Show simple item record

SCFβ‐TrCP ubiquitinates CHK1 in an AMPK‐dependent manner in response to glucose deprivation

dc.contributor.authorMa, Ying
dc.contributor.authorCui, Danrui
dc.contributor.authorXiong, Xiufang
dc.contributor.authorInuzuka, Hiroyuki
dc.contributor.authorWei, Wenyi
dc.contributor.authorSun, Yi
dc.contributor.authorNorth, Brian J.
dc.contributor.authorZhao, Yongchao
dc.date.accessioned2019-02-12T20:23:27Z
dc.date.available2020-04-01T15:06:24Zen
dc.date.issued2019-02
dc.identifier.citationMa, Ying; Cui, Danrui; Xiong, Xiufang; Inuzuka, Hiroyuki; Wei, Wenyi; Sun, Yi; North, Brian J.; Zhao, Yongchao (2019). "SCFβ‐TrCP ubiquitinates CHK1 in an AMPK‐dependent manner in response to glucose deprivation." Molecular Oncology 13(2): 307-321.
dc.identifier.issn1574-7891
dc.identifier.issn1878-0261
dc.identifier.urihttps://hdl.handle.net/2027.42/147790
dc.publisherWiley Periodicals, Inc.
dc.subject.otherAMPK
dc.subject.otherglucose deprivation
dc.subject.otherubiquitination
dc.subject.otherβ‐TrCP
dc.subject.otherCHK1
dc.titleSCFβ‐TrCP ubiquitinates CHK1 in an AMPK‐dependent manner in response to glucose deprivation
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelHematology and Oncology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147790/1/mol212403_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147790/2/mol212403.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147790/3/mol212403-sup-0001-FigS1-S4.pdf
dc.identifier.doi10.1002/1878-0261.12403
dc.identifier.sourceMolecular Oncology
dc.identifier.citedreferenceWarburg O ( 1956 ) On the origin of cancer cells. Science 123, 309 – 314.
dc.identifier.citedreferenceLin SC and Hardie DG ( 2018 ) AMPK: Sensing glucose as well as cellular energy status. Cell Metab 27, 299 – 313.
dc.identifier.citedreferenceLiu Y, Vidanes G, Lin YC, Mori S and Siede W ( 2000 ) Characterization of a Saccharomyces cerevisiae homologue of Schizosaccharomyces pombe Chk1 involved in DNA‐damage‐induced M‐phase arrest. Mol Gen Genet 262, 1132 – 1146.
dc.identifier.citedreferenceMcGranahan N and Swanton C ( 2017 ) Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168, 613 – 628.
dc.identifier.citedreferencePapp‐Szabo E, Josephy PD and Coomber BL ( 2005 ) Microenvironmental influences on mutagenesis in mammary epithelial cells. Int J Cancer 116, 679 – 685.
dc.identifier.citedreferencePuc J, Keniry M, Li HS, Pandita TK, Choudhury AD, Memeo L, Mansukhani M, Murty VV, Gaciong Z and Meek SE et al. ( 2005 ) Lack of PTEN sequesters CHK1 and initiates genetic instability. Cancer Cell 7, 193 – 204.
dc.identifier.citedreferenceSetoyama D, Yamashita M and Sagata N ( 2007 ) Mechanism of degradation of CPEB during Xenopus oocyte maturation. Proc Natl Acad Sci USA 104, 18001 – 18006.
dc.identifier.citedreferenceSkinner SA, Tutton PJ and O’Brien PE ( 1990 ) Microvascular architecture of experimental colon tumors in the rat. Cancer Res 50, 2411 – 2417.
dc.identifier.citedreferenceSu H, Yang F, Wang Q, Shen Q, Huang J, Peng C, Zhang Y, Wan W, Wong CCL, Sun Q et al. ( 2017 ) VPS34 Acetylation controls its lipid kinase activity and the initiation of canonical and non‐canonical autophagy. Mol Cell 67 ( 907–921 ), e907.
dc.identifier.citedreferenceVegran F, Boidot R, Michiels C, Sonveaux P and Feron O ( 2011 ) Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF‐kappaB/IL‐8 pathway that drives tumor angiogenesis. Cancer Res 71, 2550 – 2560.
dc.identifier.citedreferenceWang Z, Liu P, Inuzuka H and Wei W ( 2014 ) Roles of F‐box proteins in cancer. Nat Rev Cancer 14, 233 – 247.
dc.identifier.citedreferenceWei S, Chuang HC, Tsai WC, Yang HC, Ho SR, Paterson AJ, Kulp SK and Chen CS ( 2009 ) Thiazolidinediones mimic glucose starvation in facilitating Sp1 degradation through the up‐regulation of beta‐transducin repeat‐containing protein. Mol Pharmacol 76, 47 – 57.
dc.identifier.citedreferenceWei S, Yang HC, Chuang HC, Yang J, Kulp SK, Lu PJ, Lai MD and Chen CS ( 2008 ) A novel mechanism by which thiazolidinediones facilitate the proteasomal degradation of cyclin D1 in cancer cells. J Biol Chem 283, 26759 – 26770.
dc.identifier.citedreferenceWu H, Ding Z, Hu D, Sun F, Dai C, Xie J and Hu X ( 2012 ) Central role of lactic acidosis in cancer cell resistance to glucose deprivation‐induced cell death. J Pathol 227, 189 – 199.
dc.identifier.citedreferenceYamoah K, Oashi T, Sarikas A, Gazdoiu S, Osman R and Pan ZQ ( 2008 ) Autoinhibitory regulation of SCF‐mediated ubiquitination by human cullin 1’s C‐terminal tail. Proc Natl Acad Sci USA 105, 12230 – 12235.
dc.identifier.citedreferenceYuan J and Glazer PM ( 1998 ) Mutagenesis induced by the tumor microenvironment. Mutat Res 400, 439 – 446.
dc.identifier.citedreferenceZeman MK and Cimprich KA ( 2014 ) Causes and consequences of replication stress. Nat Cell Biol 16, 2 – 9.
dc.identifier.citedreferenceZhang YW, Brognard J, Coughlin C, You Z, Dolled‐Filhart M, Aslanian A, Manning G, Abraham RT, and Hunter T ( 2009 ) The F box protein Fbx6 regulates Chk1 stability and cellular sensitivity to replication stress. Mol Cell 35, 442 – 453.
dc.identifier.citedreferenceZhang CS, Hawley SA, Zong Y, Li M, Wang Z, Gray A, Ma T, Cui J, Feng JW, Zhu M et al. ( 2017a ) Fructose‐1,6‐bisphosphate and aldolase mediate glucose sensing by AMPK. Nature 548, 112 – 116.
dc.identifier.citedreferenceZhang R, Huang SY, Ka‐Wai Li K, Li YH, Hsu WH, Zhang GJ, Chang CJ and Yang JY ( 2017b ) Dual degradation signals destruct GLI1: AMPK inhibits GLI1 through beta‐TrCP‐mediated proteasome degradation. Oncotarget 8, 49869 – 49881.
dc.identifier.citedreferenceZhang Y and Hunter T ( 2014 ) Roles of Chk1 in cell biology and cancer therapy. Int J Cancer 134, 1013 – 1023.
dc.identifier.citedreferenceZhang YW, Otterness DM, Chiang GG, Xie W, Liu YC, Mercurio F and Abraham RT ( 2005 ) Genotoxic stress targets human Chk1 for degradation by the ubiquitin‐proteasome pathway. Mol Cell 19, 607 – 618.
dc.identifier.citedreferenceZhang D, Wang W, Sun X, Xu D, Wang C, Zhang Q, Wang H, Luo W, Chen Y, Chen H et al. ( 2016 ) AMPK regulates autophagy by phosphorylating BECN1 at threonine 388. Autophagy 12, 1447 – 1459.
dc.identifier.citedreferenceZhao Y and Sun Y ( 2013 ) Cullin‐RING Ligases as attractive anti‐cancer targets. Curr Pharm Des 19, 3215 – 3225.
dc.identifier.citedreferenceZhao Y, Xiong X and Sun Y ( 2011 ) DEPTOR, an mTOR inhibitor, is a physiological substrate of SCF(betaTrCP) E3 ubiquitin ligase and regulates survival and autophagy. Mol Cell 44, 304 – 316.
dc.identifier.citedreferenceAnnibaldi A and Widmann C ( 2010 ) Glucose metabolism in cancer cells. Curr Opin Clin Nutr Metab Care 13, 466 – 470.
dc.identifier.citedreferenceBartek J and Lukas J ( 2003 ) Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3, 421 – 429.
dc.identifier.citedreferenceBergers G and Benjamin LE ( 2003 ) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3, 401 – 410.
dc.identifier.citedreferenceChen JL, Lucas JE, Schroeder T, Mori S, Wu J, Nevins J, Dewhirst M, West M and Chi JT ( 2008 ) The genomic analysis of lactic acidosis and acidosis response in human cancers. PLoS Genet 4, e1000293.
dc.identifier.citedreferenceChu PC, Chuang HC, Kulp SK and Chen CS ( 2012 ) The mRNA‐stabilizing factor HuR protein is targeted by beta‐TrCP protein for degradation in response to glycolysis inhibition. J Biol Chem 287, 43639 – 43650.
dc.identifier.citedreferenceDai X, North BJ and Inuzuka H ( 2014 ) Negative regulation of DAB2IP by Akt and SCFFbw7 pathways. Oncotarget 5, 3307 – 3315.
dc.identifier.citedreferenceDai C, Sun F, Zhu C and Hu X ( 2013 ) Tumor environmental factors glucose deprivation and lactic acidosis induce mitotic chromosomal instability–an implication in aneuploid human tumors. PLoS ONE 8, e63054.
dc.identifier.citedreferenceDenko NC ( 2008 ) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8, 705 – 713.
dc.identifier.citedreferenceGao D, Inuzuka H, Tan MK, Fukushima H, Locasale JW, Liu P, Wan L, Zhai B, Chin YR, Shaik S et al. ( 2011 ) mTOR drives its own activation via SCF(betaTrCP)‐dependent degradation of the mTOR inhibitor DEPTOR. Mol Cell 44, 290 – 303.
dc.identifier.citedreferenceGoto H, Kasahara K and Inagaki M ( 2015 ) Novel insights into Chk1 regulation by phosphorylation. Cell Struct Funct 40, 43 – 50.
dc.identifier.citedreferenceGwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE and Shaw RJ ( 2008 ) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30, 214 – 226.
dc.identifier.citedreferenceHanahan D and Weinberg RA ( 2011 ) Hallmarks of cancer: the next generation. Cell 144, 646 – 674.
dc.identifier.citedreferenceHardie DG, Ross FA and Hawley SA ( 2012 ) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13, 251 – 262.
dc.identifier.citedreferenceHawley SA, Gadalla AE, Olsen GS and Hardie DG ( 2002 ) The antidiabetic drug metformin activates the AMP‐activated protein kinase cascade via an adenine nucleotide‐independent mechanism. Diabetes 51, 2420 – 2425.
dc.identifier.citedreferenceHuh J and Piwnica‐Worms H ( 2013 ) CRL4(CDT2) targets CHK1 for PCNA‐independent destruction. Mol Cell Biol 33, 213 – 226.
dc.identifier.citedreferenceInuzuka H, Gao D, Finley LW, Yang W, Wan L, Fukushima H, Chin YR, Zhai B, Shaik S and Law AW et al. ( 2012 ) Acetylation‐dependent regulation of Skp2 function. Cell 150, 179 – 193.
dc.identifier.citedreferenceKim AJ, Kim HJ, Jee HJ, Song N, Kim M, Bae YS, Chung JH and Yun J ( 2011 ) Glucose deprivation is associated with Chk1 degradation through the ubiquitin‐proteasome pathway and effective checkpoint response to replication blocks. Biochim Biophys Acta 1813, 1230 – 1238.
dc.identifier.citedreferenceLaderoute KR, Amin K, Calaoagan JM, Knapp M, Le T, Orduna J, Foretz M and Viollet B ( 2006 ) 5′‐AMP‐activated protein kinase (AMPK) is induced by low‐oxygen and glucose deprivation conditions found in solid‐tumor microenvironments. Mol Cell Biol 26, 5336 – 5347.
dc.identifier.citedreferenceLassot I, Segeral E, Berlioz‐Torrent C, Durand H, Groussin L, Hai T, Benarous R and Margottin‐Goguet F ( 2001 ) ATF4 degradation relies on a phosphorylation‐dependent interaction with the SCF(betaTrCP) ubiquitin ligase. Mol Cell Biol 21, 2192 – 2202.
dc.identifier.citedreferenceLau AW, Fukushima H and Wei W ( 2012 ) The Fbw7 and betaTRCP E3 ubiquitin ligases and their roles in tumorigenesis. Front Biosci (Landmark Ed) 17, 2197 – 2212.
dc.identifier.citedreferenceLeung‐Pineda V, Huh J and Piwnica‐Worms H ( 2009 ) DDB1 targets Chk1 to the Cul4 E3 ligase complex in normal cycling cells and in cells experiencing replication stress. Cancer Res 69, 2630 – 2637.
dc.identifier.citedreferenceLi X, Dai X, Wan L, Inuzuka H, Sun L and North BJ ( 2016 ) Smurf1 regulation of DAB2IP controls cell proliferation and migration. Oncotarget 7, 26057 – 26069.
dc.identifier.citedreferenceLi P, Goto H, Kasahara K, Matsuyama M, Wang Z, Yatabe Y, Kiyono T and Inagaki M ( 2012 ) P90 RSK arranges Chk1 in the nucleus for monitoring of genomic integrity during cell proliferation. Mol Biol Cell 23, 1582 – 1592.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.