Show simple item record

Chronic stress and intestinal permeability: Lubiprostone regulates glucocorticoid receptor‐mediated changes in colon epithelial tight junction proteins, barrier function, and visceral pain in the rodent and human

dc.contributor.authorZong, Ye
dc.contributor.authorZhu, Shengtao
dc.contributor.authorZhang, Shutian
dc.contributor.authorZheng, Gen
dc.contributor.authorWiley, John W
dc.contributor.authorHong, Shuangsong
dc.date.accessioned2019-02-12T20:23:44Z
dc.date.available2020-04-01T15:06:24Zen
dc.date.issued2019-02
dc.identifier.citationZong, Ye; Zhu, Shengtao; Zhang, Shutian; Zheng, Gen; Wiley, John W; Hong, Shuangsong (2019). "Chronic stress and intestinal permeability: Lubiprostone regulates glucocorticoid receptor‐mediated changes in colon epithelial tight junction proteins, barrier function, and visceral pain in the rodent and human." Neurogastroenterology & Motility 31(2): n/a-n/a.
dc.identifier.issn1350-1925
dc.identifier.issn1365-2982
dc.identifier.urihttps://hdl.handle.net/2027.42/147799
dc.description.abstractBackgroundChronic psychological stress is associated with increased intestinal epithelial permeability and visceral hyperalgesia. Lubiprostone, an agonist for chloride channel‐2, promotes secretion and accelerates restoration of injury‐induced epithelial barrier dysfunction. The mechanisms underlying how lubiprostone regulates colon epithelial barrier function and visceral hyperalgesia in chronic stress remain unknown.MethodsMale rats were subjected to water avoidance stress for 10 consecutive days. Lubiprostone was administered daily during the stress phase. Visceromotor response to colorectal distension was measured. Human colon crypts and cell lines were treated with cortisol and lubiprostone. The transepithelial electrical resistance and FITC‐dextran permeability were assayed. Chromatin immunoprecipitation was conducted to assess glucocorticoid receptor binding at tight junction gene promoters.Key ResultsLubiprostone significantly decreased chronic stress‐induced visceral hyperalgesia in the rat (P < 0.05; n = 6). WA stress decreased occludin and claudin‐1 and increased claudin‐2 in rat colon crypts, which was prevented by lubiprostone. Cortisol treatment induced similar alterations of tight junction protein expression in Caco‐2/BBE cells (P < 0.05) and significantly changed paracellular permeability in monolayers (P < 0.01). These changes were blocked by lubiprostone. Glucocorticoid receptor and its binding at occludin promoter region were decreased in cortisol‐treated cells and human colon crypts, which was largely reversed by lubiprostone. In rat colonic cells, glucocorticoid receptor and its co‐chaperone proteins were down‐regulated after corticosterone treatment and lubiprostone reversed these changes.Conclusions & InferencesLubiprostone preferentially prevents chronic stress‐induced alterations of intestinal epithelial tight junctions, barrier function, and visceral hyperalgesia that was associated with modulation of glucocorticoid receptor expression and function.Lubiprostone preferentially prevents chronic stress‐induced alterations of intestinal epithelial tight junctions, barrier function, and visceral hyperalgesia that was associated with modulation of glucocorticoid receptor expression and function.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherchronic stress; visceral hyperalgesia
dc.subject.otherglucocorticoid receptor
dc.subject.otherintestinal permeability
dc.subject.otherlubiprostone
dc.subject.othertight junction
dc.titleChronic stress and intestinal permeability: Lubiprostone regulates glucocorticoid receptor‐mediated changes in colon epithelial tight junction proteins, barrier function, and visceral pain in the rodent and human
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialties
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147799/1/nmo13477.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147799/2/nmo13477_am.pdf
dc.identifier.doi10.1111/nmo.13477
dc.identifier.sourceNeurogastroenterology & Motility
dc.identifier.citedreferenceJin Y, Blikslager AT. ClC‐2 regulation of intestinal barrier function: Translation of basic science to therapeutic target. Tissue Barriers. 2015; 3: e1105906.
dc.identifier.citedreferenceGunzel D, Fromm M. Claudins and other tight junction proteins. Compr Physiol. 2012; 2: 1819 – 1852.
dc.identifier.citedreferenceFerruzza S, Rossi C, Scarino ML, et al. A protocol for differentiation of human intestinal Caco‐2 cells in asymmetric serum‐containing medium. Toxicol In Vitro. 2012; 26: 1252 – 1255.
dc.identifier.citedreferencePories SE, Weber TK, Simpson H, et al. Immortalization and neoplastic transformation of normal rat colon epithelium: an in vitro model of colonic neoplastic progression. Gastroenterology. 1993; 104: 1346 – 1355.
dc.identifier.citedreferenceCha MC, Lin A, Meckling KA. Low dose docosahexaenoic acid protects normal colonic epithelial cells from araC toxicity. BMC Pharmacol. 2005; 5: 7.
dc.identifier.citedreferenceDame MK, Jiang Y, Appelman HD, et al. Human colonic crypts in culture: segregation of immunochemical markers in normal versus adenoma‐derived. Lab Invest. 2014; 94: 222 – 234.
dc.identifier.citedreferenceZheng G, Victor Fon G, Meixner W, et al. Chronic stress and intestinal barrier dysfunction: Glucocorticoid receptor and transcription repressor HES1 regulate tight junction protein Claudin‐1 promoter. Sci Rep. 2017; 7: 4502.
dc.identifier.citedreferenceHong S, Zheng G, Wu X, et al. Corticosterone mediates reciprocal changes in CB 1 and TRPV1 receptors in primary sensory neurons in the chronically stressed rat. Gastroenterology. 2011; 140: 627 – 637.
dc.identifier.citedreferenceOvergaard CE, Daugherty BL, Mitchell LA, et al. Claudins: control of barrier function and regulation in response to oxidant stress. Antioxid Redox Signal. 2011; 15: 1179 – 1193.
dc.identifier.citedreferenceInai T, Kobayashi J, Shibata Y. Claudin‐1 contributes to the epithelial barrier function in MDCK cells. Eur J Cell Biol. 1999; 78: 849 – 855.
dc.identifier.citedreferenceOliveira SS, Morgado‐Diaz JA. Claudins: multifunctional players in epithelial tight junctions and their role in cancer. Cell Mol Life Sci. 2007; 64: 17 – 28.
dc.identifier.citedreferenceFuruse M, Furuse K, Sasaki H, et al. Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin‐2 into Madin‐Darby canine kidney I cells. J Cell Biol. 2001; 153: 263 – 272.
dc.identifier.citedreferenceWilmes A, Aschauer L, Limonciel A, et al. Evidence for a role of claudin 2 as a proximal tubular stress responsive paracellular water channel. Toxicol Appl Pharmacol. 2014; 279: 163 – 172.
dc.identifier.citedreferenceRosenthal R, Gunzel D, Theune D, et al. Water channels and barriers formed by claudins. Ann N Y Acad Sci. 2017; 1397: 100 – 109.
dc.identifier.citedreferenceChandrasekharan B, Jeppsson S, Pienkowski S, et al. Tumor necrosis factor‐neuropeptide Y cross talk regulates inflammation, epithelial barrier functions, and colonic motility. Inflamm Bowel Dis. 2013; 19: 2535 – 2546.
dc.identifier.citedreferenceAhmad R, Kumar B, Pan K, et al. HDAC‐4 regulates claudin‐2 expression in EGFR‐ERK1/2 dependent manner to regulate colonic epithelial cell differentiation. Oncotarget. 2017; 8: 87718 – 87736.
dc.identifier.citedreferenceMartinez C, Rodino‐Janeiro BK, Lobo B, et al. miR‐16 and miR‐125b are involved in barrier function dysregulation through the modulation of claudin‐2 and cingulin expression in the jejunum in IBS with diarrhoea. Gut. 2017; 66: 1537 – 1538.
dc.identifier.citedreferenceKelly SP, Chasiotis H. Glucocorticoid and mineralocorticoid receptors regulate paracellular permeability in a primary cultured gill epithelium. J Exp Biol. 2011; 214: 2308 – 2318.
dc.identifier.citedreferenceFelinski EA, Cox AE, Phillips BE, et al. Glucocorticoids induce transactivation of tight junction genes occludin and claudin‐5 in retinal endothelial cells via a novel cis‐element. Exp Eye Res. 2008; 86: 867 – 878.
dc.identifier.citedreferenceWochnik GM, Ruegg J, Abel GA, et al. FK506‐binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. J Biol Chem. 2005; 280: 4609 – 4616.
dc.identifier.citedreferenceYehuda R, Cai G, Golier JA, et al. Gene expression patterns associated with posttraumatic stress disorder following exposure to the World Trade Center attacks. Biol Psychiatry. 2009; 66: 708 – 711.
dc.identifier.citedreferenceJohanson JF, Morton D, Geenen J, et al. Multicenter, 4‐week, double‐blind, randomized, placebo‐controlled trial of lubiprostone, a locally‐acting type‐2 chloride channel activator, in patients with chronic constipation. Am J Gastroenterol. 2008; 103: 170 – 177.
dc.identifier.citedreferenceChang L, Chey WD, Drossman D, et al. Effects of baseline abdominal pain and bloating on response to lubiprostone in patients with irritable bowel syndrome with constipation. Aliment Pharmacol Ther. 2016; 44: 1114 – 1122.
dc.identifier.citedreferencePeng YJ, Huang JJ, Wu HH, et al. Regulation of CLC‐1 chloride channel biosynthesis by FKBP8 and Hsp90beta. Sci Rep. 2016; 6: 32444.
dc.identifier.citedreferenceCuppoletti J, Blikslager AT, Chakrabarti J, et al. Contrasting effects of linaclotide and lubiprostone on restitution of epithelial cell barrier properties and cellular homeostasis after exposure to cell stressors. BMC Pharmacol. 2012; 12: 3.
dc.identifier.citedreferenceMiyoshi H, VanDussen KL, Malvin NP, et al. Prostaglandin E2 promotes intestinal repair through an adaptive cellular response of the epithelium. EMBO J. 2017; 36: 5 – 24.
dc.identifier.citedreferenceLovell RM, Ford AC. Global prevalence of and risk factors for irritable bowel syndrome: a meta‐analysis. Clin Gastroenterol Hepatol. 2012; 10 ( 7 ): 712 ‐ 721.e4.
dc.identifier.citedreferenceAziz I, Tornblom H, Palsson OS, et al. How the change in IBS criteria from Rome III to Rome IV impacts on clinical characteristics and key pathophysiological factors. Am J Gastroenterol. 2018; 113: 1017 ‐ 1025.
dc.identifier.citedreferenceLacy BE, Rome P. Criteria and a Diagnostic Approach to Irritable Bowel Syndrome. J Clin Med. 2017; 6 ( 11 ): E99.
dc.identifier.citedreferenceVivinus‐Nebot M, Dainese R, Anty R, et al. Combination of allergic factors can worsen diarrheic irritable bowel syndrome: role of barrier defects and mast cells. Am J Gastroenterol. 2012; 107: 75 ‐ 81.
dc.identifier.citedreferenceZhou Q, Zhang B, Verne GN. Intestinal membrane permeability and hypersensitivity in the irritable bowel syndrome. Pain. 2009; 146: 41 ‐ 46.
dc.identifier.citedreferencePiche T, Barbara G, Aubert P, et al. Impaired intestinal barrier integrity in the colon of patients with irritable bowel syndrome: involvement of soluble mediators. Gut. 2009; 58: 196 ‐ 201.
dc.identifier.citedreferenceChang L. The role of stress on physiologic responses and clinical symptoms in irritable bowel syndrome. Gastroenterology. 2011; 140: 761 ‐ 765.
dc.identifier.citedreferenceKelly JR, Kennedy PJ, Cryan JF, et al. Breaking down the barriers: the gut microbiome, intestinal permeability and stress‐related psychiatric disorders. Front Cell Neurosci. 2015; 9: 392.
dc.identifier.citedreferenceZheng G, Wu SP, Hu Y, et al. Corticosterone mediates stress‐related increased intestinal permeability in a region‐specific manner. Neurogastroenterol Motil. 2013; 25: e127 – e139.
dc.identifier.citedreferenceXu D, Gao J, Gillilland M III, et al. Rifaximin alters intestinal bacteria and prevents stress‐induced gut inflammation and visceral hyperalgesia in rats. Gastroenterology. 2014; 146 ( 2 ): 484 ‐ 496.e4.
dc.identifier.citedreferenceLanghorst J, Junge A, Rueffer A, et al. Elevated human beta‐defensin‐2 levels indicate an activation of the innate immune system in patients with irritable bowel syndrome. Am J Gastroenterol. 2009; 104: 404 ‐ 410.
dc.identifier.citedreferenceDunlop SP, Hebden J, Campbell E, et al. Abnormal intestinal permeability in subgroups of diarrhea‐predominant irritable bowel syndromes. Am J Gastroenterol. 2006; 101: 1288 ‐ 1294.
dc.identifier.citedreferenceWiley JW, Higgins GA, Athey BD. Stress and glucocorticoid receptor transcriptional programming in time and space: Implications for the brain‐gut axis. Neurogastroenterol Motil. 2016; 28: 12 ‐ 25.
dc.identifier.citedreferenceCattaneo A, Riva MA. Stress‐induced mechanisms in mental illness: A role for glucocorticoid signalling. J Steroid Biochem Mol Biol. 2015; 160: 169 – 174.
dc.identifier.citedreferenceKirschke E, Goswami D, Southworth D, et al. Glucocorticoid receptor function regulated by coordinated action of the Hsp90 and Hsp70 chaperone cycles. Cell. 2014; 157: 1685 – 1697.
dc.identifier.citedreferencePratt WB, Morishima Y, Murphy M, et al. Chaperoning of glucocorticoid receptors. Handb Exp Pharmacol. 2006; 172: 111 – 138.
dc.identifier.citedreferenceBinder EB. The role of FKBP5, a co‐chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology. 2009; 34 ( Suppl 1 ): S186 – S195.
dc.identifier.citedreferenceGrad I, Picard D. The glucocorticoid responses are shaped by molecular chaperones. Mol Cell Endocrinol. 2007; 275: 2 – 12.
dc.identifier.citedreferenceBlair LJ, Sabbagh JJ, Dickey CA. Targeting Hsp90 and its co‐chaperones to treat Alzheimer’s disease. Expert Opin Ther Targets. 2014; 18: 1219 – 1232.
dc.identifier.citedreferenceLiu TS, Musch MW, Sugi K, et al. Protective role of HSP72 against Clostridium difficile toxin A‐induced intestinal epithelial cell dysfunction. Am J Physiol Cell Physiol. 2003; 284: C1073 – C1082.
dc.identifier.citedreferenceMatsuo K, Zhang X, Ono Y, et al. Acute stress‐induced colonic tissue HSP70 expression requires commensal bacterial components and intrinsic glucocorticoid. Brain Behav Immun. 2009; 23: 108 – 115.
dc.identifier.citedreferenceBao HF, Liu L, Self J, et al. A synthetic prostone activates apical chloride channels in A6 epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2008; 295: G234 – G251.
dc.identifier.citedreferenceLacy BE, Chey WD. Lubiprostone: chronic constipation and irritable bowel syndrome with constipation. Expert Opin Pharmacother. 2009; 10: 143 – 152.
dc.identifier.citedreferenceSimren M, Tack J. New treatments and therapeutic targets for IBS and other functional bowel disorders. Nat Rev Gastroenterol Hepatol. 2018; https://doi.org/10.1038/s41575-018-0034-5.
dc.identifier.citedreferenceNighot PK, Blikslager AT. Chloride channel ClC‐2 modulates tight junction barrier function via intracellular trafficking of occludin. Am J Physiol Cell Physiol. 2012; 302: C178 – C187.
dc.identifier.citedreferenceMoeser AJ, Nighot PK, Engelke KJ, et al. Recovery of mucosal barrier function in ischemic porcine ileum and colon is stimulated by a novel agonist of the ClC‐2 chloride channel, lubiprostone. Am J Physiol Gastrointest Liver Physiol. 2007; 292: G647 – G656.
dc.identifier.citedreferenceHong S, Fan J, Kemmerer ES, et al. Reciprocal changes in vanilloid (TRPV1) and endocannabinoid (CB1) receptors contribute to visceral hyperalgesia in the water avoidance stressed rat. Gut. 2009; 58: 202 – 210.
dc.identifier.citedreferenceHayashi S, Kurata N, Yamaguchi A, et al. Lubiprostone prevents nonsteroidal anti‐inflammatory drug‐induced small intestinal damage by suppressing the expression of inflammatory mediators via EP4 receptors. J Pharmacol Exp Ther. 2014; 349: 470 – 479.
dc.identifier.citedreferenceHong S, Zheng G, Wiley JW. Epigenetic regulation of genes that modulate chronic stress‐induced visceral pain in the peripheral nervous system. Gastroenterology. 2015; 148 ( 1 ): 148 – 157.e7.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.