Show simple item record

mTOR Signaling in X/A‐Like Cells Contributes to Lipid Homeostasis in Mice

dc.contributor.authorLi, Ziru
dc.contributor.authorYu, Ruili
dc.contributor.authorYin, Wenzhen
dc.contributor.authorQin, Yan
dc.contributor.authorMa, Liangxiao
dc.contributor.authorMulholland, Michael
dc.contributor.authorZhang, Weizhen
dc.date.accessioned2019-02-12T20:24:23Z
dc.date.available2020-04-01T15:06:24Zen
dc.date.issued2019-02
dc.identifier.citationLi, Ziru; Yu, Ruili; Yin, Wenzhen; Qin, Yan; Ma, Liangxiao; Mulholland, Michael; Zhang, Weizhen (2019). "mTOR Signaling in X/A‐Like Cells Contributes to Lipid Homeostasis in Mice." Hepatology 69(2): 860-875.
dc.identifier.issn0270-9139
dc.identifier.issn1527-3350
dc.identifier.urihttps://hdl.handle.net/2027.42/147831
dc.publisherWiley Periodicals, Inc.
dc.titlemTOR Signaling in X/A‐Like Cells Contributes to Lipid Homeostasis in Mice
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialties
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147831/1/hep30229-sup-0001-FigS1-S8.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147831/2/hep30229_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147831/3/hep30229.pdf
dc.identifier.doi10.1002/hep.30229
dc.identifier.sourceHepatology
dc.identifier.citedreferenceDuca FA, Bauer PV, Hamr SC, Lam TK. Glucoregulatory relevance of small intestinal nutrient sensing in physiology, bariatric surgery, and pharmacology. Cell Metab 2015; 22: 367 ‐ 380.
dc.identifier.citedreferenceRosner M, Hengstschlager M. Nucleocytoplasmic localization of p70 S6K1, but not of its isoforms p85 and p31, is regulated by TSC2/mTOR. Oncogene 2011; 30: 4509 ‐ 4522.
dc.identifier.citedreferenceCarlisle HJ, Dubuc PU. Temperature preference of genetically obese (ob/ob) mice. Physiol Behav 1984; 33: 899 ‐ 902.
dc.identifier.citedreferenceReitman ML. Of mice and men—environmental temperature, body temperature, and treatment of obesity. FEBS Lett 2018; 592: 2098 ‐ 2107.
dc.identifier.citedreferenceLim JH, Gerhart‐Hines Z, Dominy JE, Lee Y, Kim S, Tabata M, et al. Oleic acid stimulates complete oxidation of fatty acids through protein kinase A‐dependent activation of SIRT1‐PGC1alpha complex. J Biol Chem 2013; 288: 7117 ‐ 7126.
dc.identifier.citedreferencePrado CL, Pugh‐Bernard AE, Elghazi L, Sosa‐Pineda B, Sussel L. Ghrelin cells replace insulin‐producing beta cells in two mouse models of pancreas development. Proc Natl Acad Sci U S A 2004; 101: 2924 ‐ 2929.
dc.identifier.citedreferenceKordowich S, Collombat P, Mansouri A, Serup P. Arx and Nkx2.2 compound deficiency redirects pancreatic alpha‐ and beta‐cell differentiation to a somatostatin/ghrelin co‐expressing cell lineage. BMC Dev Biol 2011; 11: 52.
dc.identifier.citedreferenceCheung GW, Kokorovic A, Lam CK, Chari M, Lam TK. Intestinal cholecystokinin controls glucose production through a neuronal network. Cell Metab 2009; 10: 99 ‐ 109.
dc.identifier.citedreferenceYang M, Wang J, Wu S, Yuan L, Zhao X, Liu C, et al. Duodenal GLP‐1 signaling regulates hepatic glucose production through a PKC‐delta‐dependent neurocircuitry. Cell Death Dis 2017; 8: e2609.
dc.identifier.citedreferenceLo CM, Obici S, Dong HH, Haas M, Lou D, Kim DH, et al. Impaired insulin secretion and enhanced insulin sensitivity in cholecystokinin‐deficient mice. Diabetes 2011; 60: 2000 ‐ 2007.
dc.identifier.citedreferenceMacDonald PE, El‐Kholy W, Riedel MJ, Salapatek AM, Light PE, Wheeler MB. The multiple actions of GLP‐1 on the process of glucose‐stimulated insulin secretion. Diabetes 2002; 51 ( Suppl 3 ): S434 ‐ S442.
dc.identifier.citedreferenceKjems LL, Holst JJ, Volund A, Madsbad S. The influence of GLP‐1 on glucose‐stimulated insulin secretion: effects on beta‐cell sensitivity in type 2 and nondiabetic subjects. Diabetes 2003; 52: 380 ‐ 386.
dc.identifier.citedreferenceHameed S, Dhillo WS, Bloom SR. Gut hormones and appetite control. Oral Dis 2009; 15: 18 ‐ 26.
dc.identifier.citedreferenceFerrini F, Salio C, Lossi L, Merighi A. Ghrelin in central neurons. Curr Neuropharmacol 2009; 7: 37 ‐ 49.
dc.identifier.citedreferenceChoi K, Roh SG, Hong YH, Shrestha YB, Hishikawa D, Chen C, et al. The role of ghrelin and growth hormone secretagogues receptor on rat adipogenesis. Endocrinology 2003; 144: 754 ‐ 759.
dc.identifier.citedreferenceSvegliati‐Baroni G, Saccomanno S, Rychlicki C, Agostinelli L, De Minicis S, Candelaresi C, et al. Glucagon‐like peptide‐1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high‐fat diet in nonalcoholic steatohepatitis. Liver Int 2011; 31: 1285 ‐ 1297.
dc.identifier.citedreferenceWang Y, Li Z, Zhang X, Xiang X, Li Y, Mulholland MW, et al. Nesfatin‐1 promotes brown adipocyte phenotype. Sci Rep 2016; 6: 34747.
dc.identifier.citedreferenceCinti S. Adipocyte differentiation and transdifferentiation: plasticity of the adipose organ. J Endocrinol Invest 2002; 25: 823 ‐ 835.
dc.identifier.citedreferenceWu J, Cohen P, Spiegelman BM. Adaptive thermogenesis in adipocytes: Is beige the new brown? Genes Dev 2013; 27: 234 ‐ 250.
dc.identifier.citedreferenceInoki K, Ouyang H, Li Y, Guan KL. Signaling by target of rapamycin proteins in cell growth control. Microbiol Mol Biol Rev 2005; 69: 79 ‐ 100.
dc.identifier.citedreferenceDennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G. Mammalian TOR: a homeostatic ATP sensor. Science 2001; 294: 1102 ‐ 1105.
dc.identifier.citedreferenceCota D, Proulx K, Smith KA, Kozma SC, Thomas G, Woods SC, et al. Hypothalamic mTOR signaling regulates food intake. Science 2006; 312: 927 ‐ 930.
dc.identifier.citedreferenceKhamzina L, Veilleux A, Bergeron S, Marette A. Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity‐linked insulin resistance. Endocrinology 2005; 146: 1473 ‐ 1481.
dc.identifier.citedreferenceUm SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M, et al. Absence of S6K1 protects against age‐ and diet‐induced obesity while enhancing insulin sensitivity. Nature 2004; 431: 200 ‐ 205.
dc.identifier.citedreferenceJohnston O, Rose CL, Webster AC, Gill JS. Sirolimus is associated with new‐onset diabetes in kidney transplant recipients. J Am Soc Nephrol 2008; 19: 1411 ‐ 1418.
dc.identifier.citedreferenceStengel A, Tache Y. Ghrelin—a pleiotropic hormone secreted from endocrine x/a‐like cells of the stomach. Front Neurosci 2012; 6: 24.
dc.identifier.citedreferenceKojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth‐hormone‐releasing acylated peptide from stomach. Nature 1999; 402: 656 ‐ 660.
dc.identifier.citedreferenceTsubone T, Masaki T, Katsuragi I, Tanaka K, Kakuma T, Yoshimatsu H. Ghrelin regulates adiposity in white adipose tissue and UCP1 mRNA expression in brown adipose tissue in mice. Regul Pept 2005; 130: 97 ‐ 103.
dc.identifier.citedreferenceXu G, Wang Z, Li Y, Li Z, Tang H, Zhao J, et al. Ghrelin contributes to derangements of glucose metabolism induced by rapamycin in mice. Diabetologia 2012; 55: 1813 ‐ 1823.
dc.identifier.citedreferenceLi Z, Xu G, Qin Y, Zhang C, Tang H, Yin Y, et al. Ghrelin promotes hepatic lipogenesis by activation of mTOR‐PPARgamma signaling pathway. Proc Natl Acad Sci U S A 2014; 111: 13163 ‐ 13168.
dc.identifier.citedreferenceZigman JM, Nakano Y, Coppari R, Balthasar N, Marcus JN, Lee CE, et al. Mice lacking ghrelin receptors resist the development of diet‐induced obesity. J Clin Invest 2005; 115: 3564 ‐ 3572.
dc.identifier.citedreferenceLin L, Saha PK, Ma X, Henshaw IO, Shao L, Chang BH, et al. Ablation of ghrelin receptor reduces adiposity and improves insulin sensitivity during aging by regulating fat metabolism in white and brown adipose tissues. Aging Cell 2011; 10: 996 ‐ 1010.
dc.identifier.citedreferenceXu G, Li Y, An W, Li S, Guan Y, Wang N, et al. Gastric mammalian target of rapamycin signaling regulates ghrelin production and food intake. Endocrinology 2009; 150: 3637 ‐ 3644.
dc.identifier.citedreferenceMa L, Tang H, Yin Y, Yu R, Zhao J, Li Y, et al. HDAC5‐mTORC1 interaction in differential regulation of ghrelin and nucleobindin 2 (NUCB2)/nesfatin‐1. Mol Endocrinol 2015; 29: 1571 ‐ 1580.
dc.identifier.citedreferenceXu G, Li Y, An W, Zhao J, Xiang X, Ding L, et al. Regulation of gastric hormones by systemic rapamycin. Peptides 2010; 31: 2185 ‐ 2192.
dc.identifier.citedreferenceArnes L, Hill JT, Gross S, Magnuson MA, Sussel L. Ghrelin expression in the mouse pancreas defines a unique multipotent progenitor population. PLoS One 2012; 7: e52026.
dc.identifier.citedreferenceHayashida T, Nakahara K, Mondal MS, Date Y, Nakazato M, Kojima M, et al. Ghrelin in neonatal rats: distribution in stomach and its possible role. J Endocrinol 2002; 173: 239 ‐ 245.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.