Show simple item record

Codoping Er‐N to Suppress Self‐Compensation Donors for Stable p‐Type Zinc Oxide

dc.contributor.authorOuyang, Yifang
dc.contributor.authorMeng, Zhisen
dc.contributor.authorMo, Xiaoming
dc.contributor.authorChen, Hongmei
dc.contributor.authorTao, Xiaoma
dc.contributor.authorPeng, Qing
dc.contributor.authorDu, Yong
dc.date.accessioned2019-02-12T20:22:40Z
dc.date.available2020-04-01T15:06:24Zen
dc.date.issued2019-02
dc.identifier.citationOuyang, Yifang; Meng, Zhisen; Mo, Xiaoming; Chen, Hongmei; Tao, Xiaoma; Peng, Qing; Du, Yong (2019). "Codoping Er‐N to Suppress Self‐Compensation Donors for Stable p‐Type Zinc Oxide." Advanced Theory and Simulations 2(2): n/a-n/a.
dc.identifier.issn2513-0390
dc.identifier.issn2513-0390
dc.identifier.urihttps://hdl.handle.net/2027.42/147751
dc.description.abstractStable p‐type doping of zinc oxide (ZnO) is an unsolved but critical issue for ultraviolet optoelectronic applications despite extensive investigations. Here, an Er‐N codoping strategy for defect engineering of ZnO to suppress the self‐compensation of the donor‐type intrinsic point defects (IPDs) over the acceptor‐type ones is proposed. Via first‐principles calculations, the influence of nitrogen and erbium concentration on the stability of ZnO is investigated. The complex (ErZn‐mNO) consisting of multiple substitutional N on O sites and one substitutional Er on Zn site is a crucial stabilizer. With an increase of the concentration of N, the absorption edges redshift to lower energy due to the impurity band broadening in the bandgap. The results suggest that codoping Er‐N into the ZnO matrix is a feasible way to manufacture stable p‐type ZnO.Stable p‐type ZnO is important but challenging to achieve despite extensive efforts with single dopants or codopants. A first‐principles study reveals that the Er‐N codopant is stable, suppressing the self‐compensation of the donor‐type intrinsic point defects, with a strong infrared absorption when the N concentration is above 1.389%. The absorption edges redshift when N concentration increases.
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.otherfirst principles
dc.subject.otherp‐type ZnO
dc.subject.otherEr‐N codoping
dc.subject.otherdefect formation energy
dc.titleCodoping Er‐N to Suppress Self‐Compensation Donors for Stable p‐Type Zinc Oxide
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbsecondlevelScience (General)
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147751/1/adts201800133_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147751/2/adts201800133-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147751/3/adts201800133.pdf
dc.identifier.doi10.1002/adts.201800133
dc.identifier.sourceAdvanced Theory and Simulations
dc.identifier.citedreferenceY. R. Sui, B. Yao, Z. Hua, G. Z. Xing, X. M. Huang, T. Yang, L. L. Gao, T. T. Zhao, H. L. Pan, H. Zhu, J. Phys. D: Appl. Phys. 2009, 42, 065101.
dc.identifier.citedreferenceP. K. Nayak, J. Yang, J. Kim, S. Chung, J. Jeong, C. Lee, Y. Hong, J. Phys. D: Appl. Phys. 2009, 42, 035102.
dc.identifier.citedreferenceX. Zeng, A. Junlin Yuan, L. Zhang, J. Phys. Chem. C 2008, 112, 3503.
dc.identifier.citedreferenceZ. Meng, X. Mo, X. Cheng, Y. Zhou, X. Tao, Y. Ouyang, Mater. Res. Express 2017, 4, 035903.
dc.identifier.citedreferenceY. Xu, T. Yang, B. Yao, Y. F. Li, Z. H. Ding, J. C. Li, H. Z. Wang, Z. Z. Zhang, L. G. Zhang, H. F. Zhao, Ceram. Int. 2014, 40, 2161.
dc.identifier.citedreferenceY. Yang, Y. Li, C. Wang, C. Zhu, C. Lv, X. Ma, D. Yang, Adv. Opt. Mater. 2014, 2, 240.
dc.identifier.citedreferenceY. R. Sui, B. Yao, L. Xiao, L. L. Yang, J. Cao, X. F. Li, G. Z. Xing, J. H. Lang, X. Y. Li, S. Q. Lv, Appl. Surf. Sci. 2013, 287, 484.
dc.identifier.citedreferenceL. Chen, Z. Xiong, Q. Wan, D. Li, Opt. Mater. 2010, 32, 1216.
dc.identifier.citedreferenceD. Li, W. Zhang, X. Yu, Z. Jiang, L. Luan, Y. Chen, D. Li, Appl. Surf. Sci. 2012, 258, 10064.
dc.identifier.citedreferenceW. Li, C. Kong, G. Qin, H. Ruan, L. Fang, J. Alloys Compd. 2014, 609, 173.
dc.identifier.citedreferenceY. Gai, G. Tang, J. Li, J. Phys. Chem. Solids 2011, 72, 725.
dc.identifier.citedreferenceT. P. Rao, M. C. S. Kumar, J. Alloys Compd. 2011, 509, 8676.
dc.identifier.citedreferenceH. Shen, C. X. Shan, J. S. Liu, B. H. Li, Z. Z. Zhang, D. Z. Shen, Phys. Status Solidi 2013, 250, 2102.
dc.identifier.citedreferenceC. X. Shan, J. S. Liu, Y. J. Lu, B. H. Li, F. C. Ling, D. Z. Shen, Opt. Lett. 2015, 40, 3041.
dc.identifier.citedreferenceB. Y. Oh, M. C. Jeong, T. H. Moon, W. Lee, J. M. Myoung, J. Y. Hwang, D. S. Seo, J. Appl. Phys. 2006, 99, 1348.
dc.identifier.citedreferenceZ. Xiong, L. Chen, C. Zheng, L. Luo, Q. Wan, Scr. Mater. 2010, 63, 1069.
dc.identifier.citedreferenceX. Tang, Y. Deng, D. Wagner, L. Yu, H. Lü, Solid State Commun. 2012, 152, 1.
dc.identifier.citedreferenceE. Przezdziecka, E. Kaminska, K. P. Korona, E. Dynowska, W. Dobrowolski, R. Jakiela, L. Klopotowski, J. Kossut, Semicond. Sci. Technol. 2007, 22, 10.
dc.identifier.citedreferenceL. Cao, L. Zhu, Y. Li, M. Yang, Z. Ye, Mater. Lett. 2012, 86, 34.
dc.identifier.citedreferenceL. Balakrishnan, S. Gowrishankar, J. Elanchezhiyan, N. Gopalakrishnan, Phys. B 2011, 406, 4447.
dc.identifier.citedreferenceN. X. Tian, L. Xiang, L. Zhong, Y. C. Yong, H. S. Cheng, Z. W. Hui, Appl. Surf. Sci. 2014, 316, 62.
dc.identifier.citedreferenceY. Liu, C. Xu, Q. Yang, J. Appl. Phys. 2009, 105, 198.
dc.identifier.citedreferenceX. Yu, S. Liang, Z. Sun, Y. Duan, Y. Qin, L. Duan, H. Xia, P. Zhao, D. Li, Opt. Commun. 2014, 313, 90.
dc.identifier.citedreferenceX. L. Xu, Y. Chen, S. Y. Ma, W. Q. Li, Y. Z. Mao, Sens. Actuators, B 2015, 213, 222.
dc.identifier.citedreferenceH. Li, Y. Lv, J. Li, Y. Ke, J. Alloys Compd. 2014, 617, 102.
dc.identifier.citedreferenceR. Peretti, A. M. Jurdyc, B. Jacquier, W. Blanc, B. Dussardier, Optical Materials 2011, 33, 835.
dc.identifier.citedreferenceS. D. Senol, J. Mater. Sci.: Mater. Electr. 2016, 27, 7767.
dc.identifier.citedreferenceM. A. Lahmer, K. Guergouri, Mater. Sci. Semicond. Process. 2015, 39, 148.
dc.identifier.citedreferenceJ. L. Lyons, A. Janotti, D. W. Van, G. Chris, Appl. Phys. Lett. 2009, 95, 252105.
dc.identifier.citedreferenceG. Muruganandam, N. Mala, S. Pandiarajan, N. Srinivasan, R. Ramya, E. Sindhuja, K. Ravichandran, J. Mater. Sci.: Mater. Electron. 2017, 28, 18228.
dc.identifier.citedreferenceP. Sharma, R. Bhardwaj, A. Kumar, S. Mukherjee, J. Phys. D: Appl. Phys. 2018, 51, 015103.
dc.identifier.citedreferenceA. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Nat. Mater. 2005, 4, 42.
dc.identifier.citedreferenceZ. R. Tian, J. A. Voigt, J. Liu, B. McKenzie, M. J. McDermott, M. A. Rodriguez, Nat. Mater. 2003, 2, 821.
dc.identifier.citedreferenceP. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. Guillen, B. Johansson, G. A. Gehring, Nat. Mater. 2003, 2, 673.
dc.identifier.citedreferenceF. Xiu, J. Xu, P. C. Joshi, C. A. Bridges, M. P. Paranthaman, in Semiconductor Materials for Solar Photovoltaic Cells (Eds: M. P. Paranthaman, W. Wong‐Ng, R. N. Bhattacharya ), Springer, Switzerland 2016, 105.
dc.identifier.citedreferenceM. L. Tu, Y. K. Su, C. Y. Ma, J. Appl. Phys. 2006, 100, 2208.
dc.identifier.citedreferenceY. J. Zeng, Z. Z. Ye, W. Z. Xu, D. Y. Li, J. G. Lu, L. P. Zhu, B. H. Zhao, Appl. Phys. Lett. 2006, 88, 3270.
dc.identifier.citedreferenceA. Allenic, W. Guo, Y. B. Chen, M. B. Katz, G. Y. Zhao, Y. Che, Z. D. Hu, B. Liu, S. B. Zhang, X. Q. Pan, Adv. Mater. 2010, 19, 3333.
dc.identifier.citedreferenceS. S. Lin, J. G. Lu, Z. Z. Ye, H. P. He, X. Q. Gu, L. X. Chen, J. Y. Huang, B. H. Zhao, Solid State Commun. 2008, 148, 25.
dc.identifier.citedreferenceS. P. Wang, C. X. Shan, B. H. Li, J. Y. Zhang, B. Yao, D. Z. Shen, X. W. Fan, J. Cryst. Growth 2009, 311, 3577.
dc.identifier.citedreferenceM. A. Myers, J. H. Lee, Z. Bi, H. Wang, J. Phys.: Condens. Matter. 2012, 24, 145802.
dc.identifier.citedreferenceT. Yamamoto, H. Katayamayoshida, Jpn. J. Appl. Phys. 1999, 38, L166.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.