Show simple item record

Architected Origami Materials: How Folding Creates Sophisticated Mechanical Properties

dc.contributor.authorLi, Suyi
dc.contributor.authorFang, Hongbin
dc.contributor.authorSadeghi, Sahand
dc.contributor.authorBhovad, Priyanka
dc.contributor.authorWang, Kon‐well
dc.date.accessioned2019-02-12T20:23:14Z
dc.date.available2020-04-01T15:06:24Zen
dc.date.issued2019-02
dc.identifier.citationLi, Suyi; Fang, Hongbin; Sadeghi, Sahand; Bhovad, Priyanka; Wang, Kon‐well (2019). "Architected Origami Materials: How Folding Creates Sophisticated Mechanical Properties." Advanced Materials 31(5): n/a-n/a.
dc.identifier.issn0935-9648
dc.identifier.issn1521-4095
dc.identifier.urihttps://hdl.handle.net/2027.42/147779
dc.description.abstractOrigami, the ancient Japanese art of paper folding, is not only an inspiring technique to create sophisticated shapes, but also a surprisingly powerful method to induce nonlinear mechanical properties. Over the last decade, advances in crease design, mechanics modeling, and scalable fabrication have fostered the rapid emergence of architected origami materials. These materials typically consist of folded origami sheets or modules with intricate 3D geometries, and feature many unique and desirable material properties like auxetics, tunable nonlinear stiffness, multistability, and impact absorption. Rich designs in origami offer great freedom to design the performance of such origami materials, and folding offers a unique opportunity to efficiently fabricate these materials at vastly different sizes. Here, recent studies on the different aspects of origami materialsâ geometric design, mechanics analysis, achieved properties, and fabrication techniquesâ are highlighted and the challenges ahead discussed. The synergies between these different aspects will continue to mature and flourish this promising field.Origami, the ancient art of paper folding, has become a framework of designing and constructing architected materials. These materials consist of folded sheets or modules with intricate geometries, and feature many unique and desirable mechanical properties. Recent progress in architected origami materials is highlighted, especially the foldingâ induced mechanics, and the challenges ahead are discussed.
dc.publisherTuttle Publishing
dc.publisherWiley Periodicals, Inc.
dc.subject.othernonlinear mechanical properties
dc.subject.otherorigami
dc.subject.otherorigami mechanics
dc.subject.otherarchitected materials
dc.titleArchitected Origami Materials: How Folding Creates Sophisticated Mechanical Properties
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147779/1/adma201805282_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147779/2/adma201805282.pdf
dc.identifier.doi10.1002/adma.201805282
dc.identifier.sourceAdvanced Materials
dc.identifier.citedreferenceA. Pydah, R. C. Batra, Thinâ Walled Struct. 2018, 129, 45.
dc.identifier.citedreferenceS. T. Brittain, O. J. A. Schueller, H. Wu, S. Whitesides, G. M. Whitesides, J. Phys. Chem. B 2001, 105, 347.
dc.identifier.citedreferenceM. Islam, J. Flach, R. Martinezâ duarte, Carbon 2018, 133, 140.
dc.identifier.citedreferenceG. M. Whitesides, N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, Nature 1998, 393, 146.
dc.identifier.citedreferenceW. T. S. Huck, N. Bowden, P. Onck, T. Pardoen, J. W. Hutchinson, G. M. Whitesides, Langmuir 2000, 16, 3497.
dc.identifier.citedreferenceZ. Yan, F. Zhang, F. Liu, M. Han, D. Ou, Y. Liu, Q. Lin, X. Guo, H. Fu, Z. Xie, M. Gao, Y. Huang, J. Kim, Y. Qiu, K. Nan, J. Kim, P. Gutruf, H. Luo, A. Zhao, K. C. Hwang, Y. Huang, Y. Zhang, J. A. Rogers, Sci. Adv. 2016, 2, e1601014.
dc.identifier.citedreferenceA. Rafsanjani, K. Bertoldi, Phys. Rev. Lett. 2017, 118, 084301.
dc.identifier.citedreferenceE. Hawkes, B. An, N. M. Benbernou, H. Tanaka, S. Kim, E. D. Demaine, D. Rus, R. J. Wood, Proc. Natl. Acad. Sci. USA 2010, 107, 12441.
dc.identifier.citedreferenceJ. H. Na, A. A. Evans, J. Bae, M. C. Chiappelli, C. D. Santangelo, R. J. Lang, T. C. Hull, R. C. Hayward, Adv. Mater. 2015, 27, 79.
dc.identifier.citedreferenceM. Jamal, A. M. Zarafshar, D. H. Gracias, Nat. Commun. 2011, 2, 527.
dc.identifier.citedreferenceS. G. A, E. A. Matsumoto, R. G. Nuzzo, L. Mahadevan, J. A. Lewis, Nat. Mater. 2016, 15, 413.
dc.identifier.citedreferenceY. Iwata, E. Iwase, in 2017 IEEE 30th Int. Conf. Micro Electro Mech. Syst., IEEE, Piscataway, NJ, USA 2017, pp. 231 â 234.
dc.identifier.citedreferenceS. M. Felton, M. T. Tolley, R. J. Wood, in 2014 IEEE Int. Conf. Autom. Sci. Eng., IEEE, Piscataway, NJ, USA 2014, pp. 1232 â 1237.
dc.identifier.citedreferenceK. Kuribayashi, K. Tsuchiya, Z. You, D. Tomus, M. Umemoto, T. Ito, M. Sasaki, Mater. Sci. Eng., A 2006, 419, 131.
dc.identifier.citedreferenceJ. S. Randhawa, S. S. Gurbani, M. D. Keung, D. P. Demers, M. R. Leahyâ Hoppa, D. H. Gracias, Appl. Phys. Lett. 2010, 96, 191108.
dc.identifier.citedreferenceT. H. Ware, M. E. McConney, J. J. Wie, V. P. Tondiglia, T. J. White, Science 2015, 347, 982.
dc.identifier.citedreferenceQ. Ge, C. K. Dunn, H. J. Qi, M. L. Dunn, Smart Mater. Struct. 2014, 23, 094007.
dc.identifier.citedreferenceT.â H. Kwok, C. C. L. Wang, D. Deng, Y. Zhang, Y. Chen, J. Mech. Des. 2015, 137, 111413.
dc.identifier.citedreferenceD. Raviv, W. Zhao, C. McKnelly, A. Papadopoulou, A. Kadambi, B. Shi, S. Hirsch, D. Dikovsky, M. Zyracki, C. Olguin, R. Raskar, S. Tibbits, Sci. Rep. 2015, 4, 7422.
dc.identifier.citedreferenceG. M. Whitesides, M. Boncheva, B. Y. Ahn, E. B. Duoss, K. J. Hsia, J. A. Lewis, R. G. Nuzzo, Proc. Natl. Acad. Sci. USA 2002, 99, 4769.
dc.identifier.citedreferenceY. Liu, J. K. Boyles, J. Genzer, M. D. Dickey, Soft Matter 2012, 8, 1764.
dc.identifier.citedreferenceT. G. Leong, B. R. Benson, E. K. Call, D. H. Gracias, Small 2008, 4, 1605.
dc.identifier.citedreferenceP. Tyagi, N. Bassik, T. G. Leong, C. Jeongâ Hyun, B. R. Benson, D. H. Gracias, J. Microelectromech. Syst. 2009, 18, 784.
dc.identifier.citedreferenceW. J. Arora, A. J. Nichol, H. I. Smith, G. Barbastathis, Appl. Phys. Lett. 2006, 88, 053108.
dc.identifier.citedreferenceZ. Liu, H. Fang, K. W. Wang, J. Xu, Mech. Syst. Signal Process. 2018, 108, 369.
dc.identifier.citedreferenceM. McArthur, R. J. Lang, Folding Paper: The Infinite Possibilities of Origami, Tuttle Publishing, Rutland, VT, USA 2013.
dc.identifier.citedreferenceT. C. Hull, Project Origami: Activities for Exploring Mathematics, CRC Press, Boca Raton, FL, USA 2012.
dc.identifier.citedreferenceM. Fiol, N. Dasquens, M. Prat, in Origami 5, (Eds: P. Wangâ Iverson, R. J. Lang, M. Yim ), A K Peters/CRC Press, Boca Raton, FL, USA 2011, pp. 151 â 164.
dc.identifier.citedreferenceJ. Kennedy, E. Lee, A. Fontecchio, in IEEE Front. Educ. Conf., IEEE, Piscataway, NJ, USA 2016.
dc.identifier.citedreferenceN. J. Boakes, in Origami 5, (Eds: P. Wangâ Iverson, R. J. Lang, M. Yim ), A K Peters/CRC Press, Boca Raton, FL, USA 2011, pp. 173 â 187.
dc.identifier.citedreferenceR. J. Lang, in ACM Symp. on Computational Geometry, ACM Press, New York, NY, USA 1996, pp. 98 â 105.
dc.identifier.citedreferenceE. D. Demaine, J. O’Rourke, Geometric Folding Algorithms: Linkages, Origami, Polyhedra, Cambridge University Press, New York, NY, USA 2007.
dc.identifier.citedreferenceE. R. Adrover, Deployable Structures, Laurence King, London, UK 2015.
dc.identifier.citedreferenceM. Buchanan, Nat. Phys. 2017, 13, 318.
dc.identifier.citedreferenceD. Dureisseix, Int. J. Space Struct. 2012, 27, 1.
dc.identifier.citedreferenceE. A. Perazaâ Hernandez, D. J. Hartl, R. J. Malak Jr., D. C. Lagoudas, Smart Mater. Struct. 2014, 23, 094001.
dc.identifier.citedreferenceA. Lebée, Int. J. Space Struct. 2015, 30, 55.
dc.identifier.citedreferenceM. Schenk, A. D. Viquerat, K. A. Seffen, S. D. Guest, J. Spacecr. Rockets 2014, 51, 762.
dc.identifier.citedreferenceS. A. Zirbel, R. J. Lang, M. W. Thomson, D. A. Sigel, P. E. Walkemeyer, B. P. Trease, S. P. Magleby, L. L. Howell, J. Mech. Des. 2013, 135, 111005.
dc.identifier.citedreferenceT. Tachi, in Origami 5 (Eds: P. Wangâ Iverson, R. J. Lang, M. Yim ), A K Peters/CRC Press, Boca Raton, FL, USA 2011, pp. 253 â 264.
dc.identifier.citedreferenceE. T. Filipov, T. Tachi, G. H. Paulino, Proc. Natl. Acad. Sci. USA 2015, 112, 12321.
dc.identifier.citedreferenceY. Chen, R. Peng, Z. You, Science 2015, 349, 396.
dc.identifier.citedreferenceS. Felton, M. Tolley, E. D. Demaine, D. Rus, R. Wood, Science 2014, 345, 644.
dc.identifier.citedreferenceS. Miyashita, S. Guitron, M. Ludersdorfer, C. R. Sung, D. Rus, in 2015 IEEE Int. Conf. Robot. Autom., IEEE, Piscataway, NJ, USA 2015, pp. 1490 â 1496.
dc.identifier.citedreferenceA. Firouzeh, J. Paik, J. Mech. Rob. 2015, 7, 021009.
dc.identifier.citedreferenceE. Vander Hoff, Donghwa J., Kiju L., in 2014 IEEE/RSJ Int. Conf. Intell. Robot. Syst., IEEE, Piscataway, NJ, USA 2014, pp. 1421 â 1426.
dc.identifier.citedreferenceS. Miyashita, S. Guitron, K. Yoshida, Shuguang L., D. D. Damian, D. Rus, in 2016 IEEE Int. Conf. Robot. Autom., IEEE, Piscataway, NJ, USA 2016, pp. 909 â 916.
dc.identifier.citedreferenceS. Miyashita, S. Guitron, S. Li, D. Rus, Sci. Rob. 2017, 2, eaao4369.
dc.identifier.citedreferenceA. Pagano, T. Yan, B. Chien, A. Wissa, S. Tawfick, Smart Mater. Struct. 2017, 26, 094007.
dc.identifier.citedreferenceH. Fang, Y. Zhang, K. W. Wang, Bioinspiration Biomimetics 2017, 12, 065003.
dc.identifier.citedreferenceC. L. Randall, E. Gultepe, D. H. Gracias, Trends Biotechnol. 2012, 30, 138.
dc.identifier.citedreferenceM. Johnson, Y. Chen, S. Hovet, S. Xu, B. Wood, H. Ren, J. Tokuda, Z. T. H. Tse, Int. J. Comput. Assist. Radiol. Surg. 2017, https://doi.org/10.1007/s11548â 017â 1545â 1.
dc.identifier.citedreferenceL. Xu, T. C. Shyu, N. A. Kotov, ACS Nano 2017, 11, 7587.
dc.identifier.citedreferenceF. Cavallo, M. G. Lagally, Nano Today 2015, 10, 538.
dc.identifier.citedreferenceV. B. Shenoy, D. H. Gracias, MRS Bull. 2012, 37, 847.
dc.identifier.citedreferenceP. Wang, T. A. Meyer, V. Pan, P. K. Dutta, Y. Ke, Chem 2017, 2, 359.
dc.identifier.citedreferenceM. Schenk, S. D. Guest, Proc. Natl. Acad. Sci. USA 2013, 110, 3276.
dc.identifier.citedreferenceZ. Y. Wei, Z. V Guo, L. H. Dudte, H. Y. Liang, L. Mahadevan, Phys. Rev. Lett. 2013, 110, 215501.
dc.identifier.citedreferenceC. Lv, D. Krishnaraju, G. Konjevod, H. Yu, H. Jiang, Sci. Rep. 2015, 4, 5979.
dc.identifier.citedreferenceN. A. Fleck, V. S. Deshpande, M. F. Ashby, Proc. R. Soc. A 2010, 466, 2495.
dc.identifier.citedreferenceJ. H. Lee, J. P. Singer, E. L. Thomas, Adv. Mater. 2012, 24, 4782.
dc.identifier.citedreferenceA. A. Zadpoor, Mater. Horiz. 2016, 3, 371.
dc.identifier.citedreferenceJ. Bauer, L. R. Meza, T. A. Schaedler, R. Schwaiger, X. Zheng, L. Valdevit, Adv. Mater. 2017, 29, 1701850.
dc.identifier.citedreferenceK. Bertoldi, V. Vitelli, J. Christensen, M. van Hecke, Nat. Rev. Mater. 2017, 2, 17066.
dc.identifier.citedreferenceN. Turner, B. Goodwine, M. Sen, Proc. Inst. Mech. Eng., Part C 2015, 230, 2345.
dc.identifier.citedreferenceS. J. P. Callens, A. A. Zadpoor, Mater. Today 2018, 21, 241.
dc.identifier.citedreferenceX. Ning, X. Wang, Y. Zhang, X. Yu, D. Choi, N. Zheng, D. S. Kim, Y. Huang, Y. Zhang, J. A. Rogers, Adv. Mater. Interfaces 5, 2018, 1800284.
dc.identifier.citedreferenceD. Rus, M. T. Tolley, Nat. Rev. Mater. 2018, 3, 101.
dc.identifier.citedreferenceS. Xu, Z. Yan, K. I. Jang, W. Huang, H. Fu, J. Kim, Z. Wei, M. Flavin, J. McCracken, R. Wang, A. Badea, Y. Liu, D. Xiao, G. Zhou, J. Lee, H. U. Chung, H. Cheng, W. Ren, A. Banks, X. Li, U. Paik, R. G. Nuzzo, Y. Huang, Y. Zhang, J. A. Rogers, Science 2015, 347, 154.
dc.identifier.citedreferenceC. M. Wheeler, M. L. Culpepper, J. Mech. Rob. 2016, 8, 051012.
dc.identifier.citedreferenceR. V Martinez, C. R. Fish, X. Chen, G. M. Whitesides, Adv. Funct. Mater. 2012, 22, 1376.
dc.identifier.citedreferenceY. Zhang, Z. Yan, K. Nan, D. Xiao, Y. Liu, H. Luan, H. Fu, X. Wang, Q. Yang, J. Wang, W. Ren, H. Si, F. Liu, L. Yang, H. Li, J. Wang, X. Guo, H. Luo, L. Wang, Y. Huang, J. A. Rogers, Proc. Natl. Acad. Sci. USA 2015, 112, 11757.
dc.identifier.citedreferenceZ. Yan, F. Zhang, J. Wang, F. Liu, X. Guo, K. Nan, Q. Lin, M. Gao, D. Xiao, Y. Shi, Y. Qiu, H. Luan, J. H. Kim, Y. Wang, H. Luo, M. Han, Y. Huang, Y. Zhang, J. A. Rogers, Adv. Funct. Mater. 2016, 26, 2629.
dc.identifier.citedreferenceS. Tibbits, Active Matter, The MIT Press, Cambridge, MA, USA 2017.
dc.identifier.citedreferenceJ. T. B. Overvelde, J. C. Weaver, C. Hoberman, K. Bertoldi, Nature 2017, 541, 347.
dc.identifier.citedreferenceN. Bassik, G. M. Stern, D. H. Gracias, Appl. Phys. Lett. 2009, 95, 091901.
dc.identifier.citedreferenceD. Huffman, IEEE Trans. Comput. 1976, Câ 25, 1010.
dc.identifier.citedreferenceT. Tachi, in Int. Assoc. Shell Spat. Struct. Symp., Valencia, Spain 2009, pp. 2287 â 2294.
dc.identifier.citedreferenceD. Fuchs, S. Tabachnikov, Am. Math. Mon. 1999, 106, 27.
dc.identifier.citedreferenceK. Miura, ISAS Rep. 1972, 37, 137.
dc.identifier.citedreferenceY. Chen, H. Feng, J. Ma, R. Peng, Z. You, Proc. R. Soc. A 2016, 472, 20150846.
dc.identifier.citedreferenceT. Nojima, K. Saito, JSME Int. J. Ser. A 2006, 49, 38.
dc.identifier.citedreferenceT. Castle, Y. Cho, X. Gong, E. Jung, D. M. Sussman, S. Yang, R. D. Kamien, Phys. Rev. Lett. 2014, 113, 245502.
dc.identifier.citedreferenceY. Hou, R. Neville, F. Scarpa, C. Remillat, B. Gu, M. Ruzzene, Composites, Part B 2014, 59, 33.
dc.identifier.citedreferenceT. Tachi, J. Mech. Des. 2013, 135, 111006.
dc.identifier.citedreferenceI. Stewart, Nature 2007, 448, 419.
dc.identifier.citedreferenceH. Fang, S. Li, H. Ji, K. W. Wang, Phys. Rev. E 2016, 94, 043002.
dc.identifier.citedreferenceN. Yang, J. L. Silverberg, Proc. Natl. Acad. Sci. USA 2017, 114, 3590.
dc.identifier.citedreferenceH. Yasuda, T. Yein, T. Tachi, K. Miura, M. Taya, Proc. R. Soc. A 2013, 469, 20130351.
dc.identifier.citedreferenceE. T. Filipov, G. H. Paulino, T. Tachi, Proc. R. Soc. A 2016, 472, 20150607.
dc.identifier.citedreferenceH. Yasuda, J. Yang, Phys. Rev. Lett. 2015, 114, 185502.
dc.identifier.citedreferenceS. Kamrava, D. Mousanezhad, H. Ebrahimi, R. Ghosh, A. Vaziri, Sci. Rep. 2017, 7, 46046.
dc.identifier.citedreferenceJ. T. B. Overvelde, T. A. de Jong, Y. Shevchenko, S. A. Becerra, G. M. Whitesides, J. C. Weaver, C. Hoberman, K. Bertoldi, Nat. Commun. 2016, 7, 10929.
dc.identifier.citedreferenceT. Tachi, in Adv. Archit. Geom. (Eds: C. Ceccato, L. Hesselgren, M. Pauly, H. Pottmann, J. Wallner ), Springer Vienna, Vienna, Austria 2010, pp. 87 â 102.
dc.identifier.citedreferenceS. Waitukaitis, M. van Hecke, Phys. Rev. E 2016, 93, 023003.
dc.identifier.citedreferenceL. H. Dudte, E. Vouga, T. Tachi, L. Mahadevan, Nat. Mater. 2016, 15, 583.
dc.identifier.citedreferenceX. Zhou, S. Zang, Z. You, Proc. R. Soc. A 2016, 472, 20160361.
dc.identifier.citedreferenceV. Brunck, F. Lechenault, A. Reid, M. Addaâ Bedia, Phys. Rev. E 2016, 93, 033005.
dc.identifier.citedreferenceS. Waitukaitis, R. Menaut, B. G. Chen, M. van Hecke, Phys. Rev. Lett. 2015, 114, 055503.
dc.identifier.citedreferenceH. Fang, K. W. Wang, S. Li, Extreme Mech. Lett. 2017, 17, 7.
dc.identifier.citedreferenceJ. L. Silverberg, J. H. Na, A. A. Evans, B. Liu, T. C. Hull, C. D. Santangelo, R. J. Lang, R. C. Hayward, I. Cohen, Nat. Mater. 2015, 14, 389.
dc.identifier.citedreferenceB. Liu, A. A. Evans, J. L. Silverberg, C. D. Santangelo, R. J. Lang, T. C. Hull, I. Cohen, arXiv:1706.01687 2017.
dc.identifier.citedreferenceS. Heimbs, in Dynamic Failure of Composite and Sandwich Structures (Eds: S. Abrate, B. Castanié, Y. D. S. Rajapakse ), Springer Netherlands, Dordrecht, The Netherlands 2013, pp. 491 â 544.
dc.identifier.citedreferenceM. Schenk, S. D. Guest, in Origami 5 (Eds: P. Wangâ Iverson, R. J. Lang, M. Yim ), A K Peters/CRC Press, Boca Raton, FL 2011, pp. 291 â 304.
dc.identifier.citedreferenceA. A. Evans, J. L. Silverberg, C. D. Santangelo, Phys. Rev. E 2015, 92, 013205.
dc.identifier.citedreferenceT. A. Witten, Rev. Mod. Phys. 2007, 79, 643.
dc.identifier.citedreferenceK. Fuchi, P. R. Buskohl, G. Bazzan, M. F. Durstock, G. W. Reich, R. A. Vaia, J. J. Joo, J. Mech. Des. 2015, 137, 091401.
dc.identifier.citedreferenceS. Li, K. W. Wang, Smart Mater. Struct. 2015, 24, 105031.
dc.identifier.citedreferenceS. D. Guest, Int. J. Solids Struct. 2006, 43, 842.
dc.identifier.citedreferenceE. T. Filipov, K. Liu, T. Tachi, M. Schenk, G. H. Paulino, Int. J. Solids Struct. 2017, 124, 26.
dc.identifier.citedreferenceK. Fuchi, P. R. Buskohl, J. J. Joo, G. W. Reich, R. A. Vaia, in Origami 6, American Mathematical Society, Providence, RI, USA 2015, pp. 1 â 11.
dc.identifier.citedreferenceK. Liu, G. H. Paulino, Proc. R. Soc. A 2017, 473, 20170348.
dc.identifier.citedreferenceA. Gillman, K. Fuchi, P. R. Buskohl, Int. J. Solids Struct. 2018, 147, 80.
dc.identifier.citedreferenceJ. Cai, X. Deng, Z. Ya, F. Jiang, Y. Tu, J. Mech. Des. 2015, 137, 061406.
dc.identifier.citedreferenceS. Fischer, K. Drechsler, S. Kilchert, A. Johnson, Composites, Part A 2009, 40, 1941.
dc.identifier.citedreferenceX. Zhou, H. Wang, Z. You, Thinâ Walled Struct. 2014, 82, 296.
dc.identifier.citedreferenceJ. Ma, Z. You, J. Appl. Mech. 2013, 81, 011003.
dc.identifier.citedreferenceS. Liu, G. Lu, Y. Chen, Y. W. Leong, Int. J. Mech. Sci. 2015, 99, 130.
dc.identifier.citedreferenceJ. M. Gattas, Z. You, Int. J. Solids Struct. 2015, 53, 80.
dc.identifier.citedreferenceS. Fischer, Int. J. Mech. Mater. Eng. 2015, 10, 14.
dc.identifier.citedreferenceT. Smit, Master’s thesis, Delft University of Technology, Delft, The Netherlands 2017.
dc.identifier.citedreferenceR. Sturm, P. Schatrow, Y. Klett, Appl. Compos. Mater. 2015, 22, 857.
dc.identifier.citedreferenceA. Lebée, K. Sab, Int. J. Solids Struct. 2010, 47, 2620.
dc.identifier.citedreferenceA. Lebée, K. Sab, Int. J. Solids Struct. 2012, 49, 2778.
dc.identifier.citedreferenceM. Eidini, G. H. Paulino, Sci. Adv. 2015, 1, e1500224.
dc.identifier.citedreferenceW. Jiang, H. Ma, M. Feng, L. Yan, J. Wang, J. Wang, S. Qu, J. Phys. D: Appl. Phys. 2016, 49, 315302.
dc.identifier.citedreferenceS. Li, K. W. Wang, J. R. Soc., Interface 2015, 12, 20150639.
dc.identifier.citedreferenceS. Li, H. Fang, K. W. Wang, Phys. Rev. Lett. 2016, 117, 114301.
dc.identifier.citedreferenceS. Sadeghi, S. Li, in Proc. ASME SMASIS, ASME, Snowbird, UT, USA 2017, pp. 2017 â 3754.
dc.identifier.citedreferenceH. Fang, S. A. Chu, Y. Xia, K. Wang, Adv. Mater. 30, 2018, 1706311.
dc.identifier.citedreferenceJ. B. Berger, H. N. G. Wadley, R. M. McMeeking, Nature 2017, 543, 533.
dc.identifier.citedreferenceM. Kintscher, L. Kärger, A. Wetzel, D. Hartung, Composites, Part A 2007, 38, 1288.
dc.identifier.citedreferenceK. C. Cheung, T. Tachi, S. Calisch, K. Miura, Smart Mater. Struct. 2014, 23, 094012.
dc.identifier.citedreferenceJ. M. Gattas, Z. You, Eng. Struct. 2015, 94, 149.
dc.identifier.citedreferenceD. Deng, Y. Chen, J. Mech. Des. 2015, 137, 021701.
dc.identifier.citedreferenceS. M. Felton, M. T. Tolley, B. Shin, C. D. Onal, E. D. Demaine, D. Rus, R. J. Wood, Soft Matter 2013, 9, 7688.
dc.identifier.citedreferenceT. G. Leong, P. A. Lester, T. L. Koh, Call E K, D. H. Gracias, E. K. Call, D. H. Gradias, Langmuir 2007, 23, 8747.
dc.identifier.citedreferenceH. Fang, S. Li, K. W. Wang, Proc. R. Soc. A 2016, 472, 20160682.
dc.identifier.citedreferenceJ. Ma, J. Song, Y. Chen, Int. J. Mech. Sci. 2018, 136, 134.
dc.identifier.citedreferenceS. Sengupta, S. Li, J. Intell. Mater. Syst. Struct. 2018, 29, 2933.
dc.identifier.citedreferenceJ. L. Silverberg, A. A. Evans, L. McLeod, R. C. Hayward, T. C. Hull, C. D. Santangelo, I. Cohen, Science 2014, 345, 647.
dc.identifier.citedreferenceN. Nayakanti, S. H. Tawfick, J. A. Hart, Extreme Mech. Lett. 2018, 21, 17.
dc.identifier.citedreferenceB. H. Hanna, J. M. Lund, R. J. Lang, S. P. Magleby, L. L. Howell, Smart Mater. Struct. 2014, 23, 094009.
dc.identifier.citedreferenceH. Yasuda, Z. Chen, J. Yang, J. Mech. Rob. 2016, 8, 031013.
dc.identifier.citedreferenceS. Daynes, R. S. Trask, P. M. Weaver, Smart Mater. Struct. 2014, 23, 125011.
dc.identifier.citedreferenceH. Yasuda, C. Chong, E. G. Charalampidis, P. G. Kevrekidis, J. Yang, Phys. Rev. E 2016, 93, 043004.
dc.identifier.citedreferenceH. Fang, S. Li, H. Ji, K. W. Wang, Phys. Rev. E 2017, 95, 052211.
dc.identifier.citedreferenceS. Ishida, H. Uchida, H. Shimosaka, I. Hagiwara, J. Vib. Acoust. 2017, 139, 031015.
dc.identifier.citedreferenceS. Ishida, K. Suzuki, H. Shimosaka, J. Vib. Acoust. 2017, 139, 051004.
dc.identifier.citedreferenceG. V. Rodrigues, L. M. Fonseca, M. A. Savi, A. Paiva, Int. J. Mech. Sci. 2017, 133, 303.
dc.identifier.citedreferenceM. Thota, S. Li, K. W. Wang, Phys. Rev. B 2017, 95, 064307.
dc.identifier.citedreferenceM. Thota, K. W. Wang, J. Appl. Phys. 2017, 122, 154901.
dc.identifier.citedreferenceP. P. Pratapa, P. Suryanarayana, G. H. Paulino, J. Mech. Phys. Solids 2018, 118, 115.
dc.identifier.citedreferenceS. Babaee, J. T. B. Overvelde, E. R. Chen, V. Tournat, K. Bertoldi, Sci. Adv. 2016, 2, e1601019.
dc.identifier.citedreferenceM. Thota, K. W. Wang, J. Sound Vib. 2018, 430, 93.
dc.identifier.citedreferenceR. L. Harne, D. T. Lynd, Smart Mater. Struct. 2016, 25, 085031.
dc.identifier.citedreferenceJ. M. Gattas, Z. You, Int. J. Impact Eng. 2014, 73, 15.
dc.identifier.citedreferenceA. Pydah, R. C. Batra, Thinâ Walled Struct. 2017, 115, 311.
dc.identifier.citedreferenceR. K. Fathers, J. M. Gattas, Z. You, Int. J. Mech. Sci. 2015, 101â 102, 421.
dc.identifier.citedreferenceW. Chen, H. Hao, Int. J. Impact Eng. 2018, 115, 94.
dc.identifier.citedreferenceS. Heimbs, P. Middendorf, S. Kilchert, A. F. Johnson, M. Maier, Appl. Compos. Mater. 2007, 14, 363.
dc.identifier.citedreferenceS. Heimbs, J. Cichosz, M. Klaus, S. Kilchert, A. F. Johnson, Compos. Struct. 2010, 92, 1485.
dc.identifier.citedreferenceE. Baranger, P. A. Guidault, C. Cluzel, Compos. Struct. 2011, 93, 2504.
dc.identifier.citedreferenceS. Kilchert, A. F. Johnson, H. Voggenreiter, Composites, Part A 2014, 57, 16.
dc.identifier.citedreferenceR. Sturm, S. Fischer, Appl. Compos. Mater. 2015, 22, 791.
dc.identifier.citedreferenceK. Fuchi, T. Junyan, B. Crowgey, A. R. Diaz, E. J. Rothwell, R. O. Ouedraogo, IEEE Antennas Wireless Propag. Lett. 2012, 11, 473.
dc.identifier.citedreferenceZ. Wang, L. Jing, K. Yao, Y. Yang, B. Zheng, C. M. Soukoulis, H. Chen, Y. Liu, Adv. Mater. 2017, 29, 1700412.
dc.identifier.citedreferenceE. Boatti, N. Vasios, K. Bertoldi, Adv. Mater. 2017, 29, 1700360.
dc.identifier.citedreferenceK. E. Evans, A. Alderson, Adv. Mater. 2000, 12, 617.
dc.identifier.citedreferenceR. H. Baughman, Nature 2003, 425, 667.
dc.identifier.citedreferenceJ. Sun, Q. Guan, Y. Liu, J. Leng, J. Intell. Mater. Syst. Struct. 2016, 27, 2289.
dc.identifier.citedreferenceS. Daynes, P. M. Weaver, Proc. Inst. Mech. Eng., Part D 2013, 227, 1603.
dc.identifier.citedreferenceR. A. Ibrahim, J. Sound Vib. 2008, 314, 371.
dc.identifier.citedreferenceR. L. Harne, K. W. Wang, Harnessing Bistable Structural Dynamics: For Vibration Control, Energy Harvesting and Sensing, John Wiley and Sons, Chichester, UK 2017.
dc.identifier.citedreferenceS. P. Pellegrini, N. Tolou, M. Schenk, J. L. Herder, J. Intell. Mater. Syst. Struct. 2013, 24, 1303.
dc.identifier.citedreferenceT. Chen, O. R. Bilal, K. Shea, C. Daraio, Proc. Natl. Acad. Sci. USA 2018, 115, 5698.
dc.identifier.citedreferenceB. Treml, A. Gillman, P. Buskohl, R. Vaia, Proc. Natl. Acad. Sci. USA 2018, 201805122.
dc.identifier.citedreferenceY. Zhang, F. Zhang, Z. Yan, Q. Ma, X. Li, Y. Huang, J. A. Rogers, Nat. Rev. Mater. 2017, 2, 17019.
dc.identifier.citedreferenceB. Y. Ahn, D. Shoji, C. J. Hansen, E. Hong, D. C. Dunand, J. A. Lewis, Adv. Mater. 2010, 22, 2251.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.