferenceKatzenellenbogen JA. Designing steroid receptor‐based radiotracers to image breast and prostate tumors. J Nucl Med 1995; 36: 8S – 13S.
dc.identifier.citedreferenceGemignani ML, Patil S, Seshan VE, et al. Feasibility and predictability of perioperative PET and estrogen receptor ligand in patients with invasive breast cancer. J Nucl Med 2013; 54: 1697 – 1702.
dc.identifier.citedreferenceDijkers EC, Oude Munnink TH, Kosterink JG, et al. Biodistribution of 89Zr‐trastuzumab and PET imaging of HER2‐positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther 2010; 87: 586 – 592.
dc.identifier.citedreferenceGaykema SB, Schröder CP, Vitfell‐Rasmussen J, et al. 89Zr‐trastuzumab and 89Zr‐bevacizumab PET to evaluate the effect of the HSP90 inhibitor NVP‐AUY922 in metastatic breast cancer patients. Clin Cancer Res 2014; 20: 3945 – 3954.
dc.identifier.citedreferenceGaykema SB, de Jong JR, Perik PJ, et al. (111)In‐trastuzumab scintigraphy in HER2‐positive metastatic breast cancer patients remains feasible during trastuzumab treatment. Mol Imaging 2014; 13.
dc.identifier.citedreferenceAxelson H, Fredlund E, Ovenberger M, Landberg G, Påhlman S. Hypoxia‐induced dedifferentiation of tumor cells—a mechanism behind heterogeneity and aggressiveness of solid tumors. Semin Cell Dev Biol 2005; 16: 554 – 563.
dc.identifier.citedreferenceJögi A, Øra I, Nilsson H, et al. Hypoxia alters gene expression in human neuroblastoma cells toward an immature and neural crest‐like phenotype. Proc Natl Acad Sci U S A 2002; 99: 7021 – 7026.
dc.identifier.citedreferenceNordsmark M, Bentzen SM, Rudat V, et al. Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi‐center study. Radiother Oncol 2005; 77: 18 – 24.
dc.identifier.citedreferenceCheng J, Lei L, Xu J, et al. 18F‐fluoromisonidazole PET/CT: a potential tool for predicting primary endocrine therapy resistance in breast cancer. J Nucl Med 2013; 54: 333 – 340.
dc.identifier.citedreferenceOstenson J, Pujara AC, Mikheev A, et al. Voxelwise analysis of simultaneously acquired and spatially correlated (18) F‐fluorodeoxyglucose (FDG)‐PET and intravoxel incoherent motion metrics in breast cancer. Magn Reson Med 2017; 78: 1147 – 1156.
dc.identifier.citedreferenceTaneja S, Jena A, Goel R, Sarin R, Kaul S. Simultaneous whole‐body 18F‐FDG PET‐MRI in primary staging of breast cancer: a pilot study. Eur J Radiol 2014; 83: 2231 – 2239.
dc.identifier.citedreferenceMelsaether AN, Raad RA, Pujara AC, et al. Comparison of whole‐body (18)F FDG PET/MR imaging and whole‐body (18)F FDG PET/CT in terms of lesion detection and radiation dose in patients with breast cancer. Radiology 2016; 281: 193 – 202.
dc.identifier.citedreferenceKuhl CK, Strobel K, Bieling H, Leutner C, Schild HH, Schrading S. Supplemental breast MR imaging screening of women with average risk of breast cancer. Radiology 2017; 283: 361 – 370.
dc.identifier.citedreferenceBitencourt AG, Lima EN, Chojniak R, Marques EF, Souza JA, Andrade WP, Guimarães MD. Multiparametric evaluation of breast lesions using PET‐MRI: initial results and future perspectives. Medicine (Baltimore) 2014; 93: e115.
dc.identifier.citedreferenceAvril N, Rosé CA, Schelling M, et al. Breast imaging with positron emission tomography and fluorine‐18 fluorodeoxyglucose: use and limitations. J Clin Oncol 2000; 18: 3495 – 3502.
dc.identifier.citedreferenceJung NY, Kim SH, Kim SH, et al. Effectiveness of breast MRI and (18)F‐FDG PET/CT for the preoperative staging of invasive lobular carcinoma versus ductal carcinoma. J Breast Cancer 2015; 18: 63 – 72.
dc.identifier.citedreferenceMagometschnigg HF, Baltzer PA, Fueger B, et al. Diagnostic accuracy of (18)F‐FDG PET/CT compared with that of contrast‐enhanced MRI of the breast at 3 T. Eur J Nucl Med Mol Imaging 2015; 42: 1656 – 1665.
dc.identifier.citedreferenceKong EJ, Chun KA, Bom HS, Lee J, Lee SJ, Cho IH. Initial experience of integrated PET/MR mammography in patients with invasive ductal carcinoma. Hell J Nucl Med 2014; 17: 171 – 176.
dc.identifier.citedreferencePinker K, Bogner W, Baltzer P, et al. Improved differentiation of benign and malignant breast tumors with multiparametric 18fluorodeoxyglucose positron emission tomography magnetic resonance imaging: a feasibility study. Clin Cancer Res 2014; 20: 3540 – 3549.
dc.identifier.citedreferenceJena A, Taneja S, Singh A, Negi P, Mehta SB, Sarin R. Role of pharmacokinetic parameters derived with high temporal resolution DCE MRI using simultaneous PET/MRI system in breast cancer: A feasibility study. Eur J Radiol 2017; 86: 261 – 266.
dc.identifier.citedreferenceAmarnath J, Sangeeta T, Mehta SB. Role of quantitative pharmacokinetic parameter (transfer constant: K(trans)) in the characterization of breast lesions on MRI. Indian J Radiol Imaging 2013; 23: 19 – 25.
dc.identifier.citedreferenceMargolis NE, Moy L, Sigmund EE, et al. Assessment of aggressiveness of breast cancer using simultaneous 18F‐FDG‐PET and DCE‐MRI: preliminary observation. Clin Nucl Med 2016; 41: e355 – 361.
dc.identifier.citedreferenceCatalano OA, Horn GL, Signore A, et al. PET/MR in invasive ductal breast cancer: correlation between imaging markers and histological phenotype. Br J Cancer 2017; 116: 893 – 902.
dc.identifier.citedreferenceAn YS, Kang DK, Jung YS, Han S, Kim TH. Tumor metabolism and perfusion ratio assessed by 18F‐FDG PET/CT and DCE‐MRI in breast cancer patients: Correlation with tumor subtype and histologic prognostic factors. Eur J Radiol 2015; 84: 1365 – 1370.
dc.identifier.citedreferenceKim TH, Yoon JK, Kang DK, et al. Correlation between F‐18 fluorodeoxyglucose positron emission tomography metabolic parameters and dynamic contrast‐enhanced MRI‐derived perfusion data in patients with invasive ductal breast carcinoma. Ann Surg Oncol 2015; 22: 3866 – 3872.
dc.identifier.citedreferenceKitajima K, Yamano T, Fukushima K, et al. Correlation of the SUVmax of FDG‐PET and ADC values of diffusion‐weighted MR imaging with pathologic prognostic factors in breast carcinoma. Eur J Radiol 2016; 85: 943 – 949.
dc.identifier.citedreferenceKaran B, Pourbagher A, Torun N. Diffusion‐weighted imaging and (18) F‐fluorodeoxyglucose positron emission tomography/computed tomography in breast cancer: Correlation of the apparent diffusion coefficient and maximum standardized uptake values with prognostic factors. J Magn Reson Imaging 2016; 43: 1434 – 1444.
dc.identifier.citedreferenceBaba S, Isoda T, Maruoka Y, et al. Diagnostic and prognostic value of pretreatment SUV in 18F‐FDG/PET in breast cancer: comparison with apparent diffusion coefficient from diffusion‐weighted MR imaging. J Nucl Med 2014; 55: 736 – 742.
dc.identifier.citedreferenceChoi BB, Kim SH, Kang BJ, et al. Diffusion‐weighted imaging and FDG PET/CT: predicting the prognoses with apparent diffusion coefficient values and maximum standardized uptake values in patients with invasive ductal carcinoma. World J Surg Oncol 2012; 10: 126.
dc.identifier.citedreferencePahk K, Kim S, Choe JG. Early prediction of pathological complete response in luminal B type neoadjuvant chemotherapy‐treated breast cancer patients: comparison between interim 18F‐FDG PET/CT and MRI. Nucl Med Commun 2015; 36: 887 – 891.
dc.identifier.citedreferenceMei‐rong Zhou, Zhong‐hua Tang, Jing Li, et al. Clinical and pathologic features of multifocal and multicentric breast cancer in Chinese women: a retrospective cohort study. J Breast Cancer 2013; 16: 77 – 83.
dc.identifier.citedreferenceLang Z, Wu Y, Li C, Li X, Wang X, Qu G. Multifocal and multicentric breast carcinoma: a significantly more aggressive tumor than unifocal breast cancer. Anticancer Res 2017; 37: 4593 – 4598.
dc.identifier.citedreferenceBae MS, Chang JM, Cho N, Han W, Ryu HS, Moon WK. Association of preoperative breast MRI features with locoregional recurrence after breast conservation therapy. Acta Radiol 2018; 59: 409 – 417.
dc.identifier.citedreferenceGoorts B, Vöö S, van Nijnatten TJA. Hybrid 18 F‐FDG PET/MRI might improve locoregional staging of breast cancer patients prior to neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging 2017; 44: 1796 – 1805.
dc.identifier.citedreferencevan Nijnatten TJA, Goorts B, Vöö S. Added value of dedicated axillary hybrid 18F‐FDG PET/MRI for improved axillary nodal staging in clinically node‐positive breast cancer patients: a feasibility study. Eur J Nucl Med Mol Imaging 2018; 45: 179 – 186.
dc.identifier.citedreferenceNoushi F, Spillane AJ, Uren RF, Gebski V. Internal mammary lymph node metastasis in breast cancer: predictive models to assist with prognostic influence. Breast 2011; 20: 278 – 283.
dc.identifier.citedreferenceJochelson MS, Lebron L, Jacobs SS, et al. Detection of internal mammary adenopathy in patients with breast cancer by PET/CT and MRI. AJR Am J Roentgenol 2015; 205: 899 – 904.
dc.identifier.citedreferenceGreenwood HI, Freimanis RI, Carpentier BM, Joe BN. Clinical breast magnetic resonance imaging: technique, indications, and future applications. Semin Ultrasound CT MR 2018; 39: 45 – 59.
dc.identifier.citedreferenceKinoshita T, Odagiri K, Andoh K, et al. Evaluation of small internal mammary lymph node metastases in breast cancer by MRI. Radiat Med 1999; 17: 189 – 193.
dc.identifier.citedreferenceDrukker K, Li H, Antropova N, Edwards A, Papaioannou J, Giger ML. Most‐enhancing tumor volume by MRI radiomics predicts recurrence‐free survival “early on” in neoadjuvant treatment of breast cancer. Cancer Imaging 2018; 18: 12.
dc.identifier.citedreferenceHylton NM, Blume JD, Bernreuter WK, et al. ACRIN 6657 Trial Team and I‐SPY 1 TRIAL Investigators. Locally advanced breast cancer: MR imaging for prediction of response to neoadjuvant chemotherapy—results from ACRIN 6657/I‐SPY TRIAL. Radiology 2012; 263: 663 – 672.
dc.identifier.citedreferenceCho N, Im SA, Cheon GJ, et al. Integrated (18)F‐FDG PET/MRI in breast cancer: early prediction of response to neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging 2018; 45: 328 – 339.
dc.identifier.citedreferenceWang J, Shih TT, Yen RF. Multiparametric evaluation of treatment response to neoadjuvant chemotherapy in breast cancer using integrated PET/MR. Clin Nucl Med 2017; 42: 506 – 513.
dc.identifier.citedreferencePengel KE, Koolen BB, Loo CE, et al. Combined use of 18F‐FDG PET/CT and MRI for response monitoring of breast cancer during neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging 2014; 41: 1515 – 1524.
dc.identifier.citedreferenceAn YY, Kim SH, Kang BJ, Lee AW. Treatment response evaluation of breast cancer after neoadjuvant chemotherapy and usefulness of the imaging parameters of MRI and PET/CT. J Korean Med Sci 2015; 30: 808 – 815.
dc.identifier.citedreferenceLim I, Noh WC, Park J, et al. The combination of FDG PET and dynamic contrast‐enhanced MRI improves the prediction of disease‐free survival in patients with advanced breast cancer after the first cycle of neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging 2014; 41: 1852 – 1860.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.