Honey bee neurogenomic responses to affiliative and agonistic social interactions
dc.contributor.author | Shpigler, Hagai Y. | |
dc.contributor.author | Saul, Michael C. | |
dc.contributor.author | Murdoch, Emma E. | |
dc.contributor.author | Corona, Frida | |
dc.contributor.author | Cash‐ahmed, Amy C. | |
dc.contributor.author | Seward, Christopher H. | |
dc.contributor.author | Chandrasekaran, Sriram | |
dc.contributor.author | Stubbs, Lisa J. | |
dc.contributor.author | Robinson, Gene E. | |
dc.date.accessioned | 2019-02-12T20:24:30Z | |
dc.date.available | 2020-03-03T21:29:36Z | en |
dc.date.issued | 2019-01 | |
dc.identifier.citation | Shpigler, Hagai Y.; Saul, Michael C.; Murdoch, Emma E.; Corona, Frida; Cash‐ahmed, Amy C. ; Seward, Christopher H.; Chandrasekaran, Sriram; Stubbs, Lisa J.; Robinson, Gene E. (2019). "Honey bee neurogenomic responses to affiliative and agonistic social interactions." Genes, Brain and Behavior 18(1): n/a-n/a. | |
dc.identifier.issn | 1601-1848 | |
dc.identifier.issn | 1601-183X | |
dc.identifier.uri | https://hdl.handle.net/2027.42/147835 | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.publisher | Blackwell Publishing Ltd | |
dc.subject.other | biological embedding | |
dc.subject.other | transcriptional regulatory network | |
dc.subject.other | transcriptomic | |
dc.subject.other | epigenetics | |
dc.subject.other | honey bee | |
dc.subject.other | mushroom bodies | |
dc.subject.other | RNAâ seq | |
dc.subject.other | affiliative behavior | |
dc.subject.other | alloparental care | |
dc.subject.other | social behavior | |
dc.subject.other | ChIPâ seq | |
dc.title | Honey bee neurogenomic responses to affiliative and agonistic social interactions | |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Neurology and Neurosciences | |
dc.subject.hlbtoplevel | Health Sciences | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/147835/1/gbb12509-sup-0003-FigureS3.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/147835/2/gbb12509-sup-0002-FigureS2.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/147835/3/gbb12509-sup-0001-FigureS1.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/147835/4/gbb12509.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/147835/5/gbb12509_am.pdf | |
dc.identifier.doi | 10.1111/gbb.12509 | |
dc.identifier.source | Genes, Brain and Behavior | |
dc.identifier.citedreference | Naeger NL, Robinson GE. Transcriptomic analysis of instinctive and learned rewardâ related behaviors in honey bees. J Exp Biol. 2016; 219: 3554 â 3561. | |
dc.identifier.citedreference | Kurakula K, Koenis DS, van Tiel CM, de Vries CJ. NR4A nuclear receptors are orphans but not lonesome. Biochim Biophys Acta. 2014; 1843: 2543 â 2555. | |
dc.identifier.citedreference | Sever R, Glass CK. Signaling by nuclear receptors. CSH Perspect Biol. 2013; 5: a016709. | |
dc.identifier.citedreference | Fahrbach SE. Structure of the mushroom bodies of the insect brain. Annu Rev Entomol. 2006; 51: 209 â 232. | |
dc.identifier.citedreference | Aso Y, Sitaraman D, Ichinose T, et al. Mushroom body output neurons encode valence and guide memoryâ based action selection in Drosophila. Elife. 2014; 3: e04580. | |
dc.identifier.citedreference | Cervantesâ Sandoval I, Davis RL. Distinct traces for appetitive versus aversive olfactory memories in DPM neurons of Drosophila. Curr Biol. 2012; 22: 1247 â 1252. | |
dc.identifier.citedreference | Anderson DJ. Circuit modules linking internal states and social behaviour in flies and mice. Nat Rev Neurosci. 2016; 17: 692 â 704. | |
dc.identifier.citedreference | Kiya T, Kubo T. Dance type and flight parameters are associated with different mushroom body neural activities in worker honeybee brains. PLoS One. 2011; 6: e19301. | |
dc.identifier.citedreference | Lutz CC, Robinson GE. Activityâ dependent gene expression in honey bee mushroom bodies in response to orientation flight. J Exp Biol. 2013; 216: 2031 â 2038. | |
dc.identifier.citedreference | McNeill MS, Robinson GE. Voxelâ based analysis of the immediate early gene, câ jun, in the honey bee brain after a sucrose stimulus. Insect Mol Biol. 2015; 24: 377 â 390. | |
dc.identifier.citedreference | Fernald RD. Social behaviour: Can it change the brain? Anim Behav. 2015; 103: 259 â 265. | |
dc.identifier.citedreference | Theraulaz G, Bonabeau E, Deneubourg JL. Response threshold reinforcements and division of labour in insect societies. Proc Biol Sci. 1998; 265: 327 â 332. | |
dc.identifier.citedreference | Farkhary SI, Ken H, Shinya H, Harano K, Koyama S, Satoh T. Fighting and stinging responses are affected by a dopamine receptor blocker flupenthixol in honey bee virgin queens. J Insect Behav. 2017; 30: 717 â 727. | |
dc.identifier.citedreference | Alekseyenko OV, Chan YB, Li R, Kravitz EA. Single dopaminergic neurons that modulate aggression in Drosophila. Proc Natl Acad Sci USA. 2013; 110: 6151 â 6156. | |
dc.identifier.citedreference | Mizunami M, Matsumoto Y. Roles of octopamine and dopamine neurons for mediating appetitive and aversive signals in pavlovian conditioning in crickets. Front Physiol. 2017; 8: 1027. | |
dc.identifier.citedreference | Iliadi KG, Iliadi N, Boulianne GL. Drosophila mutants lacking octopamine exhibit impairment in aversive olfactory associative learning. Eur J Neurosci. 2017; 46: 2080 â 2087. | |
dc.identifier.citedreference | Palmer CR, Kristan WB. Contextual modulation of behavioral choice. Curr Opin Neurobiol. 2011; 21: 520 â 526. | |
dc.identifier.citedreference | Dulac C, O’Connell LA, Wu Z. Neural control of maternal and paternal behaviors. Science. 2014; 345: 765 â 770. | |
dc.identifier.citedreference | Stiver KA, Alonzo SH. Alloparental care increases mating success. Behav Ecol. 2011; 22: 206 â 211. | |
dc.identifier.citedreference | Lehmann J, Korstjens AH, Dunbar RIM. Group size, grooming and social cohesion in primates. Anim Behav. 2007; 74: 1617 â 1629. | |
dc.identifier.citedreference | Lorenz K. On Aggression. New York, NY: Harcourt; 1966. | |
dc.identifier.citedreference | Nelson RJ, Trainor BC. Neural mechanisms of aggression. Nat Rev Neurosci. 2007; 8: 536 â 546. | |
dc.identifier.citedreference | Anderson DJ, Adolphs R. A framework for studying emotions across species. Cell. 2014; 157: 187 â 200. | |
dc.identifier.citedreference | Oliveira RF, Silva A, Canario AVM. Why do winners keep winning? Androgen mediation of winner but not loser effects in cichlid fish. Proc R Soc B Biol Sci. 2009; 276: 2249 â 2256. | |
dc.identifier.citedreference | Hertzman C. Putting the concept of biological embedding in historical perspective. Proc Natl Acad Sci USA. 2012; 109: 17160 â 17167. | |
dc.identifier.citedreference | Maruska KP. Social transitions cause rapid behavioral and neuroendocrine changes. Integr Compar Biol. 2015; 55: 294 â 306. | |
dc.identifier.citedreference | Schwartzer JJ, Ricci LA, Melloni RH. Prior fighting experience increases aggression in Syrian hamsters: implications for a role of dopamine in the winner effect. Aggress Behav. 2013; 39: 290 â 300. | |
dc.identifier.citedreference | Li YN, Lian ZM, Wang B, et al. Natural variation in paternal behavior is associated with central estrogen receptor alpha and oxytocin levels. J Comp Physiol A. 2015; 201: 285 â 293. | |
dc.identifier.citedreference | Lim M, Young LJ. Neuropeptidergic regulation of affiliative behavior and social bonding in animals. Horm Behav. 2006; 50: 506 â 517. | |
dc.identifier.citedreference | Bukhari SA, Saul MC, Seward CH, et al. Temporal dynamics of neurogenomic plasticity in response to social interactions in male threespined sticklebacks. PLoS Genet. 2017; 13: e1006840. | |
dc.identifier.citedreference | Rittschof CC, Bukhari SA, Sloofman LG, et al. Neuromolecular responses to social challenge: common mechanisms across mouse, stickleback fish, and honey bee. Proc Natl Acad Sci USA. 2014; 111: 17929 â 17934. | |
dc.identifier.citedreference | Saul MC, Seward CH, Troy JM, et al. Transcriptional regulatory dynamics drive coordinated metabolic and neural response to social challenge in mice. Genome Res. 2017; 27: 959 â 972. | |
dc.identifier.citedreference | Shpigler HY, Saul MC, Murdoch EE, et al. Behavioral, transcriptomic and epigenetic responses to social challenge in honey bees. Genes Brain Behav. 2017b; 16: 579 â 591. | |
dc.identifier.citedreference | Robinson, G.E. ( 2015 ) Brains work via their genes just as much as their neurons. In: The Conversation. https://theconversation.com/brains-work-via-their-genes-just-as-much-as-their-neurons-47522 | |
dc.identifier.citedreference | Alaux C, Robinson GE. Alarm pheromone induces immediateâ early gene expression and slow behavioral response in honey bees. J Chem Ecol. 2007; 33: 1346 â 1350. | |
dc.identifier.citedreference | Shpigler HY, Robinson GE. Laboratory assay of brood care for quantitative analyses of individual differences in honey bee ( Apis mellifera ) affiliative behavior. PLoS One. 2015; 10: e0143183. | |
dc.identifier.citedreference | Vogt K, Schnaitmann C, Dylla KV, et al. Shared mushroom body circuits underlie visual and olfactory memories in Drosophila. Elife. 2014; 3: e02395. | |
dc.identifier.citedreference | Heisenberg M. Mushroom body memoir: From maps to models. Nat Rev Neurosci. 2003; 4: 266 â 275. | |
dc.identifier.citedreference | Martin JR, Ernst R, Heisenberg M. Mushroom bodies suppress locomotor activity in Drosophila melanogaster. Learn Mem. 1998; 5: 179 â 191. | |
dc.identifier.citedreference | Veys K, Snyders D, De Schutter E. Kv3.3b expression defines the shape of the complex spike in the Purkinje cell. Front Cell Neurosci. 2013; 7: 205. | |
dc.identifier.citedreference | Libster AM, Title B, Yarom Y. Corticotropinâ releasing factor increases Purkinje neuron excitability by modulating sodium, potassium, and Iâ h currents. J Neurophysiol. 2015; 114: 3339 â 3350. | |
dc.identifier.citedreference | Zemanova M, Staskova T, Kodrik D. Role of adipokinetic hormone and adenosine in the antiâ stress response in Drosophila melanogaster. J Insect Physiol. 2016; 91â 92: 39 â 47. | |
dc.identifier.citedreference | Gunawardhana KL, Hardin PE. VRILLE controls PDF neuropeptide accumulation and arborization rhythms in small ventrolateral neurons to drive rhythmic behavior in drosophila. Curr Biol. 2017; 27: 3442 â 3453. | |
dc.identifier.citedreference | Robinson GE. Regulation of division of labor in insect societies. Annu Rev Entomol. 1992; 37: 637 â 665. | |
dc.identifier.citedreference | Laidlaw HH, Page RE. Queen Rearing and Bee Breeding. Cheshire, CT: Wicwas Press; 1997. | |
dc.identifier.citedreference | Le Conte Y, Sreng L, Trouiller J. The recognition of larvae by worker honeybees. Naturwissenschaften. 1994; 81: 462 â 465. | |
dc.identifier.citedreference | Bloch G, Toma DP, Robinson GE. Behavioral rhythmicity, age, division of labor and period expression in the honey bee brain. J Biol Rhythms. 2001; 16: 444 â 456. | |
dc.identifier.citedreference | Toma DP, Bloch G, Moore D, Robinson GE. Changes in period mRNA levels in the brain and division of labor in honey bee colonies. Proc Natl Acad Sci USA. 2000; 97: 6914 â 6919. | |
dc.identifier.citedreference | Herb BR, Wolschin F, Hansen KD, et al. Reversible switching between epigenetic states in honeybee behavioral subcastes. Nat Neurosci. 2012; 15: 1371 â 1373. | |
dc.identifier.citedreference | Herb BR, Shook MS, Fields CJ, Robinson GE. Defense against territorial intrusion is associated with DNA methylation changes in the honey bee brain. BMC Genomics. 2018; 19: 216. | |
dc.identifier.citedreference | Cullinan WE, Herman JP, Battaglia DF, Akil H, Watson SJ. Pattern and timeâ course of immediateâ early geneâ expression in ratâ brain following acute stress. Neuroscience. 1995; 64: 477 â 505. | |
dc.identifier.citedreference | Sanogo YO, Band M, Blatti C, Sinha S, Bell AM. Transcriptional regulation of brain gene expression in response to a territorial intrusion. Proc R Soc B Biol Sci. 2012; 279: 4929 â 4938. | |
dc.identifier.citedreference | McGuire SE, Deshazer M, Davis RL. Thirty years of olfactory learning and memory research in Drosophila melanogaster. Prog Neurobiol. 2005; 76: 328 â 347. | |
dc.identifier.citedreference | McGuire SE, Le PT, Davis RL. The role of Drosophila mushroom body signaling in olfactory memory. Science. 2001; 293: 1330 â 1333. | |
dc.identifier.citedreference | Dass SAH, Vyas A. Toxoplasma gondii infection reduces predator aversion in rats through epigenetic modulation in the host medial amygdala. Mol Ecol. 2014; 23: 6114 â 6122. | |
dc.identifier.citedreference | Demir E, Dickson BJ. fruitless splicing specifies male courtship behavior in Drosophila. Cell. 2005; 121: 785 â 794. | |
dc.identifier.citedreference | Koganezawa M, Kimura K, Yamamoto D. The neural circuitry that functions as a switch for courtship versus aggression in drosophila males. Curr Biol. 2016; 26: 1395 â 1403. | |
dc.identifier.citedreference | Mukherjee D, Ignatowskaâ Jankowska BM, Itskovits E, et al. Salient experiences are represented by unique transcriptional signatures in the mouse brain. Elife. 2018; 7: e31220. | |
dc.identifier.citedreference | Elsik CG, Worley KC, Bennett AK, et al. Finding the missing honey bee genes: lessons learned from a genome upgrade. BMC Genomics. 2014; 15: 86. | |
dc.identifier.citedreference | Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26: 139 â 140. | |
dc.identifier.citedreference | Storey JD. A direct approach to false discovery rates. J R Stat Soc Series B. 2002; 64: 479 â 498. | |
dc.identifier.citedreference | Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000; 25: 25 â 29. | |
dc.identifier.citedreference | Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009; 4: 44 â 57. | |
dc.identifier.citedreference | Chandrasekaran S, Ament SA, Eddy JA, et al. Behaviorâ specific changes in transcriptional modules lead to distinct and predictable neurogenomic states. Proc Natl Acad Sci USA. 2011; 108: 18020 â 18025. | |
dc.identifier.citedreference | Creyghton MP, Cheng AW, Welstead GG, et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci USA. 2010; 107: 21931 â 21936. | |
dc.identifier.citedreference | Radaâ Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J. A unique chromatin signature uncovers early developmental enhancers in humans. Nature. 2011; 470: 279 â 283. | |
dc.identifier.citedreference | Shpigler HY, Saul MC, Corona F, et al. Deep evolutionary conservation of autismâ related genes. Proc Natl Acad Sci USA. 2017a; 114: 9653 â 9658. | |
dc.identifier.citedreference | McNeill MS, Kapheim KM, Brockmann A, McGill TAW, Robinson GE. Brain regions and molecular pathways responding to food reward type and value in honey bees. Genes Brain Behav. 2016; 15: 305 â 317. | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.