Show simple item record

Honey bee neurogenomic responses to affiliative and agonistic social interactions

dc.contributor.authorShpigler, Hagai Y.
dc.contributor.authorSaul, Michael C.
dc.contributor.authorMurdoch, Emma E.
dc.contributor.authorCorona, Frida
dc.contributor.authorCash‐ahmed, Amy C.
dc.contributor.authorSeward, Christopher H.
dc.contributor.authorChandrasekaran, Sriram
dc.contributor.authorStubbs, Lisa J.
dc.contributor.authorRobinson, Gene E.
dc.date.accessioned2019-02-12T20:24:30Z
dc.date.available2020-03-03T21:29:36Zen
dc.date.issued2019-01
dc.identifier.citationShpigler, Hagai Y.; Saul, Michael C.; Murdoch, Emma E.; Corona, Frida; Cash‐ahmed, Amy C. ; Seward, Christopher H.; Chandrasekaran, Sriram; Stubbs, Lisa J.; Robinson, Gene E. (2019). "Honey bee neurogenomic responses to affiliative and agonistic social interactions." Genes, Brain and Behavior 18(1): n/a-n/a.
dc.identifier.issn1601-1848
dc.identifier.issn1601-183X
dc.identifier.urihttps://hdl.handle.net/2027.42/147835
dc.publisherWiley Periodicals, Inc.
dc.publisherBlackwell Publishing Ltd
dc.subject.otherbiological embedding
dc.subject.othertranscriptional regulatory network
dc.subject.othertranscriptomic
dc.subject.otherepigenetics
dc.subject.otherhoney bee
dc.subject.othermushroom bodies
dc.subject.otherRNAâ seq
dc.subject.otheraffiliative behavior
dc.subject.otheralloparental care
dc.subject.othersocial behavior
dc.subject.otherChIPâ seq
dc.titleHoney bee neurogenomic responses to affiliative and agonistic social interactions
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurology and Neurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147835/1/gbb12509-sup-0003-FigureS3.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147835/2/gbb12509-sup-0002-FigureS2.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147835/3/gbb12509-sup-0001-FigureS1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147835/4/gbb12509.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147835/5/gbb12509_am.pdf
dc.identifier.doi10.1111/gbb.12509
dc.identifier.sourceGenes, Brain and Behavior
dc.identifier.citedreferenceNaeger NL, Robinson GE. Transcriptomic analysis of instinctive and learned rewardâ related behaviors in honey bees. J Exp Biol. 2016; 219: 3554 â 3561.
dc.identifier.citedreferenceKurakula K, Koenis DS, van Tiel CM, de Vries CJ. NR4A nuclear receptors are orphans but not lonesome. Biochim Biophys Acta. 2014; 1843: 2543 â 2555.
dc.identifier.citedreferenceSever R, Glass CK. Signaling by nuclear receptors. CSH Perspect Biol. 2013; 5: a016709.
dc.identifier.citedreferenceFahrbach SE. Structure of the mushroom bodies of the insect brain. Annu Rev Entomol. 2006; 51: 209 â 232.
dc.identifier.citedreferenceAso Y, Sitaraman D, Ichinose T, et al. Mushroom body output neurons encode valence and guide memoryâ based action selection in Drosophila. Elife. 2014; 3: e04580.
dc.identifier.citedreferenceCervantesâ Sandoval I, Davis RL. Distinct traces for appetitive versus aversive olfactory memories in DPM neurons of Drosophila. Curr Biol. 2012; 22: 1247 â 1252.
dc.identifier.citedreferenceAnderson DJ. Circuit modules linking internal states and social behaviour in flies and mice. Nat Rev Neurosci. 2016; 17: 692 â 704.
dc.identifier.citedreferenceKiya T, Kubo T. Dance type and flight parameters are associated with different mushroom body neural activities in worker honeybee brains. PLoS One. 2011; 6: e19301.
dc.identifier.citedreferenceLutz CC, Robinson GE. Activityâ dependent gene expression in honey bee mushroom bodies in response to orientation flight. J Exp Biol. 2013; 216: 2031 â 2038.
dc.identifier.citedreferenceMcNeill MS, Robinson GE. Voxelâ based analysis of the immediate early gene, câ jun, in the honey bee brain after a sucrose stimulus. Insect Mol Biol. 2015; 24: 377 â 390.
dc.identifier.citedreferenceFernald RD. Social behaviour: Can it change the brain? Anim Behav. 2015; 103: 259 â 265.
dc.identifier.citedreferenceTheraulaz G, Bonabeau E, Deneubourg JL. Response threshold reinforcements and division of labour in insect societies. Proc Biol Sci. 1998; 265: 327 â 332.
dc.identifier.citedreferenceFarkhary SI, Ken H, Shinya H, Harano K, Koyama S, Satoh T. Fighting and stinging responses are affected by a dopamine receptor blocker flupenthixol in honey bee virgin queens. J Insect Behav. 2017; 30: 717 â 727.
dc.identifier.citedreferenceAlekseyenko OV, Chan YB, Li R, Kravitz EA. Single dopaminergic neurons that modulate aggression in Drosophila. Proc Natl Acad Sci USA. 2013; 110: 6151 â 6156.
dc.identifier.citedreferenceMizunami M, Matsumoto Y. Roles of octopamine and dopamine neurons for mediating appetitive and aversive signals in pavlovian conditioning in crickets. Front Physiol. 2017; 8: 1027.
dc.identifier.citedreferenceIliadi KG, Iliadi N, Boulianne GL. Drosophila mutants lacking octopamine exhibit impairment in aversive olfactory associative learning. Eur J Neurosci. 2017; 46: 2080 â 2087.
dc.identifier.citedreferencePalmer CR, Kristan WB. Contextual modulation of behavioral choice. Curr Opin Neurobiol. 2011; 21: 520 â 526.
dc.identifier.citedreferenceDulac C, O’Connell LA, Wu Z. Neural control of maternal and paternal behaviors. Science. 2014; 345: 765 â 770.
dc.identifier.citedreferenceStiver KA, Alonzo SH. Alloparental care increases mating success. Behav Ecol. 2011; 22: 206 â 211.
dc.identifier.citedreferenceLehmann J, Korstjens AH, Dunbar RIM. Group size, grooming and social cohesion in primates. Anim Behav. 2007; 74: 1617 â 1629.
dc.identifier.citedreferenceLorenz K. On Aggression. New York, NY: Harcourt; 1966.
dc.identifier.citedreferenceNelson RJ, Trainor BC. Neural mechanisms of aggression. Nat Rev Neurosci. 2007; 8: 536 â 546.
dc.identifier.citedreferenceAnderson DJ, Adolphs R. A framework for studying emotions across species. Cell. 2014; 157: 187 â 200.
dc.identifier.citedreferenceOliveira RF, Silva A, Canario AVM. Why do winners keep winning? Androgen mediation of winner but not loser effects in cichlid fish. Proc R Soc B Biol Sci. 2009; 276: 2249 â 2256.
dc.identifier.citedreferenceHertzman C. Putting the concept of biological embedding in historical perspective. Proc Natl Acad Sci USA. 2012; 109: 17160 â 17167.
dc.identifier.citedreferenceMaruska KP. Social transitions cause rapid behavioral and neuroendocrine changes. Integr Compar Biol. 2015; 55: 294 â 306.
dc.identifier.citedreferenceSchwartzer JJ, Ricci LA, Melloni RH. Prior fighting experience increases aggression in Syrian hamsters: implications for a role of dopamine in the winner effect. Aggress Behav. 2013; 39: 290 â 300.
dc.identifier.citedreferenceLi YN, Lian ZM, Wang B, et al. Natural variation in paternal behavior is associated with central estrogen receptor alpha and oxytocin levels. J Comp Physiol A. 2015; 201: 285 â 293.
dc.identifier.citedreferenceLim M, Young LJ. Neuropeptidergic regulation of affiliative behavior and social bonding in animals. Horm Behav. 2006; 50: 506 â 517.
dc.identifier.citedreferenceBukhari SA, Saul MC, Seward CH, et al. Temporal dynamics of neurogenomic plasticity in response to social interactions in male threespined sticklebacks. PLoS Genet. 2017; 13: e1006840.
dc.identifier.citedreferenceRittschof CC, Bukhari SA, Sloofman LG, et al. Neuromolecular responses to social challenge: common mechanisms across mouse, stickleback fish, and honey bee. Proc Natl Acad Sci USA. 2014; 111: 17929 â 17934.
dc.identifier.citedreferenceSaul MC, Seward CH, Troy JM, et al. Transcriptional regulatory dynamics drive coordinated metabolic and neural response to social challenge in mice. Genome Res. 2017; 27: 959 â 972.
dc.identifier.citedreferenceShpigler HY, Saul MC, Murdoch EE, et al. Behavioral, transcriptomic and epigenetic responses to social challenge in honey bees. Genes Brain Behav. 2017b; 16: 579 â 591.
dc.identifier.citedreferenceRobinson, G.E. ( 2015 ) Brains work via their genes just as much as their neurons. In: The Conversation. https://theconversation.com/brains-work-via-their-genes-just-as-much-as-their-neurons-47522
dc.identifier.citedreferenceAlaux C, Robinson GE. Alarm pheromone induces immediateâ early gene expression and slow behavioral response in honey bees. J Chem Ecol. 2007; 33: 1346 â 1350.
dc.identifier.citedreferenceShpigler HY, Robinson GE. Laboratory assay of brood care for quantitative analyses of individual differences in honey bee ( Apis mellifera ) affiliative behavior. PLoS One. 2015; 10: e0143183.
dc.identifier.citedreferenceVogt K, Schnaitmann C, Dylla KV, et al. Shared mushroom body circuits underlie visual and olfactory memories in Drosophila. Elife. 2014; 3: e02395.
dc.identifier.citedreferenceHeisenberg M. Mushroom body memoir: From maps to models. Nat Rev Neurosci. 2003; 4: 266 â 275.
dc.identifier.citedreferenceMartin JR, Ernst R, Heisenberg M. Mushroom bodies suppress locomotor activity in Drosophila melanogaster. Learn Mem. 1998; 5: 179 â 191.
dc.identifier.citedreferenceVeys K, Snyders D, De Schutter E. Kv3.3b expression defines the shape of the complex spike in the Purkinje cell. Front Cell Neurosci. 2013; 7: 205.
dc.identifier.citedreferenceLibster AM, Title B, Yarom Y. Corticotropinâ releasing factor increases Purkinje neuron excitability by modulating sodium, potassium, and Iâ h currents. J Neurophysiol. 2015; 114: 3339 â 3350.
dc.identifier.citedreferenceZemanova M, Staskova T, Kodrik D. Role of adipokinetic hormone and adenosine in the antiâ stress response in Drosophila melanogaster. J Insect Physiol. 2016; 91â 92: 39 â 47.
dc.identifier.citedreferenceGunawardhana KL, Hardin PE. VRILLE controls PDF neuropeptide accumulation and arborization rhythms in small ventrolateral neurons to drive rhythmic behavior in drosophila. Curr Biol. 2017; 27: 3442 â 3453.
dc.identifier.citedreferenceRobinson GE. Regulation of division of labor in insect societies. Annu Rev Entomol. 1992; 37: 637 â 665.
dc.identifier.citedreferenceLaidlaw HH, Page RE. Queen Rearing and Bee Breeding. Cheshire, CT: Wicwas Press; 1997.
dc.identifier.citedreferenceLe Conte Y, Sreng L, Trouiller J. The recognition of larvae by worker honeybees. Naturwissenschaften. 1994; 81: 462 â 465.
dc.identifier.citedreferenceBloch G, Toma DP, Robinson GE. Behavioral rhythmicity, age, division of labor and period expression in the honey bee brain. J Biol Rhythms. 2001; 16: 444 â 456.
dc.identifier.citedreferenceToma DP, Bloch G, Moore D, Robinson GE. Changes in period mRNA levels in the brain and division of labor in honey bee colonies. Proc Natl Acad Sci USA. 2000; 97: 6914 â 6919.
dc.identifier.citedreferenceHerb BR, Wolschin F, Hansen KD, et al. Reversible switching between epigenetic states in honeybee behavioral subcastes. Nat Neurosci. 2012; 15: 1371 â 1373.
dc.identifier.citedreferenceHerb BR, Shook MS, Fields CJ, Robinson GE. Defense against territorial intrusion is associated with DNA methylation changes in the honey bee brain. BMC Genomics. 2018; 19: 216.
dc.identifier.citedreferenceCullinan WE, Herman JP, Battaglia DF, Akil H, Watson SJ. Pattern and timeâ course of immediateâ early geneâ expression in ratâ brain following acute stress. Neuroscience. 1995; 64: 477 â 505.
dc.identifier.citedreferenceSanogo YO, Band M, Blatti C, Sinha S, Bell AM. Transcriptional regulation of brain gene expression in response to a territorial intrusion. Proc R Soc B Biol Sci. 2012; 279: 4929 â 4938.
dc.identifier.citedreferenceMcGuire SE, Deshazer M, Davis RL. Thirty years of olfactory learning and memory research in Drosophila melanogaster. Prog Neurobiol. 2005; 76: 328 â 347.
dc.identifier.citedreferenceMcGuire SE, Le PT, Davis RL. The role of Drosophila mushroom body signaling in olfactory memory. Science. 2001; 293: 1330 â 1333.
dc.identifier.citedreferenceDass SAH, Vyas A. Toxoplasma gondii infection reduces predator aversion in rats through epigenetic modulation in the host medial amygdala. Mol Ecol. 2014; 23: 6114 â 6122.
dc.identifier.citedreferenceDemir E, Dickson BJ. fruitless splicing specifies male courtship behavior in Drosophila. Cell. 2005; 121: 785 â 794.
dc.identifier.citedreferenceKoganezawa M, Kimura K, Yamamoto D. The neural circuitry that functions as a switch for courtship versus aggression in drosophila males. Curr Biol. 2016; 26: 1395 â 1403.
dc.identifier.citedreferenceMukherjee D, Ignatowskaâ Jankowska BM, Itskovits E, et al. Salient experiences are represented by unique transcriptional signatures in the mouse brain. Elife. 2018; 7: e31220.
dc.identifier.citedreferenceElsik CG, Worley KC, Bennett AK, et al. Finding the missing honey bee genes: lessons learned from a genome upgrade. BMC Genomics. 2014; 15: 86.
dc.identifier.citedreferenceRobinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26: 139 â 140.
dc.identifier.citedreferenceStorey JD. A direct approach to false discovery rates. J R Stat Soc Series B. 2002; 64: 479 â 498.
dc.identifier.citedreferenceAshburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000; 25: 25 â 29.
dc.identifier.citedreferenceHuang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009; 4: 44 â 57.
dc.identifier.citedreferenceChandrasekaran S, Ament SA, Eddy JA, et al. Behaviorâ specific changes in transcriptional modules lead to distinct and predictable neurogenomic states. Proc Natl Acad Sci USA. 2011; 108: 18020 â 18025.
dc.identifier.citedreferenceCreyghton MP, Cheng AW, Welstead GG, et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci USA. 2010; 107: 21931 â 21936.
dc.identifier.citedreferenceRadaâ Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J. A unique chromatin signature uncovers early developmental enhancers in humans. Nature. 2011; 470: 279 â 283.
dc.identifier.citedreferenceShpigler HY, Saul MC, Corona F, et al. Deep evolutionary conservation of autismâ related genes. Proc Natl Acad Sci USA. 2017a; 114: 9653 â 9658.
dc.identifier.citedreferenceMcNeill MS, Kapheim KM, Brockmann A, McGill TAW, Robinson GE. Brain regions and molecular pathways responding to food reward type and value in honey bees. Genes Brain Behav. 2016; 15: 305 â 317.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.