Show simple item record

Molecular Design Approach Managing Molecular Orbital Superposition for High Efficiency without Color Shift in Thermally Activated Delayed Fluorescent Organic Lightâ Emitting Diodes

dc.contributor.authorKim, Mounggon
dc.contributor.authorYoon, Seong‐jun
dc.contributor.authorHan, Si Hyun
dc.contributor.authorAnsari, Ramin
dc.contributor.authorKieffer, John
dc.contributor.authorLee, Jun Yeob
dc.contributor.authorKim, Jinsang
dc.date.accessioned2019-02-12T20:24:05Z
dc.date.available2020-04-01T15:06:24Zen
dc.date.issued2019-02-01
dc.identifier.citationKim, Mounggon; Yoon, Seong‐jun ; Han, Si Hyun; Ansari, Ramin; Kieffer, John; Lee, Jun Yeob; Kim, Jinsang (2019). "Molecular Design Approach Managing Molecular Orbital Superposition for High Efficiency without Color Shift in Thermally Activated Delayed Fluorescent Organic Lightâ Emitting Diodes." Chemistry â A European Journal 25(7): 1829-1834.
dc.identifier.issn0947-6539
dc.identifier.issn1521-3765
dc.identifier.urihttps://hdl.handle.net/2027.42/147817
dc.description.abstractMolecular design principles of thermally activated delayed fluorescent (TADF) emitters having a high quantum efficiency and a color tuning capability was investigated by synthesizing three TADF emitters with donors at different positions of a benzonitrile acceptor. The position rendering a large overlap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) enhances the quantum efficiency of the TADF emitter. Regarding the orbital overlap, donor attachments at 2â and 6â positions of the benzonitrile were more beneficial than 3â and 5â substitutions. Moreover, an additional attachment of a weak donor at the 4â position further increased the quantum efficiency without decreasing the emission energy. Therefore, the molecular design strategy of substituting strong donors at the positions allowing a large molecular orbital overlap and an extra weak donor is a good approach to achieve both high quantum efficiency and a slightly increased emission energy.Overlap to emit: The substitution of strong donors at the positions rendering a large HOMOâ LUMO overlap and the addition of a weak donor constitute an effective design approach to realize TADF emitters having high efficiency.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherelectronic structure
dc.subject.otherenergy conversion
dc.subject.otherfluorescence
dc.subject.otherOLEDs
dc.subject.otherTADF
dc.titleMolecular Design Approach Managing Molecular Orbital Superposition for High Efficiency without Color Shift in Thermally Activated Delayed Fluorescent Organic Lightâ Emitting Diodes
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147817/1/chem201805616-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147817/2/chem201805616.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147817/3/chem201805616_am.pdf
dc.identifier.doi10.1002/chem.201805616
dc.identifier.sourceChemistry â A European Journal
dc.identifier.citedreferenceM. Kim, S. K. Jeon, S.-H. Hwang, S.-S. Lee, E. Yu, J. Y. Lee, J. Phys. Chem. C 2016, 120, 2485.
dc.identifier.citedreferenceZ. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, Z. Chi, M. P. Aldred, Chem. Soc. Rev. 2017, 46, 915.
dc.identifier.citedreferenceY. Liu, C. Li, Z. Ren, S. Yan, M. R. Bryce, Nat. Rev. Mater. 2018, 3, 18020.
dc.identifier.citedreferenceO. Bolton, K. Lee, H.-J. Kim, K. Y. Lin, J. Kim, Nat. Chem. 2011, 3, 205.
dc.identifier.citedreferenceM. S. Kwon, D. Lee, S. Seo, J. Jung, J. Kim, Angew. Chem. Int. Ed. 2014, 53, 11177; Angew. Chem. 2014, 126, 11359.
dc.identifier.citedreferenceM. S. Kwon, Y. Yu, C. Coburn, A. W. Phillips, K. Chung, A. Shanker, J. Jung, G. Kim, K. Pipe, S. R. Forrest, J. H. Youk, J. Gierschner, J. Kim, Nat. Commun. 2015, 6, 8947.
dc.identifier.citedreferenceJ.-I. Nishide, H. Nakanotani, Y. Hiraga, C. Adachi, Appl. Phys. Lett. 2014, 104, 233304.
dc.identifier.citedreferenceH. Tanaka, K. Shizu, H. Nakanotani, C. Adachi, Chem. Mater. 2013, 25, 3766.
dc.identifier.citedreferenceS. Y. Lee, T. Yasuda, Y. S. Yang, Q. Zhang, C. Adachi, Angew. Chem. Int. Ed. 2014, 53, 6402; Angew. Chem. 2014, 126, 6520.
dc.identifier.citedreferenceD. Zhang, M. Cai, Y. Zhang, D. Zhang, L. Duan, Mater. Horiz. 2016, 3, 145.
dc.identifier.citedreferenceY. J. Cho, S. K. Jeon, B. D. Chin, E. Yu, J. Y. Lee, Angew. Chem. Int. Ed. 2015, 54, 5201; Angew. Chem. 2015, 127, 5290.
dc.identifier.citedreferenceM. Kim, S. K. Jeon, S.-H. Hwang, S.-S. Lee, E. Yu, J. Y. Lee, Chem. Commun. 2016, 52, 339.
dc.identifier.citedreferenceT. Miwa, S. Kubo, K. Shizu, T. Komino, C. Adachi, H. Kaji, Sci. Rep. 2017, 7, 284.
dc.identifier.citedreferenceT. Hatakeyama, K. Shiren, K. Nakajima, S. Nomura, S. Nakatsuka, K. Kinoshita, J. Ni, Y. Ono, T. Ikuta, Adv. Mater. 2016, 28, 2777.
dc.identifier.citedreferenceK. Kawano, K. Nagayoshi, T. Yamaki, C. Adachi, Org. Electron. 2014, 15, 1695.
dc.identifier.citedreferenceL.-S. Cui, Y.-M. Xie, Y.-K. Wang, C. Zhong, Y.-L. Deng, X.-Y. Liu, Z.-Q. Jiang, L.-S. Liao, Adv. Mater. 2015, 27, 4213.
dc.identifier.citedreferenceY.-H. Kim, C. Wolf, H. Cho, S.-H. Jeong, T.-W. Lee, Adv. Mater. 2016, 28, 734.
dc.identifier.citedreferenceY. Seino, S. Inomata, H. Sasabe, Y.-J. Pu, J. Kido, Adv. Mater. 2016, 28, 2638.
dc.identifier.citedreferenceD. R. Lee, M. Kim, S. K. Jeon, S.-H. Hwang, C. W. Lee, J. Y. Lee, Adv. Mater. 2015, 27, 5861.
dc.identifier.citedreferenceW. Li, J. Li, D. Liu, F. Wang, S. Zhang, J. Mater. Chem. C 2015, 3, 12529.
dc.identifier.citedreferenceD. Zhang, M. Cai, Z. Bin, Y. Zhang, D. Zhang, L. Duan, Chem. Sci. 2016, 7, 3355.
dc.identifier.citedreferenceD. R. Lee, J. M. Choi, C. W. Lee, J. Y. Lee, ACS Appl. Mater. Interfaces 2016, 8, 23190.
dc.identifier.citedreferenceY. Geng, L.-S. Cui, J. U. Kim, H. Nakanotani, C. Adachi, Chem. Lett. 2017, 46, 1490.
dc.identifier.citedreferenceC.-Y. Chan, L.-S. Cui, J. U. Kim, H. Nakanotani, C. Adachi, Adv. Funct. Mater. 2018, 28, 1706023.
dc.identifier.citedreferenceTo measure the triplet energy, we conducted the gated PL measurement with a 2â μs delay time at low temperature (77â K). Therefore, the low temperature PL spectra represent phosphorescence: L.-S. Cui, H. Nomura, Y. Geng, J. U. Kim, H. Nakanotani, C. Adachi, Angew. Chem. Int. Ed. 2017, 56, 1571; Angew. Chem. 2017, 129, 1593.
dc.identifier.citedreferenceThe Î E ST values of these three compounds from DFT calculations are very similar to each other (0.02â 0.03â eV) because the dihedral angles between the benzonitrile acceptor and the phenoxazine donor in these molecules are identical at 90°. However, the experimentally measured Î E ST values are more consistent with the delayed fluorescence lifetime.
dc.identifier.citedreferenceY. Zhang, D. Zhang, M. Cai, Y. Li, D. Zhang, Y. Qiu, L. Duan, Nanotechnology 2016, 27, 094001.
dc.identifier.citedreferenceM. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature 1998, 395, 151.
dc.identifier.citedreferenceM. A. Baldo, D. F. O’Brien, M. E. Thompson, S. R. Forrest, Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 60, 14422.
dc.identifier.citedreferenceL. Xiao, S.-J. Su, Y. Agata, H. Lan, J. Kido, Adv. Mater. 2009, 21, 1271.
dc.identifier.citedreferenceS. Su, H. Sasabe, Y. Pu, K. Nakayama, J. Kido, Adv. Mater. 2010, 22, 3311.
dc.identifier.citedreferenceD. H. Kim, N. S. Cho, H.-Y. Oh, J. H. Yang, W. S. Jeon, J. S. Park, M. C. Suh, J. H. Kwon, Adv. Mater. 2011, 23, 2721.
dc.identifier.citedreferenceJ. Ye, C.-J. Zheng, X.-M. Ou, X.-H. Zhang, M.-K. Fung, C.-S. Lee, Adv. Mater. 2012, 24, 3410.
dc.identifier.citedreferenceM. Kim, J. Y. Lee, Adv. Funct. Mater. 2014, 24, 4164.
dc.identifier.citedreferenceH. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234.
dc.identifier.citedreferenceJ. Lee, K. Shizu, H. Tanaka, H. Nomura, T. Yasuda, C. Adachi, J. Mater. Chem. C. 2013, 1, 4599.
dc.identifier.citedreferenceH. Wang, L. Xie, Q. Peng, L. Meng, Y. Wang, Y. Yi, P. Wang, Adv. Mater. 2014, 26, 5198.
dc.identifier.citedreferenceQ. Zhang, D. Tsang, H. Kuwabara, Y. Hatae, B. Li, T. Takahashi, S. Y. Lee, T. Yasuda, C. Adachi, Adv. Mater. 2015, 27, 2096.
dc.identifier.citedreferenceM. Kim, S. K. Jeon, S.-H. Hwang, J. Y. Lee, Adv. Mater. 2015, 27, 2515.
dc.identifier.citedreferenceP. L. dosâ Santos, J. S. Ward, M. R. Bryce, A. P. Monkman, J. Phys. Chem. Lett. 2016, 7, 3341.
dc.identifier.citedreferenceD. Lee, O. Bolton, B. C. Kim, J. H. Youk, S. Takayama, J. Kim, J. Am. Chem. Soc. 2013, 135, 6325.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.