Show simple item record

Model Evaluation Guidelines for Geomagnetic Index Predictions

dc.contributor.authorLiemohn, Michael W.
dc.contributor.authorMcCollough, James P.
dc.contributor.authorJordanova, Vania K.
dc.contributor.authorNgwira, Chigomezyo M.
dc.contributor.authorMorley, Steven K.
dc.contributor.authorCid, Consuelo
dc.contributor.authorTobiska, W. Kent
dc.contributor.authorWintoft, Peter
dc.contributor.authorGanushkina, Natalia Yu.
dc.contributor.authorWelling, Daniel T.
dc.contributor.authorBingham, Suzy
dc.contributor.authorBalikhin, Michael A.
dc.contributor.authorOpgenoorth, Hermann J.
dc.contributor.authorEngel, Miles A.
dc.contributor.authorWeigel, Robert S.
dc.contributor.authorSinger, Howard J.
dc.contributor.authorBuresova, Dalia
dc.contributor.authorBruinsma, Sean
dc.contributor.authorZhelavskaya, Irina S.
dc.contributor.authorShprits, Yuri Y.
dc.contributor.authorVasile, Ruggero
dc.date.accessioned2019-02-12T20:22:56Z
dc.date.available2020-02-03T20:18:24Zen
dc.date.issued2018-12
dc.identifier.citationLiemohn, Michael W.; McCollough, James P.; Jordanova, Vania K.; Ngwira, Chigomezyo M.; Morley, Steven K.; Cid, Consuelo; Tobiska, W. Kent; Wintoft, Peter; Ganushkina, Natalia Yu.; Welling, Daniel T.; Bingham, Suzy; Balikhin, Michael A.; Opgenoorth, Hermann J.; Engel, Miles A.; Weigel, Robert S.; Singer, Howard J.; Buresova, Dalia; Bruinsma, Sean; Zhelavskaya, Irina S.; Shprits, Yuri Y.; Vasile, Ruggero (2018). "Model Evaluation Guidelines for Geomagnetic Index Predictions." Space Weather 16(12): 2079-2102.
dc.identifier.issn1542-7390
dc.identifier.issn1542-7390
dc.identifier.urihttps://hdl.handle.net/2027.42/147764
dc.description.abstractGeomagnetic indices are convenient quantities that distill the complicated physics of some region or aspect of near‐Earth space into a single parameter. Most of the best‐known indices are calculated from ground‐based magnetometer data sets, such as Dst, SYM‐H, Kp, AE, AL, and PC. Many models have been created that predict the values of these indices, often using solar wind measurements upstream from Earth as the input variables to the calculation. This document reviews the current state of models that predict geomagnetic indices and the methods used to assess their ability to reproduce the target index time series. These existing methods are synthesized into a baseline collection of metrics for benchmarking a new or updated geomagnetic index prediction model. These methods fall into two categories: (1) fit performance metrics such as root‐mean‐square error and mean absolute error that are applied to a time series comparison of model output and observations and (2) event detection performance metrics such as Heidke Skill Score and probability of detection that are derived from a contingency table that compares model and observation values exceeding (or not) a threshold value. A few examples of codes being used with this set of metrics are presented, and other aspects of metrics assessment best practices, limitations, and uncertainties are discussed, including several caveats to consider when using geomagnetic indices.Plain Language SummaryOne aspect of space weather is a magnetic signature across the surface of the Earth. The creation of this signal involves nonlinear interactions of electromagnetic forces on charged particles and can therefore be difficult to predict. The perturbations that space storms and other activity causes in some observation sets, however, are fairly regular in their pattern. Some of these measurements have been compiled together into a single value, a geomagnetic index. Several such indices exist, providing a global estimate of the activity in different parts of geospace. Models have been developed to predict the time series of these indices, and various statistical methods are used to assess their performance at reproducing the original index. Existing studies of geomagnetic indices, however, use different approaches to quantify the performance of the model. This document defines a standardized set of statistical analyses as a baseline set of comparison tools that are recommended to assess geomagnetic index prediction models. It also discusses best practices, limitations, uncertainties, and caveats to consider when conducting a model assessment.Key PointsWe review existing practices for assessing geomagnetic index prediction models and recommend a “standard set” of metricsAlong with fit performance metrics that use all data‐model pairs in their formulas, event detection performance metrics are recommendedOther aspects of metrics assessment best practices, limitations, uncertainties, and geomagnetic index caveats are also discussed
dc.publisherJohn Wiley Inc
dc.subject.othergeomagnetic indices
dc.subject.othermetrics
dc.subject.otherstatistical analysis
dc.subject.otherforecasting
dc.subject.otherROC curve
dc.subject.otherspace weather
dc.titleModel Evaluation Guidelines for Geomagnetic Index Predictions
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147764/1/swe20790_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147764/2/swe20790.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147764/3/swe20790-sup-0001-2018SW002067-SI.pdf
dc.identifier.doi10.1029/2018SW002067
dc.identifier.sourceSpace Weather
dc.identifier.citedreferenceRastätter, L., Kuznetsova, M. M., Glocer, A., Welling, D., Meng, X., Raeder, J., Wiltberger, M., Jordanova, V. K., Yu, Y., Zaharia, S., Weigel, R. S., Sazykin, S., Boynton, R., Wei, H., Eccles, V., Horton, W., Mays, M. L., & Gannon, J. ( 2013 ). Geospace environment modeling 2008–2009 challenge: D st index. Space Weather, 11, 187 – 205. https://doi.org/10.1002/swe.20036
dc.identifier.citedreferenceSpencer, E., Horton, W., Mays, M. L., Doxas, I., & Kozyra, J. ( 2007 ). Analysis of the 3–7 October 2000 and 15–24 April 2002 geomagnetic storms with an optimized nonlinear dynamical model. Journal of Geophysical Research, 112, A04S90. https://doi.org/10.1029/2006JA012019
dc.identifier.citedreferenceSpencer, E., Rao, A., Horton, W., & Mays, M. L. ( 2009 ). Evaluation of solar wind‐magnetosphere coupling function during geomagnetic storms with the WINDMI model. Journal of Geophysical Research, 114, A02206. https://doi.org/10.1029/2008JA013530
dc.identifier.citedreferenceStauning, P. ( 2013 ). The Polar Cap index: A critical review of methods and a new approach. Journal of Geophysical Research: Space Physics, 118, 5021 – 5038. https://doi.org/10.1002/jgra.50462
dc.identifier.citedreferenceStephenson, D. B. ( 2000 ). Use of the “odds ratio” for diagnosing forecast skill. Weather Forecasting, 15 ( 2 ), 221 – 232. https://doi.org/10.1175/1520‐0434(2000)015<0221:UOTORF>2.0.CO;2
dc.identifier.citedreferenceStern, D. P. ( 1975 ). The motion of a proton in the equatorial magnetosphere. Journal of Geophysical Research, 80, 595 – 599. https://doi.org/10.1029/JA080i004p00595
dc.identifier.citedreferenceSugiura, M. ( 1964 ). Hourly values of equatorial Dst for the IGY. Annals of the International Geophysical Year, 35, 9 – 45.
dc.identifier.citedreferenceSugiura, M., & Chapman, S. ( 1960 ). The average morphology of geomagnetic storms with sudden commencement. In Abhandlungen der Akademie der Wissenschaften zu Göttingen (pp. 1 – 53 ). Göttingen: Göttingen Math. Phys. Kl. Sondernheft Nr.4
dc.identifier.citedreferenceTakahashi, K., Toth, B. A., & Olson, J. V. ( 2001 ). An automated procedure for near‐real‐time Kp estimates. Journal of Geophysical Research, 106, 21,017 – 21,032. https://doi.org/10.1029/2000JA000218
dc.identifier.citedreferenceTakalo, J., & Timonen, J. ( 1997 ). Neural network prediction of AE data. Geophysical Research Letters, 24, 2403 – 2406. https://doi.org/10.1029/97GL02457
dc.identifier.citedreferenceTaylor, J. R. ( 1997 ). An introduction to error analysis. Mill Valley, CA: University Science Books.
dc.identifier.citedreferenceTemerin, M., & Li, X. ( 2002 ). A new model for the prediction of Dst on the basis of the solar wind. Journal of Geophysical Research, 107 ( A12 ), 1472. https://doi.org/10.1029/2001JA007532
dc.identifier.citedreferenceTemerin, M., & Li, X. ( 2006 ). Dst model for 1995‐2002. Journal of Geophysical Research, 111, A04221. https://doi.org/10.1029/2005JA011257
dc.identifier.citedreferenceThomsen, M. F. ( 2004 ). Why Kp is such a good measure of magnetospheric convection. Space Weather, 2, S11004. https://doi.org/10.1029/2004SW000089
dc.identifier.citedreferenceTobiska, W. K., Knipp, D., Burke, W. J., Bouwer, D., Odstrcil, D., Hagan, M. P., Gannon, J., & Bowman, B. R. ( 2013 ). The Anemomilos prediction methodology for Dst. Space Weather, 11, 490 – 508. https://doi.org/10.1002/swe.20094
dc.identifier.citedreferenceToffoletto, F. R., Sazykin, S., Spiro, R. W., & Wolf, R. A. ( 2003 ). Modeling the inner magnetosphere using the Rice Convection Model (review). Space Science Reviews, WISER Special Issue, 107 ( 1/2 ), 175 – 196. https://doi.org/10.1023/A:1025532008047
dc.identifier.citedreferenceTóth, G., Sokolov, I. V., Gombosi, T. I., Chesney, D. R., Robert Clauer, C., De, D. L., et al. ( 2005 ). Space weather modeling framework: A new tool for the space science community. Journal of Geophysical Research, 110, A12226. https://doi.org/10.1029/2005JA011126
dc.identifier.citedreferenceToth, G., van der Holst, B., Sokolov, I. V., De Zeeuw, D. L., Gombosi, T. I., Fang, F., Manchester, W. B., Meng, X., Najib, D., Powell, K. G., Stout, Q. F., Glocer, A., Ma, Y.‐J., & Opher, M. ( 2012 ). Adaptive numerical algorithms in space weather modeling. Journal of Computational Physics, 231 ( 3 ), 870 – 903. https://doi.org/10.1016/j.jcp.2011.02.006
dc.identifier.citedreferenceTroshichev, O. A., Andrezen, V. G., Vennerstrøm, S., & Friis‐Christensen, E. ( 1988 ). Magnetic activity in the polar cap—A new index. Planetary and Space Science, 11, 1095 – 1102.
dc.identifier.citedreferenceTsubouchi, K., & Kubo, Y. ( 2010 ). Quantitative assessment of the probability forecast for the geomagnetic storm occurrence. Space Weather, 8, S12007. https://doi.org/10.1029/2010SW000614
dc.identifier.citedreferenceVolland, H. ( 1973 ). A semiempirical model of large‐scale magnetospheric electric fields. Journal of Geophysical Research, 78, 171 – 180. https://doi.org/10.1029/JA078i001p00171
dc.identifier.citedreferenceVolland, H. ( 1975 ). Differential rotation of the magnetospheric plasma as cause of the Svalgaard‐Mansurov effect. Journal of Geophysical Research, 80, 2311 – 2315. https://doi.org/10.1029/JA080i016p02311
dc.identifier.citedreferenceWang, Y., Shen, C. L., Wang, S., & Ye, P. Z. ( 2003 ). An empirical formula relating the geomagnetic storm’s intensity to the interplanetary parameters: VBz and t. Geophysical Research Letters, 30 ( 20 ), 2039. https://doi.org/10.1029/2003GL017901
dc.identifier.citedreferenceWanliss, J. A., & Showalter, K. M. ( 2006 ). High‐resolution global storm index: Dst versus SYM‐H. Journal of Geophysical Research, 111, A02202. https://doi.org/10.1029/2005JA011034
dc.identifier.citedreferenceWei, H. L., Billings, S. A., & Balikhin, M. ( 2004 ). Prediction of the Dst index using multiresolution wavelet models. Journal of Geophysical Research, 109, A07212. https://doi.org/10.1029/2003JA010332
dc.identifier.citedreferenceWei, H. L., Zhu, D. Q., Billings, S. A., & Balikhin, M. A. ( 2007 ). Forecasting the geomagnetic activity of the Dst index using multiscale radial basis function networks. Advances in Space Research, 40, 1863 – 1870. https://doi.org/10.1016/j.asr.2007.02.080
dc.identifier.citedreferenceWeigel, R. S. ( 2010 ). Solar wind density influence on geomagnetic storm intensity. Journal of Geophysical Research, 115, A09201. https://doi.org/10.1029/2009JA015062
dc.identifier.citedreferenceWeigel, R. S., Detman, T., Rigler, E. J., & Baker, D. N. ( 2006 ). Decision theory and the analysis of rare event space weather forecasts. Space Weather, 4, S05002. https://doi.org/10.1029/2005SW000157
dc.identifier.citedreferenceWilks, D. ( 2001 ). A skill score based on economic value for probability forecasts. Meteorological Applications, 8 ( 2 ), 209 – 219.
dc.identifier.citedreferenceWilks, D. S. ( 2006 ). Statistical methods in the atmospheric sciences ( 2nd ed.). Oxford: Academic Press.
dc.identifier.citedreferenceWiltberger, M., Wang, W., Burns, A. G., Solomon, S. C., Lyon, J. G., & Goodrich, C. C. ( 2004 ). Initial results from the coupled magnetosphere ionosphere thermosphere model: Magnetospheric and ionospheric responses. Journal of Atmospheric and Solar‐Terrestrial Physics, 66 ( 15‐16 ), 1411 – 1423. https://doi.org/10.1016/j.jastp.2004.03.026
dc.identifier.citedreferenceWing, S., Johnson, J. R., Jen, J., Meng, C.‐I., Sibeck, D. G., Bechtold, K., Freeman, J., Costello, K., Balikhin, M., & Takahashi, K. ( 2005 ). Kp forecast models. Journal of Geophysical Research, 110, A04203. https://doi.org/10.1029/2004JA010500
dc.identifier.citedreferenceWintoft, P., Wik, M., Matzka, J., & Shprits, Y. ( 2017 ). Forecasting Kp from solar wind data: Input parameter study using 3‐hour averages and 3‐hour range values. Journal of Space Weather and Space Climate, 7, A29. https://doi.org/10.1051/swsc/2017027
dc.identifier.citedreferenceWolf, R. A., Spiro, R. W., & Rich, F. J. ( 1991 ). Extension of convection modeling into the high‐latitude ionosphere—Some theoretical difficulties. Journal of Atmospheric and Terrestrial Physics, 53 ( 9 ), 817 – 829. https://doi.org/10.1016/0021‐9169(91)90096‐P
dc.identifier.citedreferenceWu, J.‐G., & Lundstedt, H. ( 1997 ). Geomagnetic storm predictions from solar wind data with the use of dynamic neural networks. Journal of Geophysical Research, 102, 14,255 – 14,268. https://doi.org/10.1029/97JA00975
dc.identifier.citedreferenceYu, Y., Jordanova, V. K., Ridley, A. J., Toth, G., & Heelis, R. ( 2017 ). Effects of electric field methods on modeling the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics. Journal of Geophysical Research: Space Physics, 122, 5321 – 5338. https://doi.org/10.1002/2016JA023850
dc.identifier.citedreferenceZaharia, S., Cheng, C. Z., & Maezawa, K. ( 2004 ). 3‐D force‐balanced magnetospheric configurations. Annales Geophysicae, 22 ( 1 ), 251 – 265.
dc.identifier.citedreferenceZaharia, S., Jordanova, V. K., Thomsen, M. F., & Reeves, G. D. ( 2006 ). Self‐consistent modeling of magnetic fields and plasmas in the inner magnetosphere: Application to a geomagnetic storm. Journal of Geophysical Research, 111, A11S14. https://doi.org/10.1029/2006JA011619
dc.identifier.citedreferenceZaharia, S., Jordanova, V. K., Thomsen, M. F., & Reeves, G. D. ( 2008 ). Self‐consistent geomagnetic storm simulation: The role of the induced electric fields. Journal of Atmospheric and Solar‐Terrestrial Physics, 70 ( 2‐4 ), 511 – 518. https://doi.org/10.1016/j.jastp. 2007.08.067
dc.identifier.citedreferenceZhang, J., Richardson, I. G., Webb, D. F., Gopalswamy, N., Huttunen, E., Kasper, J. C., Nitta, N. V., Poomvises, W., Thompson, B. J., Wu, C. C., Yashiro, S., & Zhukov, A. N. ( 2007 ). Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996–2005. Journal of Geophysical Research, 112, A10102. https://doi.org/10.1029/2007JA012321
dc.identifier.citedreferenceZhang, X. Y., & Moldwin, M. B. ( 2015 ). Probabilistic forecasting analysis of geomagnetic indices for southward IMF events. Space Weather, 13, 130 – 140. https://doi.org/10.1002/2014SW001113
dc.identifier.citedreferenceAgapitov, O. V., Artemyev, A. V., Mourenas, D., Mozer, F. S., & Krasnoselskikh, V. ( 2015 ). Empirical model of lower band chorus wave distribution in the outer radiation belt. Journal of Geophysical Research: Space Physics, 120, 10,425 – 10,442. https://doi.org/10.1002/2015JA021829
dc.identifier.citedreferenceAgresti, A., & Coull, B. A. ( 1998 ). Approximate is better than ‘exact’ for interval estimation of binomial proportions. The American Statistician, 52, 119 – 126.
dc.identifier.citedreferenceAguado, J., Cid, C., Saiz, E., & Cerrato, Y. ( 2010 ). Hyperbolic decay of the Dst index during the recovery phase of intense geomagnetic storms. Journal of Geophysical Research, 115, A07220. https://doi.org/10.1029/2009JA014658
dc.identifier.citedreferenceAmariutei, O. A., & Ganushkina, N. Y. ( 2012 ). On the prediction of the auroral westward electrojet index. Annales Geophysicae, 30 ( 5 ), 841 – 847. https://doi.org/10.5194/angeo‐30‐841‐2012
dc.identifier.citedreferenceAyala Solares, J. R., Wei, H.‐L., Boynton, R. J., Walker, S. N., & Billings, S. A. ( 2016 ). Modeling and prediction of global magnetic disturbance in near‐earth space: A case study for Kp index using NARX models. Space Weather, 14, 899 – 916. https://doi.org/10.1002/2016SW001463
dc.identifier.citedreferenceBaker, D. N., Hones, E. W. Jr., Payne, J. B., & Feldman, W. C. ( 1981 ). A high time resolution study of interplanetary parameter correlations with AE. Geophysical Research Letters, 8, 1971. https://doi.org/10.1029/GL008I002P00179
dc.identifier.citedreferenceBala, R., & Reiff, P. ( 2012 ). Improvements in short‐term forecasting of geomagnetic activity. Space Weather, 10, S06001. https://doi.org/10.1029/2012SW000779
dc.identifier.citedreferenceBala, R., & Reiff, P. ( 2014 ). Validating the Rice neural network and the Wing Kp real‐time models. Space Weather, 12, 417 – 425. https://doi.org/10.1002/2014SW001075
dc.identifier.citedreferenceBala, R., Reiff, P. H., & Landivar, J. E. ( 2009 ). Real‐time prediction of magnetospheric activity using the Boyle index. Space Weather, 7, S04003. https://doi.org/10.1029/2008SW000407
dc.identifier.citedreferenceBalan, N., Ebihara, Y., Skoug, R., Shiokawa, K., Batista, I. S., Tulasi Ram, S., Omura, Y., Nakamura, T., & Fok, M.‐C. ( 2017 ). A scheme for forecasting severe space weather. Journal of Geophysical Research: Space Physics, 122, 2824 – 2835. https://doi.org/10.1002/2016JA023853
dc.identifier.citedreferenceBartels, J., Heck, N. H., & Johnston, H. F. ( 1939 ). The three‐hour range index measuring geomagnetic activity. Journal of Geophysical Research, 44, 411 – 454. https://doi.org/10.1029/TE044I004P00411
dc.identifier.citedreferenceBerrar, D., & Flach, P. ( 2012 ). Caveats and pitfalls of ROC analysis in clinical microarray research (and how to avoid them). Briefings in Bioinformatics, 13 ( 1 ), 83 – 97. https://doi.org/10.1093/bib/bbr008
dc.identifier.citedreferenceBillings, S., Chen, S., & Korenberg, M. ( 1989 ). Identification of MIMO non‐linear systems using a forward‐regression orthogonal estimator. International Journal of Control, 49 ( 6 ), 2157 – 2189. https://doi.org/10.1080/00207178908559767
dc.identifier.citedreferenceBillings, S. A., & Voon, W. S. F. ( 1986 ). Correlation based model validity tests for non‐linear models. The International Congregational Journal, 44 ( 1 ), 235 – 244.
dc.identifier.citedreferenceBoaghe, O. M., Balikhin, M. A., Billings, S. A., & Alleyne, H. ( 2001 ). Identification of nonlinear processes in the magnetospheric dynamics and forecasting of Dst index. Journal of Geophysical Research, 106, 30,047 – 30,066. https://doi.org/10.1029/2000JA900162
dc.identifier.citedreferenceBoberg, F., Wintoft, P., & Lundstedt, H. ( 2000 ). Real time Kp predictions from solar wind data using neural networks. Physics and Chemistry of the Earth, Part C, 25 ( 4 ), 275 – 280. https://doi.org/10.1016/S1464‐1917(00)00016‐7
dc.identifier.citedreferenceBorovsky, J. E. ( 2014 ). Canonical correlation analysis of the combined solar wind and geomagnetic index data sets. Journal of Geophysical Research: Space Physics, 119, 5364 – 5381. https://doi.org/10.1002/2013JA019607
dc.identifier.citedreferenceBorovsky, J. E., & Denton, M. H. ( 2006 ). Differences between CME‐driven storms and CIR‐driven storms. Journal of Geophysical Research, 111, A07S08. https://doi.org/10.1029/2005JA011447
dc.identifier.citedreferenceBorovsky, J. E., & Shprits, Y. Y. ( 2017 ). Is the Dst index sufficient to define all geospace storms? Journal of Geophysical Research: Space Physics, 122, 11,543 – 11,547. https://doi.org/10.1002/2017JA024679
dc.identifier.citedreferenceBoyle, C. B., Reiff, P. H., & Hairston, M. R. ( 1997 ). Empirical polar cap potentials. Journal of Geophysical Research, 102, 111 – 125. https://doi.org/10.1029/96JA01742
dc.identifier.citedreferenceBoynton, R. J., Balikhin, M. A., Billings, S. A., Sharma, A. S., & Amariutei, O. A. ( 2011 ). Data derived NARMAX Dst model. Annales Geophysicae, 29 ( 6 ), 965 – 971. https://doi.org/10.5194/angeo‐29‐985‐2011
dc.identifier.citedreferenceBrautigam, D. H., & Albert, J. M. ( 2000 ). Radial diffusion analysis of outer radiation belt electrons during October 9, 1990, magnetic storm. Journal of Geophysical Research, 105, 291 – 309.
dc.identifier.citedreferenceBrautigam, D. H., Ginet, G. P., Albert, J. M., Wygant, J. R., Rowland, D. E., Ling, A., & Bass, J. ( 2005 ). CRRES electric field power spectra and radial diffusion coefficients. Journal of Geophysical Research, 110, A02214. https://doi.org/10.1029/2004JA010612
dc.identifier.citedreferenceBuresova, D., & Lastovicka, J. ( 2017 ). Differences in midlatitude ionospheric response to magnetic disturbances at northern and southern hemispheres and anomalous response during the last extreme solar minimum. In T. Fuller‐Rowell, E. Yizengaw, P. H. Doherty & S. Basu Ionospheric Space Weather: Longitude and Hemispheric Dependences and Lower Atmosphere Forcing, Geophysical Monograph Series (4, 41 – 58 ). Hoboken, NJ: John Wiley Inc.
dc.identifier.citedreferenceBurton, R. K., McPherron, R. L., & Russell, C. T. ( 1975 ). An empirical relationship between interplanetary conditions and Dst. Journal of Geophysical Research, 80, 4204 – 4214. https://doi.org/10.1029/JA080i031p04204
dc.identifier.citedreferenceCade, W. B. III, Sojka, J. J., & Zhu, L. ( 1995 ). A correlative comparison of the ring current and auroral electrojets using geomagnetic indices. Journal of Geophysical Research, 100, 97 – 105. https://doi.org/10.1029/94JA02347
dc.identifier.citedreferenceCarpenter, D. L., & Anderson, R. R. ( 1992 ). An ISEE/whistler model of equatorial electron density in the magnetosphere. Journal of Geophysical Research, 97, 1097. https://doi.org/10.1029/91JA01548
dc.identifier.citedreferenceCarter, J. V., Pan, J., Rai, S. N., & Galandiuk, S. ( 2016 ). ROC‐ing along: Evaluation and interpretation of receiver operating characteristic curves. Surgery, 159 ( 6 ), 1638 – 1645. https://doi.org/10.1016/j.surg.2015.12.029
dc.identifier.citedreferenceClauer, C. R., McPherron, R. L., Searls, C., & Kivelson, M. G. ( 1981 ). Solar windcontrol of auroral zone geomagnetic activity. Geophysical Research Letters, 8, 915 – 918. https://doi.org/10.1029/GL008i008p00915
dc.identifier.citedreferenceDasso, S., Gómez, D., & Mandrini, C. H. ( 2002 ). Ring current decay rates of magnetic storms: A statistical study from 1957 to 1998. Journal of Geophysical Research, 107 ( A5 ), 1059. https://doi.org/10.1029/2000JA000430
dc.identifier.citedreferenceDavis, T. N., & Sugiura, M. ( 1966 ). Auroral electrojet activity index AE and its universal time variations. Journal of Geophysical Research, 71, 785 – 801. https://doi.org/10.1029/JZ071i003p00785
dc.identifier.citedreferenceDenton, M. H., Henderson, M. G., Jordanova, V. K., Thomsen, M. F., Borovsky, J. E., Woodroffe, J., Hartley, D. P., & Pitchford, D. ( 2016 ). An improved empirical model of electron and ion fluxes at geosynchronous orbit based on upstream solar wind conditions. Space Weather, 14, 511 – 523. https://doi.org/10.1002/2016SW001409
dc.identifier.citedreferenceDenton, M. H., Thomsen, M. F., Jordanova, V. K., Henderson, M. G., Borovsky, J. E., Denton, J. S., et al. ( 2015 ). An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit. Space Weather, 13, 233 – 249. https://doi.org/10.1002/2015SW001168
dc.identifier.citedreferenceDevos, A., Verbeeck, C., & Robbrecht, E. ( 2014 ). Verification of space weather forecasting at the Regional Warning Center in Belgium. Journal of Space Weather and Space Climate, 4, A29.
dc.identifier.citedreferenceEfron, B., & Tibshirani, R. J. ( 1993 ). An introduction to the bootstrap (p. 436 ). New York: Chapman and Hall.
dc.identifier.citedreferenceEkelund, S. ( 2011 ). ROC curves—What are they and how are they used? Point of Care, 11 ( 1 ), 16 – 21. https://doi.org/10.1097/POC.0b013e318246a642
dc.identifier.citedreferenceFeldstein, Y. ( 1992 ). Modelling of the magnetic field of the magnetospheric ring current as a function of interplanetary medium parameters. Space Science Reviews, 59 ( 1‐2 ), 83 – 165. https://doi.org/10.1007/BF01262538
dc.identifier.citedreferenceFenrich, F. R., & Luhmann, J. G. ( 1998 ). Geomagnetic response to magnetic clouds of different polarity. Geophysical Research Letters, 24, 2999 – 3002. https://doi.org/10.1029/98GL51180
dc.identifier.citedreferenceFok, M.‐C., Buzulukova, N. Y., Chen, S.‐H., Glocer, A., Nagai, T., Valek, P., & Perez, J. D. ( 2014 ). The comprehensive inner magnetosphere‐ionosphere model. Journal of Geophysical Research: Space Physics, 119, 7522 – 7540. https://doi.org/10.1002/2014JA020239
dc.identifier.citedreferenceFok, M.‐C., Moore, T. E., Kozyra, J. U., Ho, G. C., & Hamilton, D. C. ( 1995 ). Three‐dimensional ring current decay model. Journal of Geophysical Research, 100, 9619 – 9632. https://doi.org/10.1029/94JA03029
dc.identifier.citedreferenceGanushkina, N. Y., Pulkkinen, T. I., Bashkirov, V. F., Baker, D. N., & Li, X. ( 2001 ). Formation of intense nose structures. Geophysical Research Letters, 28, 491 – 494. https://doi.org/10.1029/2000GL011955
dc.identifier.citedreferenceGanushkina, N. Y., Liemohn, M. W., & Pulkkinen, T. I. ( 2012 ). Storm‐time ring current: Model‐dependent results. Annales Geophysicae, 30 ( 1 ), 177 – 202. https://doi.org/10.5194/angeo‐30‐177‐2012
dc.identifier.citedreferenceGjerloev, J. W. ( 2012 ). The SuperMAG data processing technique. Journal of Geophysical Research, 117, A09213. https://doi.org/10.1029/2012JA017683
dc.identifier.citedreferenceGleisner, H., & Lundstedt, H. ( 2001 ). Auroral electrojet predictions with dynamic neural networks. Journal of Geophysical Research, 106, 24,541 – 24,549. https://doi.org/10.1029/2001JA900046
dc.identifier.citedreferenceGlocer, A., Rastätter, L., Kuznetsova, M., Pulkkinen, A., Singer, H. J., Balch, C., Weimer, D., Welling, D., Wiltberger, M., Raeder, J., Weigel, R. S., McCollough, J., & Wing, S. ( 2016 ). Community‐wide validation of geospace model local K‐index predictions to support model transition to operations. Space Weather, 14, 469 – 480. https://doi.org/10.1002/2016SW001387
dc.identifier.citedreferenceGoertz, C. K., Shan, L.‐H., & Smith, R. A. ( 1993 ). Prediction of geomagnetic activity. Journal of Geophysical Research, 98, 7673 – 7684. https://doi.org/10.1029/92JA01193
dc.identifier.citedreferenceGonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., & Vasyliunas, V. M. ( 1994 ). What is a geomagnetic storm? Journal of Geophysical Research, 99, 5771 – 5792. https://doi.org/10.1029/93JA02867
dc.identifier.citedreferenceHaiducek, J. D., Welling, D. T., Ganushkina, N. Y., Morley, S. K., & Ozturk, D. S. ( 2017 ). SWMF global magnetosphere simulations of January 2005: Geomagnetic indices and cross‐polar cap potential. Space Weather, 15, 1567 – 1587. https://doi.org/10.1002/2017SW001695
dc.identifier.citedreferenceHarel, M., Wolf, R. A., Reiff, P. H., Spiro, R. W., Burke, W. J., Rich, F. J., & Smiddy, M. ( 1981 ). Quantitative simulation of a magnetospheric substorm 1, model logic and overview. Journal of Geophysical Research, 86, 2217 – 2241. https://doi.org/10.1029/JA086iA04p02217
dc.identifier.citedreferenceHeidke, P. ( 1926 ). Berechnung des Erfolges und der Güte der Windstärkevorhersagen im Sturmwarnungdienst (calculation of the success and goodness of strong wind forecasts in the storm warning service). Geografiska Annaler Stockholm, 8, 301 – 349.
dc.identifier.citedreferenceHenney, C. J., Toussaint, W. A., White, S. M., & Arge, C. N. ( 2012 ). Forecasting F10.7 with solar magnetic flux transport modeling. Space Weather, 10, S02011. https://doi.org/10.1029/2011SW000748
dc.identifier.citedreferenceHogan, R. J., & Mason, I. B. ( 2012 ). Deterministic forecasts of binary events. In I. T. Jolliffe & D. B. Stephenson (Eds.), Forecast Verification: A Practitioner’s Guide in Atmospheric Science ( 2nd ed., chap. 3, pp. 31 – 60 ). Chichester, UK: John Wiley, Ltd. https://doi.org/10.1002/9781119960003.ch3
dc.identifier.citedreferenceHolzer, R. E., & Slavin, J. A. ( 1982 ). An evaluation of three predictors of geomagnetic activity. Journal of Geophysical Research, 87, 2558 – 2562. https://doi.org/10.1029/JA087iA04p02558
dc.identifier.citedreferenceHorton, W., & Doxas, I. ( 1996 ). A low‐dimensional energy‐conserving state space model for substorm dynamics. Journal of Geophysical Research, 101, 27,223 – 27,237. https://doi.org/10.1029/96JA01638
dc.identifier.citedreferenceHorton, W., & Doxas, I. ( 1998 ). A low‐dimensional dynamical model for the solar wind driven geotail‐ionosphere system. Journal of Geophysical Research, 103, 4561 – 4572. https://doi.org/10.1029/97JA02417
dc.identifier.citedreferenceHuber, P. J. ( 1981 ). Robust Statistics (p. 308 ). New York: John Wiley.
dc.identifier.citedreferenceIlie, R., Liemohn, M. W., Toth, G., & Skoug, R. ( 2012 ). Kinetic model of the inner magnetosphere with arbitrary magnetic field. Journal of Geophysical Research, 117, A04208. https://doi.org/10.1029/2011JA017189
dc.identifier.citedreferenceIyemori, T. ( 1990 ). Storm‐time magnetospheric currents inferred from mid‐latitude geomagnetic field variations. Journal of Geomagnetism and Geoelectricity, 42 ( 11 ), 1249 – 1265. https://doi.org/10.5636/jgg.42.1249
dc.identifier.citedreferenceIyemori, T., Araki, T., Kamei, T., & Takeda, M. ( 1992 ). Mid‐latitude geomagnetic indices ASY and SYM (provisional) No. 1 1989. Data Analysis Center for Geomagnetism and Space Magnetism, Kyoto University, Kyoto.
dc.identifier.citedreferenceJolliffe, I. T., & Stephenson, D. B. ( 2012 ). Forecast verification: A practitioner’s guide in atmospheric science. Hoboken, NJ: Wiley‐Blackwell.
dc.identifier.citedreferenceJonathan, P., Krzanowski, W. J., & McCarthy, W. V. ( 2000 ). On the use of cross‐validation to assess performance in multivariate prediction. Statistics and Computing, 10 ( 3 ), 209 – 229. https://doi.org/10.1023/A:1008987426876
dc.identifier.citedreferenceJordanova, V. K., Delzanno, G. L., Henderson, M. G., Godinez, H. C., Jeffery, C. A., Lawrence, E. C., Morley, S. K., Moulton, J. D., Vernon, L. J., Woodroffe, J. R., Brito, T. V., Engel, M. A., Meierbachtol, C. S., Svyatsky, D., Yu, Y., Tóth, G., Welling, D. T., Chen, Y., Haiducek, J., Markidis, S., Albert, J. M., Birn, J., Denton, M. H., & Horne, R. B. ( 2018 ). Specification of the near‐Earth space environment with SHIELDS. Journal of Atmospheric and Solar‐Terrestrial Physics, 177, 148 – 159. https://doi.org/10.1016/j.jastp.2017.11.006
dc.identifier.citedreferenceJordanova, V. K., Farrugia, C. J., Janoo, L., Quinn, J. M., Torbert, R. B., Ogilvie, K. W., Lepping, R. P., Steinberg, J. T., McComas, D. J., & Belian, R. D. ( 1998 ). October 1995 magnetic cloud and accompanying storm activity: Ring current evolution. Journal of Geophysical Research, 103, 79 – 92. https://doi.org/10.1029/97JA02367
dc.identifier.citedreferenceJordanova, V. K., Kistler, L. M., Kozyra, J. U., Khazanov, G. V., & Nagy, A. F. ( 1996 ). Collisional losses of ring current ions. Journal of Geophysical Research, 101, 111 – 126. https://doi.org/10.1029/95JA02000
dc.identifier.citedreferenceJordanova, V. K., Kozyra, J. U., Khazanov, G. V., Nagy, A. F., Rasmussen, C. E., & Fok, M. C. ( 1994 ). A bounce‐averaged kinetic‐model of the ring current ion population. Geophysical Research Letters, 21, 2785 – 2788. https://doi.org/10.1029/94GL02695
dc.identifier.citedreferenceJordanova, V. K., Zaharia, S., & Welling, D. T. ( 2010 ). Comparative study of ring current development using empirical, dipolar, and self‐consistent magnetic field simulations. Journal of Geophysical Research, 115, A00J11. https://doi.org/10.1029/2010JA015671
dc.identifier.citedreferenceJorgensen, A. M., Spence, H. E., Hughes, W. J., & Singer, H. J. ( 2004 ). A statistical study of the global structure of the ring current. Journal of Geophysical Research, 109, A12204. https://doi.org/10.1029/2003JA010090
dc.identifier.citedreferenceKamide, Y. ( 1983 ). Comment on ‘an evaluation of three predictors of geomagnetic activity’ by R. E. Holzer and J. A. Slavin. Journal of Geophysical Research, 88, 4953 – 4954. https://doi.org/10.1029/JA088iA06p04953
dc.identifier.citedreferenceKamide, Y., & Kokubun, S. ( 1996 ). Two‐component auroral electrojet: Importance for substorm studies. Journal of Geophysical Research, 101, 13,027 – 13,046. https://doi.org/10.1029/96JA00142
dc.identifier.citedreferenceKamide, Y., & Rostoker, G. ( 2004 ). What is the physical meaning of the AE index? Eos, Transactions American Geophysical Union, 85 ( 19 ), 188 – 192. https://doi.org/10.1029/2004EO190010
dc.identifier.citedreferenceKatus, R. M., & Liemohn, M. W. ( 2013 ). Similarities and differences in low‐ to middle‐latitude geomagnetic indices. Journal of Geophysical Research: Atmospheres, 118, 5149 – 5156. https://doi.org/10.1002/jgra.50501
dc.identifier.citedreferenceKatus, R. M., Liemohn, M. W., Gallagher, D. L., Ridley, A., & Zou, S. ( 2013 ). Evidence for potential and inductive convection during intense geomagnetic events using normalized superposed epoch analysis. Journal of Geophysical Research: Space Physics, 118, 181 – 191. https://doi.org/10.1029/2012JA017915
dc.identifier.citedreferenceKhazanov, G. V., Newman, T. S., Liemohn, M. W., Fok, M.‐C., & Spiro, R. W. ( 2003 ). Self‐consistent magnetosphere‐ionosphere coupling: Theoretical studies. Journal of Geophysical Research, 107 ( A3 ), 1122. https://doi.org/10.1029/2002JA009624
dc.identifier.citedreferenceKlimas, A. J., Vassiliadis, D., & Baker, D. N. ( 1998 ). Dst index prediction using data‐derived analogues of the magnetospheric dynamics. Journal of Geophysical Research, 103, 20,435 – 20,448. https://doi.org/10.1029/98JA01559
dc.identifier.citedreferenceLi, X., Oh, K. S., & Temerin, M. ( 2007 ). Prediction of the AL index using solar wind parameters. Journal of Geophysical Research, 112, A06224. https://doi.org/10.1029/2006JA011918
dc.identifier.citedreferenceLiemohn, M., Ganushkina, N. Y., De Zeeuw, D. L., Rastaetter, L., Kuznetsova, M., Welling, D. T., Toth, G., Ilie, R., Gombosi, T. I., & van der Holst, B. ( 2018 ). Real‐time SWMF at CCMC: Assessing the Dst output from continuous operational simulations. Space Weather, 16, 1583 – 1603. https://doi.org/10.1029/2018SW001953
dc.identifier.citedreferenceLiemohn, M. W., & Jazowski, M. ( 2008 ). Ring current simulations of the 90 intense storms during solar cycle 23. Journal of Geophysical Research, 113, A00A17. https://doi.org/10.1029/2008JA013466
dc.identifier.citedreferenceLiemohn, M. W., Jazowski, M., Kozyra, J. U., Ganushkina, N., Thomsen, M. F., & Borovsky, J. E. ( 2010 ). CIR vs. CME drivers of the ring current during intense magnetic storms. Proceedings of the Royal Society A, 466 ( 2123 ), 3305 – 3328. https://doi.org/10.1098/rspa.2010.0075
dc.identifier.citedreferenceLiemohn, M. W., & Katus, R. ( 2012 ). Is the storm time response of the inner magnetospheric hot ions universally similar or driver dependent? Journal of Geophysical Research, 117, A00L03. https://doi.org/10.1029/2011JA017389
dc.identifier.citedreferenceLiemohn, M. W., & Kozyra, J. U. ( 2005 ). Testing the hypothesis that charge exchange can cause a two‐phase decay. In T. I. Pulkkinen, N. Tsyganenko, & R. H. W. Friedel (Eds.), The inner magnetosphere: Physics and modeling, Geophysical Monograph Series (Vol. 155, pp. 211 – 225 ). Washington, DC: American Geophysical Union.
dc.identifier.citedreferenceLiemohn, M. W., Kozyra, J. U., Jordanova, V. K., Khazanov, G. V., Thomsen, M. F., & Cayton, T. E. ( 1999 ). Analysis of early phase ring current recovery mechanisms during geomagnetic storms. Geophysical Research Letters, 25, 2845. https://doi.org/10.1029/1999GL900611
dc.identifier.citedreferenceLiemohn, M. W., Kozyra, J. U., Thomsen, M. F., Roeder, J. L., Lu, G., Borovsky, J. E., & Cayton, T. E. ( 2001 ). Dominant role of the asymmetric ring current in producing the stormtime Dst*. Journal of Geophysical Research, 106, 10,883 – 10,904. https://doi.org/10.1029/2000JA000326
dc.identifier.citedreferenceLiemohn, M. W., Ridley, A. J., Gallagher, D. L., Ober, D. M., & Kozyra, J. U. ( 2004 ). Dependence of plasmaspheric morphology on the electric field description during the recovery phase of the April 17, 2002 magnetic storm. Journal of Geophysical Research, 109, A03209. https://doi.org/10.1029/2003JA010304
dc.identifier.citedreferenceLindsay, G. M., Russell, C. T., & Luhmann, J. G. ( 1999 ). Predictability of Dst index based upon solar wind conditions monitored inside 1 AU. Journal of Geophysical Research, 104, 10,335 – 10,344. https://doi.org/10.1029/1999JA900010
dc.identifier.citedreferenceLove, J. J., & Gannon, J. L. ( 2009 ). Revised Dst and the epicycles of magnetic disturbance: 1958‐2007. Annales Geophysicae, 27 ( 8 ), 3101 – 3131.
dc.identifier.citedreferenceLundstedt, H., Gleisner, H., & Wintoft, P. ( 2002 ). Operational forecasts of the geomagnetic Dst index. Geophysical Research Letters, 29 ( 24 ), 2181. https://doi.org/10.1029/2002GL016151
dc.identifier.citedreferenceLundstedt, H., & Wintoft, P. ( 1994 ). Prediction of geomagnetic storms from solar wind data with the use of a neural network. Annales Geophysicae, 12 ( 1 ), 19 – 24. https://doi.org/10.1007/s00585‐994‐0019‐2
dc.identifier.citedreferenceLuo, B., Xinlin, L., Temerin, M., & Liu, S. ( 2013 ). Prediction of the AU, AL, and AE indices using solar wind parameters. Journal of Geophysical Research: Space Physics, 118, 7683 – 7694. https://doi.org/10.1002/2013JA019188
dc.identifier.citedreferenceLyon, J. G., Fedder, J. A., & Mobarry, C. M. ( 2004 ). The Lyon‐Fedder‐Mobarry (LFM) global MHD magnetospheric simulation code. Journal of Atmospheric and Solar‐Terrestrial Physics, 66 ( 15‐16 ), 1333 – 1350. https://doi.org/10.1016/j.jastp.2004.03.020
dc.identifier.citedreferenceMason, I. B. ( 1982 ). A model for assessment of weather forecasts. Australian Meteorological Magazine, 30, 291 – 303.
dc.identifier.citedreferenceMayaud, P. N. ( 1980 ). Derivation, meaning, and use of geomagnetic indices, Geophysical Monograph Series (Vol. 22, p. 154 ). Washington, DC: American Geophysical Union. https://doi.org/10.1029/GM022
dc.identifier.citedreferenceMaynard, N. C., & Chen, A. J. ( 1975 ). Isolated cold plasma regions: Observations and their relation to possible production mechanisms. Journal of Geophysical Research, 80, 1009 – 1013. https://doi.org/10.1029/JA080i007p01009
dc.identifier.citedreferenceMays, M. L., Horton, W., Spencer, E., & Kozyra, J. ( 2009 ). Real‐time predictions of geomagnetic storms and substorms: Use of the solar wind magnetosphere‐ionosphere system model. Space Weather, 7, S07001. https://doi.org/10.1029/2008SW000459
dc.identifier.citedreferenceMcPherron, R. L., & Rostoker, G. ( 1993 ). Comment on “Prediction of geomagnetic activity” by C. K. Goertz, Lin‐Hua Shan, and R. A. Smith. Journal of Geophysical Research, 98, 7685 – 7686. https://doi.org/10.1029/92JA01194
dc.identifier.citedreferenceMenvielle, M., Iyemori, T., Marchaudon, A., & Nosé, M. ( 2011 ). Geomagnetic indices. In M. Mandea & M. Korte (Eds.), Geomagnetic observations and models, IAGA Special Sopron Book Series (Vol. 5, chap. 8, pp. 183 – 228 ). Dordrecht: Springer. https://doi.org/10.1007/978‐90‐481‐9858‐0
dc.identifier.citedreferenceMerkin, V. G., & Lyon, J. G. ( 2010 ). Effects of the low‐latitude ionospheric boundary condition on the global magnetosphere. Journal of Geophysical Research, 115, A10202. https://doi.org/10.1029/2010JA015461
dc.identifier.citedreferenceMichaelsen, J. ( 1987 ). Cross‐validation in statistical climate models. Journal of Climate and Applied Meteorology, 26 ( 11 ), 1589 – 1600. https://doi.org/10.1175/1520‐0450(1987)026<1589:CVISCF>2.0.CO;2
dc.identifier.citedreferenceMoldwin, M. B., Downward, L., Rassoul, H. K., Amin, R., & Anderson, R. R. ( 2002 ). A new model of the location of the plasmapause: CRRES results. Journal of Geophysical Research, 107 ( A11 ), 1339. https://doi.org/10.1029/2001JA009211
dc.identifier.citedreferenceMorley, S. K., Brito, T. V., & Welling, D. T. ( 2018 ). Measures of model performance based on the log accuracy ratio. Space Weather, 16, 69 – 88. https://doi.org/10.1002/2017SW001669
dc.identifier.citedreferenceMorley, S. K., Freeman, M. P., & Tanskanen, E. I. ( 2007 ). A comparison of the probability distribution of observed substorm magnitude with that predicted by a minimal substorm model. Annales Geophysicae, 25 ( 11 ), 2427 – 2437. https://doi.org/10.5194/angeo‐25‐2427‐2007
dc.identifier.citedreferenceMorley, S. K., Welling, D. T., & Woodroffe, J. R. ( 2018 ). Perturbed input ensemble modeling with the space weather modeling framework. Space Weather, 16, 1330 – 1347. https://doi.org/10.1029/2018SW002000
dc.identifier.citedreferenceMuller, R. H. ( 1944 ). Verification of short‐range weather forecasts (a survey of the literature). Bulletin of the American Meteorological Society, 25 ( 1 ), 18 – 27.
dc.identifier.citedreferenceMurayama, T. ( 1982 ). Coupling function between solar wind parameters and geomagnetic indices. Reviews of Geophysics and Space Physics, 20, 623. https://doi.org/10.1029/RG020i003p00623
dc.identifier.citedreferenceMurphy, A. H. ( 1988 ). Skill scores based on the mean square error and their relationships to the correlation coefficient. Monthly Weather Review, 116 ( 12 ), 2417 – 2424. https://doi.org/10.1175/1520‐0493(1988)116<2417:SSBOTM>2.0.CO;2
dc.identifier.citedreferenceMurphy, A. H. ( 1996 ). The Finley affair: A signal event in the history of forecast verification. Weather and Forecasting, 11 ( 1 ), 3 – 20.
dc.identifier.citedreferenceNewell, P. T., & Gjerloev, J. W. ( 2011 ). Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. Journal of Geophysical Research, 116, A12211. https://doi.org/10.1029/2011JA016779
dc.identifier.citedreferenceNewell, P. T., Sotirelis, T., Liou, K., & Rich, F. J. ( 2008 ). Pairs of solar wind‐magnetosphere coupling functions: Combining a merging term with a viscous term works best. Journal of Geophysical Research, 113, A04218. https://doi.org/10.1029/2007JA012825
dc.identifier.citedreferenceO’Brien, T. P. ( 2006 ). Limits on the complexity of empirical models of magnetic storm phenomena. Space Weather, 4, S04001. https://doi.org/10.1029/2005SW000170
dc.identifier.citedreferenceO’Brien, T. P., & McPherron, R. L. ( 2000a ). An empirical phase space analysis of ring current dynamics: Solar wind control of injection and decay. Journal of Geophysical Research, 105, 7707 – 7719. https://doi.org/10.1029/1998JA000437
dc.identifier.citedreferenceO’Brien, T. P., & McPherron, R. L. ( 2000b ). Forecasting the ring current index Dst in real time. Journal of Atmospheric and Solar ‐ Terrestrial Physics, 62 ( 14 ), 1295 – 1299. https://doi.org/10.1016/S1364‐6826(00)00072‐9
dc.identifier.citedreferenceO’Brien, T. P., & Moldwin, M. B. ( 2003 ). Empirical plasmapause models from magnetic indices. Geophysical Research Letters, 30 ( 4 ), 1152. https://doi.org/10.1029/2002GL016007
dc.identifier.citedreferenceOrlova, K., Shprits, Y., & Spasojevic, M. ( 2016 ). New global loss model of energetic and relativistic electrons based on Van Allen Probes measurements. Journal of Geophysical Research: Space Physics, 121, 1308 – 1314. https://doi.org/10.1002/2015JA021878
dc.identifier.citedreferenceOrlova, K., Spasojevic, M., & Shprits, Y. ( 2014 ). Activity‐dependent global model of electron loss inside the plasmasphere. Geophysical Research Letters, 41, 3744 – 3751. https://doi.org/10.1002/2014GL060100
dc.identifier.citedreferenceOsthus, D., Caragea, P. C., Higdon, D., Morley, S. K., Reeves, G. D., & Weaver, B. P. ( 2014 ). Dynamic linear models for forecasting of radiation belt electrons and limitations on physical interpretation of predictive models. Space Weather, 12, 426 – 446. https://doi.org/10.1002/2014SW001057
dc.identifier.citedreferenceOzeke, L. G., Mann, I. R., Murphy, K. R., Rae, I. J., & Milling, D. K. ( 2014 ). Analytic expressions for ULF wave radiation belt radial diffusion coefficients. Journal of Geophysical Research: Space Physics, 119, 1587 – 1605. https://doi.org/10.1002/2013JA019204
dc.identifier.citedreferencePallocchia, G., Amata, E., Consolini, G., Marcucci, M. F., & Bertello, I. ( 2008 ). AE index forecast at different time scales through an ANN algorithm based on L1 IMF and plasma measurements. Journal of Atmospheric and Solar ‐ Terrestrial Physics, 70 ( 2–4 ), 663 – 668. https://doi.org/10.1016/j.jastp.2007.08.038
dc.identifier.citedreferencePulkkinen, A., Rastätter, L., Kuznetsova, M., Singer, H., Balch, C., Weimer, D., Toth, G., Ridley, A., Gombosi, T., Wiltberger, M., Raeder, J., & Weigel, R. ( 2013 ). Community‐wide validation of geospace model ground magnetic field perturbation predictions to support model transition to operations. Space Weather, 11, 369 – 385. https://doi.org/10.1002/swe.20056
dc.identifier.citedreferenceRaeder, J., McPherron, R. L., Frank, L. A., Kokubun, S., Lu, G., Mukai, T., Paterson, W. R., Sigwarth, J. B., Singer, H. J., & Slavin, J. A. ( 2001 ). Global simulation of the geospace environment modeling substorm challenge event. Journal of Geophysical Research, 106, 381 – 395. https://doi.org/10.1029/2000JA000605
dc.identifier.citedreferenceReiff, P. H. ( 1990 ). The use and misuse of statistics in space physics. Journal of Geomagnetism and Geoelectricity, 42 ( 9 ), 1145 – 1174. https://doi.org/10.5636/jgg.42.1145
dc.identifier.citedreferenceRevallo, M., Valach, F., Hejda, P., & Bochníček, J. ( 2014 ). A neural network Dst index model driven by input time histories of the solar wind–magnetosphere interaction. Journal of Atmospheric and Solar‐Terrestrial Physics, 110–111, 9 – 14. https://doi.org/10.1016/j.jastp.2014.01.011
dc.identifier.citedreferenceRostoker, G. ( 1972 ). Geomagnetic indices. Reviews of Geophysics and Space Physics, 10 ( 4 ), 935 – 950.
dc.identifier.citedreferenceSaiz, E., Cid, C., & Cerrato, Y. ( 2008 ). Forecasting intense geomagnetic activity using interplanetary magnetic field data. Annales Geophysicae, 26 ( 12 ), 3989 – 3998. https://doi.org/10.5194/angeo‐26‐3989‐2008
dc.identifier.citedreferenceSavani, N. P., Vourlidas, A., Richardson, I. G., Szabo, A., Thompson, B. J., Pulkkinen, A., Mays, M. L., Nieves‐Chinchilla, T., & Bothmer, V. ( 2017 ). Predicting the magnetic vectors within coronal mass ejections arriving at Earth: 2. Geomagnetic response. Space Weather, 15, 441 – 461. https://doi.org/10.1002/2016SW001458
dc.identifier.citedreferenceShen, C., Liu, Z., & Kamei, T. ( 2002 ). A physics‐based study of the Dst‐AL relationship. Journal of Geophysical Research, 107 ( A1 ), 1009. https://doi.org/10.1029/2001JA900121
dc.identifier.citedreferenceSheskin, D. J. ( 2007 ). Handbook of parametric and nonparametric statistical procedures ( 4th ed.). Boca Raton, FL: Chapman and Hall/CRC.
dc.identifier.citedreferenceSpasojevic, M., Shprits, Y. Y., & Orlova, K. ( 2015 ). Global empirical models of plasmaspheric hiss using Van Allen Probes. Journal of Geophysical Research: Space Physics, 120, 10,370 – 10,383. https://doi.org/10.1002/2015JA021803
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.