Show simple item record

International Consensus Guidelines for the Optimal Use of the Polymyxins

dc.contributor.authorTsuji, Brian T.
dc.contributor.authorPogue, Jason M.
dc.contributor.authorZavascki, Alexandre P.
dc.contributor.authorPaul, Mical
dc.contributor.authorDaikos, George L.
dc.contributor.authorForrest, Alan
dc.contributor.authorGiacobbe, Daniele R.
dc.contributor.authorViscoli, Claudio
dc.contributor.authorGiamarellou, Helen
dc.contributor.authorKaraiskos, Ilias
dc.contributor.authorKaye, Donald
dc.contributor.authorMouton, Johan W.
dc.contributor.authorTam, Vincent H.
dc.contributor.authorThamlikitkul, Visanu
dc.contributor.authorWunderink, Richard G.
dc.contributor.authorLi, Jian
dc.contributor.authorNation, Roger L.
dc.contributor.authorKaye, Keith S.
dc.date.accessioned2019-02-12T20:23:52Z
dc.date.available2020-03-03T21:29:36Zen
dc.date.issued2019-01
dc.identifier.citationTsuji, Brian T.; Pogue, Jason M.; Zavascki, Alexandre P.; Paul, Mical; Daikos, George L.; Forrest, Alan; Giacobbe, Daniele R.; Viscoli, Claudio; Giamarellou, Helen; Karaiskos, Ilias; Kaye, Donald; Mouton, Johan W.; Tam, Vincent H.; Thamlikitkul, Visanu; Wunderink, Richard G.; Li, Jian; Nation, Roger L.; Kaye, Keith S. (2019). "International Consensus Guidelines for the Optimal Use of the Polymyxins." Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy (1): 10-39.
dc.identifier.issn0277-0008
dc.identifier.issn1875-9114
dc.identifier.urihttps://hdl.handle.net/2027.42/147806
dc.publisherWiley Periodicals, Inc.
dc.publisherEUCAST
dc.subject.otherdosing guidelines
dc.subject.otherpolymyxin B
dc.subject.othercolistin
dc.titleInternational Consensus Guidelines for the Optimal Use of the Polymyxins
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPharmacy and Pharmacology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147806/1/phar2209.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147806/2/phar2209_am.pdf
dc.identifier.doi10.1002/phar.2209
dc.identifier.sourcePharmacotherapy: The Journal of Human Pharmacology and Drug Therapy
dc.identifier.citedreferenceAydemir H, Akduman D, Piskin N, et al. Colistin vs. the combination of colistin and rifampicin for the treatment of carbapenem‐resistant Acinetobacter baumannii ventilator‐associated pneumonia. Epidemiol Infect 2013; 6: 1214 – 22.
dc.identifier.citedreferenceJang JY, Kwon HY, Choi EH, et al. Efficacy and toxicity of high‐dose nebulized colistin for critically ill surgical patients with ventilator‐associated pneumonia caused by multidrug‐resistant Acinetobacter baumannii. J Crit Care. 2017; 40: 251 – 6. https://doi.org/10.1016/j.jcrc.2017.04.004.
dc.identifier.citedreferenceKlick JM, du Moulin GC, Hedley‐Whyte J, Teres D, Bushnell LS, Feingold DS. Prevention of gram‐negative bacillary pneumonia using polymyxin aerosol as prophylaxis. II. Effect on the incidence of pneumonia in seriously ill patients. J Clin Invest 1975; 3: 514 – 9.
dc.identifier.citedreferenceFeeley TW, Du Moulin GC, Hedley‐Whyte J, Bushnell LS, Gilbert JP, Feingold DS. Aerosol polymyxin and pneumonia in seriously ill patients. N Engl J Med 1975; 10: 471 – 5.
dc.identifier.citedreferenceBoisson M, Jacobs M, Gregoire N, et al. Comparison of intrapulmonary and systemic pharmacokinetics of colistin methanesulfonate (CMS) and colistin after aerosol delivery and intravenous administration of CMS in critically ill patients. Antimicrob Agents Chemother 2014; 12: 7331 – 9.
dc.identifier.citedreferenceAthanassa ZE, Markantonis SL, Fousteri MZ, et al. Pharmacokinetics of inhaled colistimethate sodium (CMS) in mechanically ventilated critically ill patients. Intensive Care Med 2012; 11: 1779 – 86.
dc.identifier.citedreferenceHuang JX, Blaskovich MA, Pelingon R, et al. Mucin binding reduces colistin antimicrobial activity. Antimicrob Agents Chemother 2015; 59 ( 10 ): 5925 – 31.
dc.identifier.citedreferenceWenzler E, Fraidenburg DR, Scardina T, Danziger LH. Inhaled antibiotics for Gram‐negative respiratory infections. Clin Microbiol Rev 2016; 3: 581 – 632.
dc.identifier.citedreferenceRouby JJ, Bouhemad B, Monsel A, Brisson H, Arbelot C, Lu Q. Aerosolized antibiotics for ventilator‐associated pneumonia: lessons from experimental studies. Anesthesiology 2012; 6: 1364 – 80.
dc.identifier.citedreferenceEhrmann S, Roche‐Campo F, Sferrazza Papa GF, Isabey D, Brochard L, Apiou‐Sbirlea G. Aerosol therapy during mechanical ventilation: an international survey. Intensive Care Med 2013; 6: 1048 – 56.
dc.identifier.citedreferenceRello J, Solé‐Lleonart C, Rouby JJ, et al. Use of nebulized antimicrobials for the treatment of respiratory infections in invasively mechanically ventilated adults: a position paper from the European Society of Clinical Microbiology and Infectious Diseases. Clin Microbiol Infect. 2017; 23 ( 9 ): 629 – 39. https://doi.org/10.1016/j.cmi.2017.04.011.
dc.identifier.citedreferenceTunkel AR, Hasbun R, Bhimraj A, et al. 2017 Infectious Diseases Society of America’s Clinical Practice Guidelines for Healthcare‐Associated Ventriculitis and Meningitis. Clin Infect Dis 2017 Feb 14. https://doi.org/10.1093/cid/ciw861.
dc.identifier.citedreferenceKim BN, Peleg AY, Lodise TP, et al. Management of meningitis due to antibiotic‐resistant Acinetobacter species. Lancet Infect Dis 2009; 4: 245 – 55.
dc.identifier.citedreferenceKaraiskos I, Giamarellou H. Multidrug‐resistant and extensively drug‐resistant gram‐negative pathogens: current and emerging therapeutic approaches. Expert Opin Pharmacother 2014; 10: 1351 – 70.
dc.identifier.citedreferenceMarkantonis SL, Markou N, Fousteri M, et al. Penetration of colistin into cerebrospinal fluid. Antimicrob Agents Chemother 2009; 11: 4907 – 10.
dc.identifier.citedreferenceAntachopoulos C, Karvanen M, Iosifidis E, et al. Serum and cerebrospinal fluid levels of colistin in pediatric patients. Antimicrob Agents Chemother 2010; 9: 3985 – 7.
dc.identifier.citedreferenceImberti R, Cusato M, Accetta G, et al. Pharmacokinetics of colistin in cerebrospinal fluid after intraventricular administration of colistin methanesulfonate. Antimicrob Agents Chemother 2012; 8: 4416 – 21.
dc.identifier.citedreferenceFalagas ME, Bliziotis IA, Tam VH. Intraventricular or intrathecal use of polymyxins in patients with gram‐negative meningitis: a systematic review of the available evidence. Int J Antimicrob Agents 2007; 1: 9 – 25.
dc.identifier.citedreferenceKaraiskos I, Galani L, Baziaka F, Giamarellou H. Intraventricular and intrathecal colistin as the last therapeutic resort for the treatment of multidrug‐resistant and extensively drug‐resistant Acinetobacter baumannii ventriculitis and meningitis: a literature review. Int J Antimicrob Agents 2013; 6: 499 – 508.
dc.identifier.citedreferenceBargiacchi O, De Rosa FG. Intrathecal or intraventricular colistin: a review. Infez Med 2016; 1: 3 – 11.
dc.identifier.citedreferencePiparsania S, Rajput N, Bhatambare G. Intraventricular polymyxin B for the treatment of neonatal meningo‐ventriculitis caused by multi‐resistant Acinetobacter baumannii –case report and review of literature. Turk J Pediatr 2012; 5: 548 – 54.
dc.identifier.citedreferenceHoenigl M, Drescher M, Feierl G, et al. Successful management of nosocomial ventriculitis and meningitis caused by extensively drug‐resistant Acinetobacter baumannii in Austria. Can J Infect Dis Med Microbiol 2013; 3: e88 – 90.
dc.identifier.citedreferenceRemes F, Tomas R, Jindrak V, Vanis V, Setlik M. Intraventricular and lumbar intrathecal administration of antibiotics in postneurosurgical patients with meningitis and/or ventriculitis in a serious clinical state. J Neurosurg 2013; 6: 1596 – 602.
dc.identifier.citedreferenceKaragoz G, Kadanali A, Dede B, et al. Extensively drug‐resistant Pseudomonas aeruginosa ventriculitis and meningitis treated with intrathecal colistin. Int J Antimicrob Agents 2014; 1: 93 – 4.
dc.identifier.citedreferenceBargiacchi O, Rossati A, Car P, et al. Intrathecal/intraventricular colistin in external ventricular device‐related infections by multi‐drug resistant gram negative bacteria: case reports and review. Infection 2014; 5: 801 – 9.
dc.identifier.citedreferenceSantos AS, Iraneta A, Matos M, Brito MJ. Intraventricular colistin in gram‐negative ventriculoperitoneal shunt infection in two pediatric patients. Acta Neurochir (Wien) 2015; 12: 2219 – 20.
dc.identifier.citedreferenceSchiaroli E, Pasticci MB, Cassetta MI, et al. Management of meningitis caused by multi drug‐resistant Acinetobacter baumannii: clinical, microbiological and pharmacokinetic results in a patient treated with colistin methanesulfonate. Mediterr J Hematol Infect Dis 2015; 1: e2015055.
dc.identifier.citedreferenceShofty B, Neuberger A, Naffaa ME, et al. Intrathecal or intraventricular therapy for post‐neurosurgical gram‐negative meningitis: matched cohort study. Clin Microbiol Infect 2016; 1: 66 – 70.
dc.identifier.citedreferenceShrestha GS, Tamang S, Paneru HR, et al. Colistin and tigecycline for management of external ventricular device‐related ventriculitis due to multidrug‐resistant Acinetobacter baumannii. J Neurosci Rural Pract 2016; 3: 450 – 2.
dc.identifier.citedreferenceDe Bonis P, Lofrese G, Scoppettuolo G, et al. Intraventricular versus intravenous colistin for the treatment of extensively drug resistant Acinetobacter baumannii meningitis. Eur J Neurol 2016; 1: 68 – 75.
dc.identifier.citedreferenceSouhail D, Bouchra B, Belarj B, et al. Place of colistin‐rifampicin association in the treatment of multidrug‐resistant Acinetobacter baumannii meningitis: a case study. Case Rep Infect Dis 2016; 2016: 8794696.
dc.identifier.citedreferenceFotakopoulos G, Makris D, Chatzi M, Tsimitrea E, Zakynthinos E, Fountas K. Outcomes in meningitis/ventriculitis treated with intravenous or intraventricular plus intravenous colistin. Acta Neurochir (Wien) 2016; 3: 603 – 10; discussion 610.
dc.identifier.citedreferenceInamasu J, Ishikawa K, Oheda M, Nakae S, Hirose Y, Yoshida S. Intrathecal administration of colistin for meningitis due to New Delhi metallo‐beta‐lactamase 1(NDM‐1)‐producing Klebsiella pneumoniae. J Infect Chemother 2016; 3: 184 – 6.
dc.identifier.citedreferenceCeylan B, Arslan F, Sipahi OR, et al. Variables determining mortality in patients with Acinetobacter baumannii meningitis/ventriculitis treated with intrathecal colistin. Clin Neurol Neurosurg 2017; 153: 43 – 9.
dc.identifier.citedreferenceSingh RK, Bhoi SK, Kalita J, Misra UK. Multidrug‐resistant Acinetobacter meningitis treated by intrathecal colistin. Ann Indian Acad Neurol 2017; 1: 74 – 5.
dc.identifier.citedreferenceLi J, Nation RL, Turnidge JD, et al. Colistin: the re‐emerging antibiotic for multidrug‐resistant gram‐negative bacterial infections. Lancet Infect Dis 2006; 9: 589 – 601.
dc.identifier.citedreferenceLim LM, Ly N, Anderson D, et al. Resurgence of colistin: a review of resistance, toxicity, pharmacodynamics, and dosing. Pharmacotherapy 2010; 12: 1279 – 91.
dc.identifier.citedreferenceNation RL, Li J, Turnidge JD. The urgent need for clear and accurate information on the polymyxins. Clin Infect Dis 2013; 11: 1656 – 7.
dc.identifier.citedreferenceNation RL, Li J, Cars O, et al. Framework for optimisation of the clinical use of colistin and polymyxin B: the Prato polymyxin consensus. Lancet Infect Dis 2015; 2: 225 – 34.
dc.identifier.citedreferenceOnufrak NJ, Rao GG, Forrest A, et al. Critical need for clarity in polymyxin B dosing. Antimicrob Agents Chemother 2017; 61 ( 5 ). pii: e00208 – 17. https://doi.org/10.1128/AAC.00208-17.
dc.identifier.citedreferenceNation RL, Garonzik SM, Thamlikitkul V, et al. Dosing guidance for intravenous colistin in critically ill patients. Clin Infect Dis 2017; 5: 565 – 71.
dc.identifier.citedreferencePogue JM, Ortwine JK, Kaye KS. Optimal usage of colistin: are we any closer? Clin Infect Dis 2015; 12: 1778 – 80.
dc.identifier.citedreferenceZavascki AP, Nation RL. Nephrotoxicity of polymyxins: is there any difference between colistimethate and polymyxin B? Antimicrob Agents Chemother 2017; 61 ( 3 ). pii: e02319 – 16. https://doi.org/10.1128/AAC.02319-16.
dc.identifier.citedreferenceGuyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008; 7650: 924 – 6.
dc.identifier.citedreferenceISO. Clinical laboratory testing and in vitro diagnostic test systems–susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices–Part 1: Reference method for testing the in vitro activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases. ISO 20776‐1:2006
dc.identifier.citedreferenceEUCAST. Recommendations for MIC determination of colistin (polymyxin E) as recommended by the joint CLSI‐EUCAST Polymyxin Breakpoints Working Group. EUCAST, 2016. Available from http://www.eucast.org/ast_of_bacteria/guidance_documents/. Accessed January 24, 2019.
dc.identifier.citedreferenceCLSI. Available from https://clsi.org/media/1700/clsi-news-winter-2016.pdf. Accessed January 24, 2019.
dc.identifier.citedreferenceHindler JA, Humphries RM. Colistin MIC variability by method for contemporary clinical isolates of multidrug‐resistant gram‐negative bacilli. J Clin Microbiol. 2013 Jun; 51 ( 6 ): 1678 – 84. https://doi.org/10.1128/JCM.03385-12.14.
dc.identifier.citedreferenceCLSI. M100‐S27. Performance Standards for Antimicrobial Susceptibility Testing: 26th Informational Supplement. Wayne, PA: CLSI; 2017.
dc.identifier.citedreferenceEUCAST. European Committee on Antimicrobial Susceptibility Testing breakpoint tables for interpretation of MICs and zone diameters. Version 7.1. 2017. Available from http://www.eucast.org/clinical_breakpoints/. Accessed January 24, 2019.
dc.identifier.citedreferenceLiu YY, Wang Y, Walsh TR, et al. Emergence of plasmid‐mediated colistin resistance mechanism MCR‐1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 2016; 2: 161 – 8.
dc.identifier.citedreferenceMediavilla JR, Patrawalla A, Chen L, et al. Colistin‐ and carbapenem‐resistant Escherichia coli harboring mcr‐1 and blaNDM‐5, causing a complicated urinary tract infection in a patient from the United States. MBio 2016; 7 ( 4 ). pii:: e01191 – 16. https://doi.org/10.1128/mBio.01191-16.
dc.identifier.citedreferenceMcGann P, Snesrud E, Maybank R, et al. Escherichia coli harboring mcr‐1 and blaCTX‐M on a novel IncF plasmid: first report of mcr‐1 in the United States. Antimicrob Agents Chemother 2016; 7: 4420 – 1.
dc.identifier.citedreferenceLi J, Rayner CR, Nation RL, et al. Heteroresistance to colistin in multidrug‐resistant Acinetobacter baumannii. Antimicrob Agents Chemother 2006; 9: 2946 – 50.
dc.identifier.citedreferenceTsuji BT, Landersdorfer CB, Lenhard JR, et al. Paradoxical effect of polymyxin B: high drug exposure amplifies resistance in Acinetobacter baumannii. Antimicrob Agents Chemother 2016; 7: 3913 – 20.
dc.identifier.citedreferenceTam VH, Schilling AN, Vo G, et al. Pharmacodynamics of polymyxin B against Pseudomonas aeruginosa. Antimicrob Agents Chemother 2005; 9: 3624 – 30.
dc.identifier.citedreferenceBergen PJ, Li J, Nation RL, Turnidge JD, Coulthard K, Milne RW. Comparison of once‐, twice‐ and thrice‐daily dosing of colistin on antibacterial effect and emergence of resistance: studies with Pseudomonas aeruginosa in an in vitro pharmacodynamic model. J Antimicrob Chemother 2008; 3: 636 – 42.
dc.identifier.citedreferenceLy NS, Yang J, Bulitta JB, Tsuji BT. Impact of two‐component regulatory systems PhoP‐PhoQ and PmrA‐PmrB on colistin pharmacodynamics in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2012; 6: 3453 – 6.
dc.identifier.citedreferenceBulman ZP, Satlin MJ, Chen L, et al. New polymyxin B dosing strategies to fortify old allies in the war against KPC‐2‐producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2017; 61 ( 4 ). pii: e02023 – 16. https://doi.org/10.1128/AAC.02023-16.
dc.identifier.citedreferenceDeris ZZ, Yu HH, Davis K, et al. The combination of colistin and doripenem is synergistic against Klebsiella pneumoniae at multiple inocula and suppresses colistin resistance in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother 2012; 10: 5103 – 12.
dc.identifier.citedreferenceBergen PJ, Bulitta JB, Forrest A, Tsuji BT, Li J, Nation RL. Pharmacokinetic/pharmacodynamic investigation of colistin against Pseudomonas aeruginosa using an in vitro model. Antimicrob Agents Chemother 2010; 9: 3783 – 9.
dc.identifier.citedreferenceKhan DD, Friberg LE, Nielsen EI. A pharmacokinetic‐pharmacodynamic (PKPD) model based on in vitro time‐kill data predicts the in vivo PK/PD index of colistin. J Antimicrob Chemother 2016; 7: 1881 – 4.
dc.identifier.citedreferenceHengzhuang W, Wu H, Ciofu O, Song Z, Høiby N. In vivo pharmacokinetics/pharmacodynamics of colistin and imipenem in Pseudomonas aeruginosa biofilm infection. Antimicrob Agents Chemother. 2012; 56 ( 5 ): 2683 – 90. https://doi.org/10.1128/AAC.06486-11.
dc.identifier.citedreferenceCheah SE, Wang J, Nguyen VT, Turnidge JD, Li J, Nation RL. New pharmacokinetic/pharmacodynamic studies of systemically administered colistin against Pseudomonas aeruginosa and Acinetobacter baumannii in mouse thigh and lung infection models: smaller response in lung infection. J Antimicrob Chemother 2015; 12: 3291 – 7.
dc.identifier.citedreferenceLandersdorfer CB, Wang J, Wirth V, et al. Pharmacokinetics/pharmacodynamics of systemically administered polymyxin B against Klebsiella pneumoniae in mouse thigh and lung infection models. J Antimicrob Chemother 2017; 73 ( 2 ): 462 – 468. https://doi.org/10.1093/jac/dkx409.
dc.identifier.citedreferenceSader HS, Rhomberg PR, Farrell DJ, Jones RN. Differences in potency and categorical agreement between colistin and polymyxin B when testing 15,377 clinical strains collected worldwide. Diagn Microbiol Infect Dis 2015; 4: 379 – 81.
dc.identifier.citedreferenceNation RL, Garonzik SM, Li J, et al. Updated US and European dose recommendations for intravenous colistin: how do they perform? Clin Infect Dis 2016; 5: 552 – 8.
dc.identifier.citedreferenceGaronzik SM, Li J, Thamlikitkul V, et al. Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob Agents Chemother 2011; 7: 3284 – 94.
dc.identifier.citedreferenceSorlí L, Luque S, Grau S, et al. Trough colistin plasma level is an independent risk factor for nephrotoxicity: a prospective observational cohort study. BMC Infect Dis 2013; 13: 380.
dc.identifier.citedreferenceForrest A, Garonzik SM, Thamlikitkul V, et al. Pharmacokinetic/toxicodynamic analysis of colistin‐associated acute kidney injury in critically ill patients. Antimicrob Agents Chemother 2017; 61 ( 11 ). pii: e01367 – 17. https://doi.org/10.1128/AAC.01367-17.
dc.identifier.citedreferenceHorcajada JP, Sorlí L, Luque S, et al. Validation of a colistin plasma concentration breakpoint as a predictor of nephrotoxicity in patients treated with colistin methanesulfonate. Int J Antimicrob Agents 2016; 6: 725 – 7.
dc.identifier.citedreferenceMouton JW, Muller AE, Canton R, Giske CG, Kahlmeter G, Turnidge J. MIC‐based dose adjustment: facts and fables. J Antimicrob Chemother 2018 Mar 1; 73 ( 3 ): 564 – 568. https://doi.org/10.1093/jac/dkx427.
dc.identifier.citedreferenceForrest A, Silveira FP, Thamlikitkul V, et al. Toxicodynamics for colistin‐associated changes in creatinine clearance. Interscience Conference on Antimicrobial Agents and Chemotherapy 2014, Washington, DC, 2014.
dc.identifier.citedreferenceLakota EA, Landersdorfer CB, Nation RL, et al. Personalizing polymyxin B dosing using an adaptive feedback control algorithm. Antimicrob Agents Chemother 2018; 62 ( 7 ): e00483‐18.
dc.identifier.citedreferenceBulitta JB, Yang JC, Yohonn L, et al. Attenuation of colistin bactericidal activity by high inoculum of Pseudomonas aeruginosa characterized by a new mechanism‐based population pharmacodynamic model. Antimicrob Agents Chemother 2010; 5: 2051 – 62.
dc.identifier.citedreferenceLy NS, Bulman ZP, Bulitta JB, et al. Optimization of polymyxin B in combination with doripenem to combat mutator Pseudomonas aeruginosa. Antimicrob Agents Chemother 2016; 5: 2870 – 80.
dc.identifier.citedreferenceKwa A, Kasiakou SK, Tam VH, Falagas ME. Polymyxin B: similarities to and differences from colistin (polymyxin E). Expert Rev Anti Infect Ther 2007; 5: 811 – 21.
dc.identifier.citedreferenceNation RL, Velkov T, Li J. Colistin and polymyxin B: peas in a pod, or chalk and cheese? Clin Infect Dis 2014; 59: 88 – 94.
dc.identifier.citedreferenceSandri AM, Landersdorfer CB, Jacob J, et al. Population pharmacokinetics of intravenous polymyxin B in critically ill patients: implications for selection of dosage regimens. Clin Infect Dis 2013; 57 ( 4 ): 524 – 31.
dc.identifier.citedreferenceThamlikitkul V, Dubrovskaya Y, Manchandani P, et al. Dosing and pharmacokinetics of polymyxin B in patients with renal insufficiency. Antimicrob Agents Chemother 2017; 1 ( 1 ). pii: e01337 – 16. https://doi.org/10.1128/AAC.01337-16.
dc.identifier.citedreferenceZavascki AP, Goldani LZ, Cao G, et al. Pharmacokinetics of intravenous polymyxin B in critically ill patients. Clin Infect Dis 2008; 10: 1298 – 304.
dc.identifier.citedreferenceKwa AL, Abdelraouf K, Low JG, Tam VH. Pharmacokinetics of polymyxin B in a patient with renal insufficiency: a case report. Clin Infect Dis 2011; 10: 1280 – 1.
dc.identifier.citedreferenceOliveira MS, Prado GV, Costa SF, Grinbaum RS, Levin AS. Polymyxin B and colistimethate are comparable as to efficacy and renal toxicity. Diagn Microbiol Infect Dis 2009; 4: 431 – 4.
dc.identifier.citedreferenceAkajagbor DS, Wilson SL, Shere‐Wolfe KD, Dakum P, Charurat ME, Gilliam BL. Higher incidence of acute kidney injury with intravenous colistimethate sodium compared with polymyxin B in critically ill patients at a tertiary care medical center. Clin Infect Dis 2013; 9: 1300 – 3.
dc.identifier.citedreferencePhe K, Lee Y, McDaneld PM, et al. In vitro assessment and multicenter cohort study of comparative nephrotoxicity rates associated with colistimethate versus polymyxin B therapy. Antimicrob Agents Chemother 2014; 5: 2740 – 6.
dc.identifier.citedreferenceTuon FF, Rigatto MH, Lopes CK, Kamei LK, Rocha JL, Zavascki AP. Risk factors for acute kidney injury in patients treated with polymyxin B or colistin methanesulfonate sodium. Int J Antimicrob Agents 2014; 4: 349 – 52.
dc.identifier.citedreferenceRigatto MH, Oliveira MS, Perdigao‐Neto LV, et al. Multicenter prospective cohort study of renal failure in patients treated with colistin versus polymyxin B. Antimicrob Agents Chemother 2016; 4: 2443 – 9.
dc.identifier.citedreferenceVardakas KZ, Falagas ME. Colistin versus polymyxin B for the treatment of patients with multidrug‐resistant gram‐negative infections: a systematic review and meta‐analysis. Int J Antimicrob Agents 2017; 2: 233 – 8.
dc.identifier.citedreferenceCrass RL, Rutter WC, Burgess DR, Martin CA, Burgess DS. Nephrotoxicity in patients with or without cystic fibrosis treated with polymyxin B compared to colistin. Antimicrob Agents Chemother 2017; 61 ( 4 ). pii: e02329 – 16. https://doi.org/10.1128/AAC.02329-16.
dc.identifier.citedreferenceCouet W, Gregoire N, Gobin P, et al. Pharmacokinetics of colistin and colistimethate sodium after a single 80‐mg intravenous dose of CMS in young healthy volunteers. Clin Pharmacol Ther 2011; 6: 875 – 9.
dc.identifier.citedreferenceLuque S, Escano C, Sorlí L, et al. Urinary concentrations of colistimethate and formed colistin after intravenous administration in patients with multidrug‐resistant Gram‐negative bacterial infections. Antimicrob Agents Chemother 2017; 61 ( 8 ). pii: e02595 – 16. 10.1128/AAC.02595-16.
dc.identifier.citedreferenceEuropean‐Medicines‐Agency. Assessment report on polymyxin‐based products. Referral under Article 31 of Directive 2001/83/EC. Available from https://www.ema.europa.eu/documents/referral/polymyxin-article-31-referral-assessment-report_en.pdf. Accessed January 24, 2019.
dc.identifier.citedreferenceNation RL, Li J, Cars O, et al. Consistent global approach on reporting of colistin doses to promote safe and effective use. Clin Infect Dis 2014; 1: 139 – 41.
dc.identifier.citedreferencePlachouras D, Karvanen M, Friberg LE, et al. Population pharmacokinetic analysis of colistin methanesulfonate and colistin after intravenous administration in critically ill patients with infections caused by gram‐negative bacteria. Antimicrob Agents Chemother 2009; 8: 3430 – 6.
dc.identifier.citedreferenceMohamed AF, Karaiskos I, Plachouras D, et al. Application of a loading dose of colistin methanesulfonate in critically ill patients: population pharmacokinetics, protein binding, and prediction of bacterial kill. Antimicrob Agents Chemother 2012; 8: 4241 – 9.
dc.identifier.citedreferenceKaraiskos I, Friberg LE, Pontikis K, et al. Colistin population pharmacokinetics after application of a loading dose of 9 MU colistin methanesulfonate in critically ill patients. Antimicrob Agents Chemother 2015; 12: 7240 – 8.
dc.identifier.citedreferenceGregoire N, Mimoz O, Megarbane B, et al. New colistin population pharmacokinetic data in critically ill patients suggesting an alternative loading dose rationale. Antimicrob Agents Chemother 2014; 58 ( 12 ): 7324 – 30. https://doi.org/10.1128/AAC.03508-14.
dc.identifier.citedreferenceHe H, Li JC, Nation RL, et al. Pharmacokinetics of four different brands of colistimethate and formed colistin in rats. J Antimicrob Chemother 2013; 10: 2311 – 7.
dc.identifier.citedreferenceShields RK, Anand R, Clarke LG, et al. Defining the incidence and risk factors of colistin‐induced acute kidney injury by KDIGO criteria. PLoS One 2017; 3: e0173286.
dc.identifier.citedreferenceKumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 2006; 6: 1589 – 96.
dc.identifier.citedreferenceLuna CM, Aruj P, Niederman MS, et al. Appropriateness and delay to initiate therapy in ventilator‐associated pneumonia. Eur Respir J 2006; 1: 158 – 64.
dc.identifier.citedreferenceKumar A, Ellis P, Arabi Y, et al. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest 2009; 5: 1237 – 48.
dc.identifier.citedreferenceEUCAST. European Committee on Antimicrobial Susceptibility Testing. MIC distributions and ECOFFs. Available from http://www.eucast.org/mic_distributions_and_ecoffs/. Accessed January 24, 2019.
dc.identifier.citedreferencePogue JM, Ortwine JK, Kaye KS. Clinical considerations for optimal use of the polymyxins: a focus on agent selection and dosing. Clin Microbiol Infect 2017; 4: 229 – 33.
dc.identifier.citedreferenceMarchand S, Frat JP, Petitpas F, et al. Removal of colistin during intermittent haemodialysis in two critically ill patients. J Antimicrob Chemother 2010; 8: 1836 – 7.
dc.identifier.citedreferenceMarkou N, Fousteri M, Markantonis SL, et al. Colistin pharmacokinetics in intensive care unit patients on continuous venovenous haemodiafiltration: an observational study. J Antimicrob Chemother 2012; 10: 2459 – 62.
dc.identifier.citedreferenceKarvanen M, Plachouras D, Friberg LE, et al. Colistin methanesulfonate and colistin pharmacokinetics in critically ill patients receiving continuous venovenous hemodiafiltration. Antimicrob Agents Chemother 2013; 1: 668 – 71.
dc.identifier.citedreferenceLuque S, Sorli L, Li J, et al. Effective removal of colistin methanesulphonate and formed colistin during intermittent haemodialysis in a patient infected by polymyxin‐only‐susceptible Pseudomonas aeruginosa. J Chemother 2014; 2: 122 – 4.
dc.identifier.citedreferenceMariano F, Leporati M, Carignano P, Stella M, Vincenti M, Biancone L. Efficient removal of colistin A and B in critically ill patients undergoing CVVHDF and sorbent technologies. J Nephrol 2015; 5: 623 – 31.
dc.identifier.citedreferenceJacobs M, Gregoire N, Megarbane B, et al. Population pharmacokinetics of colistin methanesulphonate (CMS) and colistin in critically ill patients with acute renal failure requiring intermittent haemodialysis. Antimicrob Agents Chemother 2016; 60 ( 3 ): 1788 – 93. https://doi.org/10.1128/AAC.01868-15.
dc.identifier.citedreferenceKaraiskos I, Friberg LE, Galani L, et al. Challenge for higher colistin dosage in critically ill patients receiving continuous venovenous haemodiafiltration. Int J Antimicrob Agents 2016; 3: 337 – 41.
dc.identifier.citedreferenceStrunk AK, Schmidt JJ, Baroke E, et al. Single‐ and multiple‐dose pharmacokinetics and total removal of colistin in a patient with acute kidney injury undergoing extended daily dialysis. J Antimicrob Chemother 2014; 7: 2008 – 10.
dc.identifier.citedreferenceJohn JF, Falci DR, Rigatto MH, Oliveira RD, Kremer TG, Zavascki AP. Severe infusion‐related adverse events and renal failure in patients receiving high‐dose intravenous polymyxin B. Antimicrob Agents Chemother 2018; 62 ( 1 ). pii: e01617 – 17. https://doi.org/10.1128/AAC.01617-17.
dc.identifier.citedreferenceSandri AM, Landersdorfer CB, Jacob J, et al. Pharmacokinetics of polymyxin B in patients on continuous venovenous haemodialysis. J Antimicrob Chemother 2013; 3: 674 – 7.
dc.identifier.citedreferenceNelson BC, Eiras DP, Gomez‐Simmonds A, et al. Clinical outcomes associated with polymyxin B dose in patients with bloodstream infections due to carbapenem‐resistant Gram‐negative rods. Antimicrob Agents Chemother 2015; 11: 7000 – 6.
dc.identifier.citedreferenceKwa AL, Lim TP, Low JG, et al. Pharmacokinetics of polymyxin B1 in patients with multidrug‐resistant Gram‐negative bacterial infections. Diagn Microbiol Infect Dis 2008; 2: 163 – 7.
dc.identifier.citedreferenceAbdelraouf K, Braggs KH, Yin T, Truong LD, Hu M, Tam VH. Characterization of polymyxin B‐induced nephrotoxicity: implications for dosing regimen design. Antimicrob Agents Chemother 2012; 9: 4625 – 9.
dc.identifier.citedreferencePolymyxin B [package insert]. Big Flats, NY: Xellia Pharmaceuticals; 2015.
dc.identifier.citedreferenceBaird JS. Polymyxin B and haemofiltration in an adolescent with leukaemia. J Antimicrob Chemother 2014; 5: 1434.
dc.identifier.citedreferenceRigatto MH, Falci DR, Lopes NT, Zavascki AP. Clinical features and mortality of patients on renal replacement therapy receiving polymyxin B. Int J Antimicrob Agents 2016; 2: 146 – 50.
dc.identifier.citedreferenceSpapen HD, Honore PM, Gregoire N, et al. Convulsions and apnoea in a patient infected with New Delhi metallo‐beta‐lactamase‐1 Escherichia coli treated with colistin. J Infect 2011; 6: 468 – 70.
dc.identifier.citedreferenceBode‐Boger SM, Schopp B, Troger U, Martens‐Lobenhoffer J, Kalousis K, Mailander P. Intravenous colistin in a patient with serious burns and borderline syndrome: the benefits of therapeutic drug monitoring. Int J Antimicrob Agents 2013; 4: 357 – 60.
dc.identifier.citedreferenceGauthier TP, Wolowich WR, Reddy A, Cano E, Abbo L, Smith LB. Incidence and predictors of nephrotoxicity associated with intravenous colistin in overweight and obese patients. Antimicrob Agents Chemother 2012; 5: 2392 – 6.
dc.identifier.citedreferenceDubrovskaya Y, Prasad N, Lee Y, Esaian D, Figueroa DA, Tam VH. Risk factors for nephrotoxicity onset associated with polymyxin B therapy. J Antimicrob Chemother 2015; 6: 1903 – 7.
dc.identifier.citedreferencePogue JM, Lee J, Marchaim D, et al. Incidence of and risk factors for colistin‐associated nephrotoxicity in a large academic health system. Clin Infect Dis 2011; 9: 879 – 84.
dc.identifier.citedreferenceTemocin F, Erdinc S, Tulek N, Demirelli M, Bulut C, Ertem G. Incidence and risk factors for colistin‐associated nephrotoxicity. Jpn J Infect Dis 2015; 4: 318 – 20.
dc.identifier.citedreferenceRigatto MH, Behle TF, Falci DR, et al. Risk factors for acute kidney injury (AKI) in patients treated with polymyxin B and influence of AKI on mortality: a multicentre prospective cohort study. J Antimicrob Chemother 2015; 5: 1552 – 7.
dc.identifier.citedreferencePetrosillo N, Giannella M, Antonelli M, et al. Clinical experience of colistin‐glycopeptide combination in critically ill patients infected with Gram‐negative bacteria. Antimicrob Agents Chemother 2014; 2: 851 – 8.
dc.identifier.citedreferenceGarnacho‐Montero J, Amaya‐Villar R, Gutierrez‐Pizarraya A, et al. Clinical efficacy and safety of the combination of colistin plus vancomycin for the treatment of severe infections caused by carbapenem‐resistant Acinetobacter baumannii. Chemotherapy 2013; 3: 225 – 31.
dc.identifier.citedreferenceGordon NC, Png K, Wareham DW. Potent synergy and sustained bactericidal activity of a vancomycin‐colistin combination versus multidrug‐resistant strains of Acinetobacter baumannii. Antimicrob Agents Chemother 2010; 12: 5316 – 22.
dc.identifier.citedreferenceRattanaumpawan P, Ungprasert P, Thamlikitkul V. Risk factors for colistin‐associated nephrotoxicity. J Infect 2011; 2: 187 – 90.
dc.identifier.citedreferenceElias LS, Konzen D, Krebs JM, Zavascki AP. The impact of polymyxin B dosage on in‐hospital mortality of patients treated with this antibiotic. J Antimicrob Chemother 2010; 10: 2231 – 7.
dc.identifier.citedreferencePhe K, Shields RK, Tverdek FP, et al. Predicting the risk of nephrotoxicity in patients receiving colistimethate sodium: a multicentre, retrospective, cohort study. J Antimicrob Chemother 2016; 71: 3585 – 7.
dc.identifier.citedreferenceRoberts KD, Azad MA, Wang J, et al. Antimicrobial activity and toxicity of the major lipopeptide components of polymyxin B and colistin: last‐line antibiotics against multidrug‐resistant Gram‐negative bacteria. ACS Infect Dis 2015; 11: 568 – 75.
dc.identifier.citedreferenceTuon FF, Aragao BZ, Santos TA, Gasparetto J, Cordova K, Abujamra M. Acute kidney injury in patients using amikacin in an era of carbapenem‐resistant bacteria. Infect Dis (Lond) 2016; 11–12: 869 – 71.
dc.identifier.citedreferenceZavascki AP, Manfro RC, Maciel RA, Falci DR. Head and neck hyperpigmentation probably associated with Polymyxin B therapy. Ann Pharmacother. 2015; 49 ( 10 ): 1171 – 2. https://doi.org/10.1177/1060028015595643.
dc.identifier.citedreferenceYousef JM, Chen G, Hill PA, Nation RL, Li J. Ascorbic acid protects against the nephrotoxicity and apoptosis caused by colistin and affects its pharmacokinetics. J Antimicrob Chemother 2012; 2: 452 – 9.
dc.identifier.citedreferenceDalfino L, Puntillo F, Ondok MJ, et al. Colistin‐associated acute kidney injury in severely ill patients: a step toward a better renal care? A prospective cohort study. Clin Infect Dis 2015; 12: 1771 – 7.
dc.identifier.citedreferenceSirijatuphat R, Limmahakhun S, Sirivatanauksorn V, Nation RL, Li J, Thamlikitkul V. Preliminary clinical study of the effect of ascorbic acid on colistin‐associated nephrotoxicity. Antimicrob Agents Chemother 2015; 6: 3224 – 32.
dc.identifier.citedreferenceZarjou A, Agarwal A. Sepsis and acute kidney injury. J Am Soc Nephrol 2011; 6: 999 – 1006.
dc.identifier.citedreferenceRojas LJ, Salim M, Cober E, et al. Colistin resistance in carbapenem‐resistant Klebsiella pneumoniae: laboratory detection and impact on mortality. Clin Infect Dis 2016; 64 ( 6 ): 711 – 718. https://doi.org/10.1093/cid/ciw805.
dc.identifier.citedreferenceMarchaim D, Chopra T, Pogue JM, et al. Outbreak of colistin‐resistant, carbapenem‐resistant Klebsiella pneumoniae in metropolitan Detroit, Michigan. Antimicrob Agents Chemother 2011; 2: 593 – 9.
dc.identifier.citedreferenceQureshi ZA, Hittle LE, O’Hara JA, et al. Colistin‐resistant Acinetobacter baumannii: beyond carbapenem resistance. Clin Infect Dis 2015; 9: 1295 – 303.
dc.identifier.citedreferenceLenhard JR, Thamlikitkul V, Silveira FP, et al. Polymyxin‐resistant, carbapenem‐resistant Acinetobacter baumannii is eradicated by a triple combination of agents that lack individual activity. J Antimicrob Chemother. 2017; 72 ( 5 ): 1415 – 20. https://doi.org/10.1093/jac/dkx002.
dc.identifier.citedreferenceBulman ZP, Ly NS, Lenhard JR, Holden PN, Bulitta JB, Tsuji BT. Influence of rhlR and lasR on polymyxin pharmacodynamics in Pseudomonas aeruginosa and implications for quorum sensing inhibition with azithromycin. Antimicrob Agents Chemother 2017; 61 ( 4 ). pii: e00096‐16. https://doi.org/10.1128/AAC.00096-16.
dc.identifier.citedreferenceSmith NM, Bulman ZP, Sieron AO, et al. Pharmacodynamics of dose‐escalated ‘front‐loading’ polymyxin B regimens against polymyxin‐resistant mcr‐1‐harbouring Escherichia coli. J Antimicrob Chemother 2017; 8: 2297 – 303.
dc.identifier.citedreferenceBulman ZP, Chen L, Walsh TJ, et al. Polymyxin combinations combat Escherichia coli harboring mcr‐1 and blaNDM‐5: preparation for a postantibiotic era. MBio 2017; 8 ( 4 ). pii: e00540‐17. https://doi.org/10.1128/mBio.00540-17.
dc.identifier.citedreferenceZhao M, Bulman ZP, Lenhard JR, et al. Pharmacodynamics of colistin and fosfomycin: a ‘treasure trove’ combination combats KPC‐producing Klebsiella pneumoniae. J Antimicrob Chemother 2017; 7: 1985 – 90.
dc.identifier.citedreferenceLandersdorfer CB, Ly NS, Xu H, Tsuji BT, Bulitta JB. Quantifying subpopulation synergy for antibiotic combinations via mechanism‐based modeling and a sequential dosing design. Antimicrob Agents Chemother 2013; 5: 2343 – 51.
dc.identifier.citedreferenceLenhard JR, Smith NM, Bulman ZP, et al. High dose ampicillin/sulbactam combinations combat polymyxin‐resistant Acinetobacter baumannii in a hollow‐fiber infection model. Antimicrob Agents Chemother 2017; 61 ( 3 ). pii: e01268‐16. https://doi.org/10.1128/AAC.01268-16.
dc.identifier.citedreferenceLy NS, Bulitta JB, Rao GG, et al. Colistin and doripenem combinations against Pseudomonas aeruginosa: profiling the time course of synergistic killing and prevention of resistance! J Antimicrob Chemother 2015; 5: 1434 – 42.
dc.identifier.citedreferencePaul M, Carmeli Y, Durante‐Mangoni E, et al. Combination therapy for carbapenem‐resistant Gram‐negative bacteria. J Antimicrob Chemother 2014; 9: 2305 – 9. https://doi.org/10.1093/jac/dku168.
dc.identifier.citedreferenceZusman O, Avni T, Leibovici L, et al. Systematic review and meta‐analysis of in vitro synergy of polymyxins and carbapenems. Antimicrob Agents Chemother. 2013; 57 ( 10 ): 5104 – 11. https://doi.org/10.1128/AAC.01230-13.
dc.identifier.citedreferenceZarkotou O, Pournaras S, Tselioti P, et al. Predictors of mortality in patients with bloodstream infections caused by KPC‐producing Klebsiella pneumoniae and impact of appropriate antimicrobial treatment. Clin Microbiol Infect 2011; 12: 1798 – 803.
dc.identifier.citedreferenceQureshi ZA, Paterson DL, Potoski BA, et al. Treatment outcome of bacteremia due to KPC‐producing Klebsiella pneumoniae: superiority of combination antimicrobial regimens. Antimicrob Agents Chemother 2012; 4: 2108 – 13.
dc.identifier.citedreferenceDaikos GL, Tsaousi S, Tzouvelekis LS, et al. Carbapenemase‐producing Klebsiella pneumoniae bloodstream infections: lowering mortality by antibiotic combination schemes and the role of carbapenems. Antimicrob Agents Chemother 2014; 4: 2322 – 8.
dc.identifier.citedreferenceGutierrez‐Gutierrez B, Salamanca E, de Cueto M, et al. Effect of appropriate combination therapy on mortality of patients with bloodstream infections due to carbapenemase‐producing Enterobacteriaceae (INCREMENT): a retrospective cohort study. Lancet Infect Dis 2017; 7: 726 – 34.
dc.identifier.citedreferenceTumbarello M, Viale P, Viscoli C, et al. Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase‐producing K. pneumoniae: importance of combination therapy. Clin Infect Dis 2012; 7: 943 – 50.
dc.identifier.citedreferenceTumbarello M, Trecarichi EM, De Rosa FG, et al. Infections caused by KPC‐producing Klebsiella pneumoniae: differences in therapy and mortality in a multicentre study. J Antimicrob Chemother 2015; 70 ( 7 ): 2133 – 43.
dc.identifier.citedreferencePaul M, Daikos GL, Durante‐Mangoni E, et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem‐resistant Gram‐negative bacteria: an open‐label, randomised controlled trial. Lancet Infect Dis 2018; 18 ( 4 ): 391 – 400.
dc.identifier.citedreferenceDurante‐Mangoni E, Signoriello G, Andini R, et al. Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug‐resistant Acinetobacter baumannii: a multicenter, randomized clinical trial. Clin Infect Dis 2013; 3: 349 – 58.
dc.identifier.citedreferenceSirijatuphat R, Thamlikitkul V. Preliminary study of colistin versus colistin plus fosfomycin for treatment of carbapenem‐resistant Acinetobacter baumannii infections. Antimicrob Agents Chemother 2014; 9: 5598 – 601.
dc.identifier.citedreferenceFurtado GH, d’Azevedo PA, Santos AF, et al. Intravenous polymyxin B for the treatment of nosocomial pneumonia caused by multidrug‐resistant Pseudomonas aeruginosa. Int J Antimicrob Agents 2007; 30: 315 – 9.
dc.identifier.citedreferenceFalagas ME, Rafailidis PI, Ioannidou E, et al. Colistin therapy for microbiologically documented multidrug‐resistant gram‐negative bacterial infections: a retrospective cohort study of 258 patients. Int J Antimicrob Agents 2010; 35: 194 – 9.
dc.identifier.citedreferenceSamonis G, Vardakas KZ, Kofteridis DP, et al. Characteristics, risk factors and outcomes of adult cancer patients with extensively drug‐resistant Pseudomonas aeruginosa infections. Infection 2014; 42: 721 – 8.
dc.identifier.citedreferenceRigatto MH, Vieira FJ, Antochevis LC, et al. Polymyxin B in combination with antimicrobials lacking in vitro activity versus polymyxin B in monotherapy in critically ill patients with Acinetobacter baumannii or Pseudomonas aeruginosa infections. Antimicrob Agents Chemother 2015; 59: 6575 – 80.
dc.identifier.citedreferenceRibera A, Benavent E, Lora‐Tamayo J, et al. Osteoarticular infection caused by MDR Pseudomonas aeruginosa: the benefits of combination therapy with colistin plus β‐lactams. J Antimicrob Chemother 2015; 70: 3357 – 65.
dc.identifier.citedreferenceSorlí L, Luque S, Segura C, et al. Impact of colistin plasma levels on the clinical outcome of patients with infections caused by extremely drug‐resistant Pseudomonas aeruginosa. BMC Infect Dis 2017; 17: 11.
dc.identifier.citedreferenceRattanaumpawan P, Lorsutthitham J, Ungprasert P, Angkasekwinai N, Thamlikitkul V. Randomized controlled trial of nebulized colistimethate sodium as adjunctive therapy of ventilator‐associated pneumonia caused by Gram‐negative bacteria. J Antimicrob Chemother 2010; 12: 2645 – 9.
dc.identifier.citedreferenceAbdellatif S, Trifi A, Daly F, et al. Efficacy and toxicity of aerosolised colistin in ventilator‐associated pneumonia: a prospective, randomised trial. Ann Intensive Care. 2016; 6 ( 1 ): 26. https://doi.org/10.1186/s13613-016-0127-7.
dc.identifier.citedreferenceValachis A, Samonis G, Kofteridis DP. The role of aerosolized colistin in the treatment of ventilator‐associated pneumonia: a systematic review and metaanalysis. Crit Care Med 2015; 3: 527 – 33.
dc.identifier.citedreferencePolat M, Kara SS, Tapisiz A, Tezer H, Kalkan G, Dolgun A. Treatment of ventilator‐associated pneumonia using intravenous colistin alone or in combination with inhaled colistin in critically ill children. Paediatr Drugs 2015; 4: 323 – 30.
dc.identifier.citedreferenceKalin G, Alp E, Coskun R, Demiraslan H, Gundogan K, Doganay M. Use of high‐dose IV and aerosolized colistin for the treatment of multidrug‐resistant Acinetobacter baumannii ventilator‐associated pneumonia: do we really need this treatment? J Infect Chemother 2012; 6: 872 – 7.
dc.identifier.citedreferenceLu Q, Luo R, Bodin L, et al. Efficacy of high‐dose nebulized colistin in ventilator‐associated pneumonia caused by multidrug‐resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Anesthesiology 2012; 6: 1335 – 47.
dc.identifier.citedreferenceVardakas KZ, Voulgaris GL, Samonis G, Falagas ME. Inhaled colistin monotherapy for respiratory tract infections in adults without cystic fibrosis: a systematic review and meta‐analysis. Int J Antimicrob Agents. 2018; 51: 1 – 9. https://doi.org/10.1016/j.ijantimicag.2017.05.016.
dc.identifier.citedreferenceJung SY, Lee SH, Lee SY, et al. Antimicrobials for the treatment of drug‐resistant Acinetobacter baumannii pneumonia in critically ill patients: a systemic review and Bayesian network meta‐analysis. Crit Care. 2017; 21: 319. https://doi.org/10.1186/s13054-017-1916-6.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.