Show simple item record

Multi‐SKAT: General framework to test for rare‐variant association with multiple phenotypes

dc.contributor.authorDutta, Diptavo
dc.contributor.authorScott, Laura
dc.contributor.authorBoehnke, Michael
dc.contributor.authorLee, Seunggeun
dc.date.accessioned2019-02-12T20:22:49Z
dc.date.available2020-04-01T15:06:24Zen
dc.date.issued2019-02
dc.identifier.citationDutta, Diptavo; Scott, Laura; Boehnke, Michael; Lee, Seunggeun (2019). "Multi‐SKAT: General framework to test for rare‐variant association with multiple phenotypes." Genetic Epidemiology 43(1): 4-23.
dc.identifier.issn0741-0395
dc.identifier.issn1098-2272
dc.identifier.urihttps://hdl.handle.net/2027.42/147759
dc.description.abstractIn genetic association analysis, a joint test of multiple distinct phenotypes can increase power to identify sets of trait‐associated variants within genes or regions of interest. Existing multiphenotype tests for rare variants make specific assumptions about the patterns of association with underlying causal variants, and the violation of these assumptions can reduce power to detect association. Here, we develop a general framework for testing pleiotropic effects of rare variants on multiple continuous phenotypes using multivariate kernel regression (Multi‐SKAT). Multi‐SKAT models affect sizes of variants on the phenotypes through a kernel matrix and perform a variance component test of association. We show that many existing tests are equivalent to specific choices of kernel matrices with the Multi‐SKAT framework. To increase power of detecting association across tests with different kernel matrices, we developed a fast and accurate approximation of the significance of the minimum observed P value across tests. To account for related individuals, our framework uses random effects for the kinship matrix. Using simulated data and amino acid and exome‐array data from the METabolic Syndrome In Men (METSIM) study, we show that Multi‐SKAT can improve power over single‐phenotype SKAT‐O test and existing multiple‐phenotype tests, while maintaining Type I error rate.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherphenotype kernel
dc.subject.otherpleiotropy
dc.subject.otherrare variants
dc.subject.otherrelated individuals
dc.subject.otherSKAT
dc.subject.otherCopula
dc.subject.othermultiple phenotypes
dc.subject.otherMETSIM study
dc.subject.othergene‐based test
dc.titleMulti‐SKAT: General framework to test for rare‐variant association with multiple phenotypes
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147759/1/gepi22156.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147759/2/gepi22156_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147759/3/gepi22156-sup-0001-Supplementary_GenEpi_Revision_Final.pdf
dc.identifier.doi10.1002/gepi.22156
dc.identifier.sourceGenetic Epidemiology
dc.identifier.citedreferenceUrrutia, E., Lee, S., Maity, A., Zhao, N., Shen, J., Li, Y., & Wu, M. ( 2015 ). Rare variant testing across methods and thresholds using the multi‐kernel sequence kernel association test (MK‐SKAT). Statistics and Its Interface, 8 ( 4 ), 495 – 505.
dc.identifier.citedreferenceIonita‐Laza, I., Capanu, M., De Rubeis, S., McCallum, K., & Buxbaum, J. D. ( 2014 ). Identification of rare causal variants in sequence‐based studies: Methods and applications to vps13b, a gene involved in Cohen syndrome and autism. PLOS Genetics, 10 ( 12 ), e1004729.
dc.identifier.citedreferenceKorte, A., & Farlow, A. ( 2013 ). The advantages and limitations of trait analysis with GWAS: A review. Plant Methods, 9, 9 – 29.
dc.identifier.citedreferenceLee, S., Abecasis, G. R., Boehnke, M., & Lin, X. ( 2014 ). Rare‐variant association analysis: Study designs and statistical tests. The American Journal of Human Genetics, 95 ( 1 ), 5 – 23.
dc.identifier.citedreferenceLee, S., Emond, M. J., Bamshad, M. J., Barnes, K. C., Rieder, M. J., Nickerson, D. A. … Lin, X. ( 2012 ). Optimal unified approach for rare‐variant association testing with application to small‐sample case‐control whole‐exome sequencing studies. The American Journal of Human Genetics, 91 ( 2 ), 224 – 237.
dc.identifier.citedreferenceLee, S., Won, S., Kim, Y. J., Kim, Y., Kim, B.‐J., & Park, T. ( 2016 ). Rare variant association test with multiple phenotypes. Genetic Epidemiology, 41, 198 – 209.
dc.identifier.citedreferenceLee, S., Wu, M. C., & Lin, X. ( 2012 ). Optimal tests for rare variant effects in sequencing association studies. Biostatistics, 13 ( 4 ), 762 – 775.
dc.identifier.citedreferenceMaity, A., Sullivan, P., & Tzeng, J. ( 2012 ). Multivariate phenotype association analysis by marker‐set kernel machine regression. Genetic Epidemiology, 36, 686 – 695.
dc.identifier.citedreferenceManichaikul, A., Mychaleckyj, J. C., Rich, S. S., Daly, K., Sale, M., & Chen, W. M. ( 2010 ). Robust relationship inference in genome‐wide association studies. Bioinformatics, 26 ( 22 ), 2867 – 2873.
dc.identifier.citedreferenceRay, D., Pankow, J. S., & Basu, S. ( 2016 ). USAT: A unified score‐based association test for multiple phenotype‐genotype analysis. Genetic Epidemiology, 40 ( 1 ), 20 – 34.
dc.identifier.citedreferenceRied, J. S., Doring, A., Oexle, K., Meisinger, C., Winkelmann, J., Klopp, N., & Gieger, C. ( 2012 ). PSEA: Phenotype set enrichment analysis—A new method for analysis of multiple phenotypes. Genetic Epidemiology, 36, 244 – 252.
dc.identifier.citedreferenceSchaffner, S. F., Foo, C., Gabriel, S., Reich, D., Daly, M. J., & Altshuler, D. ( 2005 ). Calibrating a coalescent simulation of human genome sequence variation. Genome Research, 15 ( 11 ), 1576 – 1583.
dc.identifier.citedreferenceSivakumaran, S., Agakov, F., Theodoratou, E., Prendergast, J. G., Zgaga, L., Manolio, T., & Campbell, H. ( 2011 ). Abundant pleiotropy in human complex diseases and traits. The American Journal of Human Genetics, 89 ( 5 ), 607 – 618.
dc.identifier.citedreferenceSolovieff, N., Cotsapas, C., Lee, P. H., Purcell, S. M., & Smoller, J. W. ( 2013 ). Pleiotropy in complex traits: Challenges and strategies. Nature Reviews. Genetics, 14 ( 7 ), 483.
dc.identifier.citedreferenceStančáková, A., Civelek, M., Saleem, N., Soininen, P., Kangas, A., Cederberg, H. … Laakso, M. ( 2012 ). Hyperglycemia and a common variant of GCKR are associated with the levels of eight amino acids in 9,369 Finnish men. Diabetes, 61, 1895 – 1902.
dc.identifier.citedreferenceSun, J., Oualkacha, K., Forgetta, V., Zheng, H.‐F., Richards, J. B., Ciampi, A., & Greenwood, C. M. ( 2016 ). A method for analyzing multiple continuous phenotypes in rare variant association studies allowing for flexible correlations in variant effects. European Journal of Human Genetics, 24 ( 9 ), 1344 – 1351.
dc.identifier.citedreferenceTajiri, K., & Shimizu, Y. ( 2013 ). Branched‐chain amino acids in liver diseases. World Journal of Gastroentology, 19, 7620 – 7629.
dc.identifier.citedreferenceTeslovich, T. M., Kim, D. S., Yin, X., Stancakova, A., Jackson, A. U., Weilscher, M. … Mohlke, K. L. ( 2018 ). Identification of seven novel loci associated with amino acid levels using single‐variant and gene‐based tests in 8545 Finnish men from the METSIM study. Human Molecular Genetics, 27, 1664 – 1674.
dc.identifier.citedreferenceWang, Y., Liu, A., Mills, J., Boehnke, M., Wilson, A., Bailey‐Wilson, J., & Fan, R. ( 2015 ). Pleiotropy analysis of quantitative traits at gene level by multivariate functional linear models. Genetic Epidemiology, 39, 259 – 275.
dc.identifier.citedreferenceWürtz, P., Mäkinen, V.‐P., Soininen, P., Kangas, A., Tukiainen, T., Kettunen, J. … Ala‐Korpela, M. ( 2012 ). Metabolic signatures of insulin resistance in 7,098 young adults. Diabetes, 61, 1372 – 1380.
dc.identifier.citedreferenceWürtz, P., Soininen, P., Kangas, A., Rönnemaa, T., Lehtimäki, T., Kähönen, M., & Ala‐Korpela, M. ( 2013 ). Branched‐chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care, 36, 648 – 655.
dc.identifier.citedreferenceWu, B., & Pankow, J. ( 2016 ). Sequence kernel association test of multiple continuous phenotypes. Genetic Epidemiology, 40 ( 2 ), 91 – 100.
dc.identifier.citedreferenceWu, M. C., Lee, S., Cai, T., Li, Y., Boehnke, M., & Lin, X. ( 2011 ). Rare‐variant association testing for sequencing data with the sequence kernel association test. American Journal of Human Genetics, 89, 82 – 93.
dc.identifier.citedreferenceWu, M. C., Maity, A., Lee, S., Simmons, E. M., Harmon, Q.E., Lin, X., … Armistead, P. M. ( 2013 ). Kernel machine SNP‐set testing under multiple candidate kernels. Genetic Epidemiology, 37 ( 3 ), 267 – 275.
dc.identifier.citedreferenceXie, W., Wood, A. R., Lyssenko, V., Weedon, M. N., Knowles, J. W., Alkayyali, S. … Walker, M. ( 2013 ). Genetic variants associated with glycine metabolism and their role in insulin sensitivity and type 2 diabetes. Diabetes, 62, 2141 – 2150.
dc.identifier.citedreferenceYan, Q., Weeks, D. E., Celedón, J. C., Tiwari, H. K., Li, B., Wang, X. … Liu, N. ( 2015 ). Associating multivariate quantitative phenotypes with genetic variants in family samples with a novel kernel machine regression method. Genetics, 201 ( 4 ), 1329 – 1339.
dc.identifier.citedreferenceZhan, X., Zhao, N., Plantinga, A., Thornton, T., Conneely, K., Epstein, M., & Wu, M. ( 2017 ). Powerful genetic association analysis for common or rare variants with high‐dimensional structured traits. Genetics, 206 ( 4 ), 1779 – 1790.
dc.identifier.citedreferenceZhou, X., Carbonetto, P., & Matthew, S. ( 2013 ). Polygenic modeling with Bayesian sparse linear mixed models. PLOS Genetics, 9 ( 2 ), e1003264.
dc.identifier.citedreferenceZhou, X., & Stephens, M. ( 2014 ). Efficient multivariate linear mixed model algorithms for genome‐wide association studies. Nature Methods, 11 ( 4 ), 407 – 409.
dc.identifier.citedreferenceAllan Butterfield, D., & Pocernich, C. B. ( 2003 ). The glutamatergic system and Alzheimer’s disease. CNS Drugs, 17 ( 9 ), 641 – 652.
dc.identifier.citedreferenceAschard, H., Vilhjálmsson, B. J., Greliche, N., Morange, P.‐E., Trégouët, D.‐A., & Kraft, P. ( 2014 ). Maximizing the power of principal‐component analysis of correlated phenotypes in genome‐wide association studies. The American Journal of Human Genetics, 94 ( 5 ), 662 – 676.
dc.identifier.citedreferenceBroadaway, K. A., Cutler, D. J., Duncan, R., Moore, J. L., Ware, E. B., Min, A., & Epstein, M. P. ( 2016 ). A statistical approach for testing cross‐phenotype effects of rare variants. The American Journal of Human Genetics, 98 ( 3 ), 525 – 540.
dc.identifier.citedreferenceBulik‐Sullivan, B. K., Loh, P.‐R., Finucane, H. K., Ripke, S., Yang, J., of the Psychiatric Genomics Consortium, Neale, B. M. ( 2015 ). Ld score regression distinguishes confounding from polygenicity in genome‐wide association studies. Nature Genetics, 47, 291 – 295.
dc.identifier.citedreferenceChiu, C., Jung, J., Wang, Y., Weeks, D., Wilson, A., Bailey‐Wilson, J., & Fan, R. ( 2017 ). A comparison study of multivariate fixed models and gene association with multiple traits (gamut) for next generation sequencing. Genetic Epidemiology, 41 ( 1 ), 18 – 34.
dc.identifier.citedreferenceCotsapas, C., Voight, B. F., Rossin, E., Lage, K., Neale, B. M., Wallace, C. … Daly, M. J. ( 2011 ). Pervasive sharing of genetic effects in autoimmune disease. PLOS Genetics, 7 ( 8 ), e1002254.
dc.identifier.citedreferenceDahl, A., Iotchkova, V., Baud, A., Johansson, A., Gyllensten, U., Soranzo, N., & Marchini, J. ( 2016 ). A multiple‐phenotype imputation method for genetic studies. Nature Genetics, 48, 466 – 472.
dc.identifier.citedreferenceDavies, R. B. ( 1980 ). The distribution of a linear combination of Χ 2 random variables. Applied Statistics, 29 ( 3 ), 323 – 333.
dc.identifier.citedreferencede Belleroche, J., Recordati, A., & Clifford, F. ( 2003 ). Elevated levels of amino acids in the CSF of motor neuron disease patients. CNS Drugs, 17 ( 9 ), 641 – 652.
dc.identifier.citedreferenceDemarta, S., & McNeil, A. J. ( 2005 ). The t Copula and related Copulas. International Statistical Review/Revue Internationale de Statistique, 73 ( 1 ), 111 – 129.
dc.identifier.citedreferenceFerreira, M., & Purcell, S. ( 2009 ). A multivariate test of association. Bioinformatics, 25, 132 – 133.
dc.identifier.citedreferenceHe, Z., Xu, B., Lee, S., & Ionita‐Laza, I. ( 2017 ). Unified sequence‐based association tests allowing for multiple functional annotations and meta‐analysis of noncoding variation in metabochip data. The American Journal of Human Genetics, 101 ( 3 ), 340 – 352.
dc.identifier.citedreferenceHuang, J., Johnson, A., & O’Donnell, C. ( 2011 ). Prime: A method for characterization and evaluation of pleiotropic regions from multiple genome‐wide association studies. Bioinformatics, 27 ( 9 ), 1201 – 1206.
dc.identifier.citedreferenceHughes, I. ( 2009 ). Pediatric endocrinology and inborn errors of metabolism. Journal of Paediatrics and Child Health, 45 ( 11 ), 668 – 669.
dc.identifier.citedreferenceHuyghe, J. R., Jackson, A. U., Fogarty, M. P., Buchkivoch, M. L., Stancakova, A., Stringham, H. M. … Mohlke, K. L. ( 2013 ). Exome array analysis identifies new loci and low‐frequency variants influencing insulin processing and secretion. Nature Genetics, 45, 197 – 201.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.