Show simple item record

Priorities to Overcome Barriers Impacting Data Science Application in Emergency Care Research

dc.contributor.authorPuskarich, Michael A.
dc.contributor.authorCallaway, Clif
dc.contributor.authorSilbergleit, Robert
dc.contributor.authorPines, Jesse M.
dc.contributor.authorObermeyer, Ziad
dc.contributor.authorWright, David W.
dc.contributor.authorHsia, Renee Y.
dc.contributor.authorShah, Manish N.
dc.contributor.authorMonte, Andrew A.
dc.contributor.authorLimkakeng, Alexander T.
dc.contributor.authorMeisel, Zachary F.
dc.contributor.authorLevy, Phillip D.
dc.date.accessioned2019-02-12T20:24:41Z
dc.date.available2020-03-03T21:29:36Zen
dc.date.issued2019-01
dc.identifier.citationPuskarich, Michael A.; Callaway, Clif; Silbergleit, Robert; Pines, Jesse M.; Obermeyer, Ziad; Wright, David W.; Hsia, Renee Y.; Shah, Manish N.; Monte, Andrew A.; Limkakeng, Alexander T.; Meisel, Zachary F.; Levy, Phillip D. (2019). "Priorities to Overcome Barriers Impacting Data Science Application in Emergency Care Research." Academic Emergency Medicine (1): 97-105.
dc.identifier.issn1069-6563
dc.identifier.issn1553-2712
dc.identifier.urihttps://hdl.handle.net/2027.42/147843
dc.description.abstractFor a variety of reasons including cheap computing, widespread adoption of electronic medical records, digitalization of imaging and biosignals, and rapid development of novel technologies, the amount of health care data being collected, recorded, and stored is increasing at an exponential rate. Yet despite these advances, methods for the valid, efficient, and ethical utilization of these data remain underdeveloped. Emergency care research, in particular, poses several unique challenges in this rapidly evolving field. A group of content experts was recently convened to identify research priorities related to barriers to the application of data science to emergency care research. These recommendations included: 1) developing methods for cross‐platform identification and linkage of patients; 2) creating central, deidentified, open‐access databases; 3) improving methodologies for visualization and analysis of intensively sampled data; 4) developing methods to identify and standardize electronic medical record data quality; 5) improving and utilizing natural language processing; 6) developing and utilizing syndrome or complaint‐based based taxonomies of disease; 7) developing practical and ethical framework to leverage electronic systems for controlled trials; 8) exploring technologies to help enable clinical trials in the emergency setting; and 9) training emergency care clinicians in data science and data scientists in emergency care medicine. The background, rationale, and conclusions of these recommendations are included in the present article.
dc.publisherWiley Periodicals, Inc.
dc.publisherNational Quality Forum
dc.titlePriorities to Overcome Barriers Impacting Data Science Application in Emergency Care Research
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147843/1/acem13520_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147843/2/acem13520.pdf
dc.identifier.doi10.1111/acem.13520
dc.identifier.sourceAcademic Emergency Medicine
dc.identifier.citedreferenceKimia AA, Savova G, Landschaft A, Harper MB. An introduction to natural language processing: how you can get more from those electronic notes you are generating. Pediatr Emerg Care 2015; 31: 536 – 41.
dc.identifier.citedreferenceObermeyer Z, Lee TH. Lost in thought ‐ the limits of the human mind and the future of medicine. N Engl J Med 2017; 377: 1209 – 11.
dc.identifier.citedreferenceMcMurray J, Hicks E, Johnson H, Elliott J, Byrne K, Stolee P. ‘Trying to find information is like hating yourself every day’: the collision of electronic information systems in transition with patients in transition. Health Inform J 2013; 19: 218 – 32.
dc.identifier.citedreferenceEmergency Department Transitions of Care ‐ A Quality Measurement Framework Final Report. Washington, DC: National Quality Forum, 2017.
dc.identifier.citedreferenceWeber GM, Adams WG, Bernstam EV, et al. Biases introduced by filtering electronic health records for patients with “complete data”. J Am Med Inform Assoc 2017; 24: 1134 – 41.
dc.identifier.citedreferenceNewgard CD, Zive D, Jui J, Weathers C, Daya M. Electronic versus manual data processing: evaluating the use of electronic health records in out‐of‐hospital clinical research. Acad Emerg Med 2012; 19: 217 – 27.
dc.identifier.citedreferenceHarron K, Wade A, Gilbert R, Muller‐Pebody B, Goldstein H. Evaluating bias due to data linkage error in electronic healthcare records. BMC Med Res Methodol 2014; 14: 36.
dc.identifier.citedreferenceHarron KL, Doidge JC, Knight HE, et al. A guide to evaluating linkage quality for the analysis of linked data. Int J Epidemiol 2017; 46: 1699 – 710.
dc.identifier.citedreferenceKum HC, Ahalt S. Privacy‐by‐design: understanding data access models for secondary data. AMIA Jt Summits Transl Sci Proc 2013; 2013: 126 – 30.
dc.identifier.citedreferenceBustin SA, Huggett JF. Reproducibility of biomedical research ‐ The importance of editorial vigilance. Biomol Detect Quantif 2017; 11: 1 – 3.
dc.identifier.citedreferenceMann M. This Diabetes Activitist Hacked Her Medical Device and Made an Artificial Pancreas. Available at: https://motherboard.vice.com/en_us/article/aekkyj/this-diabetes-activist-hacked-her-medical-device-and-made-an-artificial-pancreas. Accessed Jun 15, 2018.
dc.identifier.citedreferenceFrancescon R, Hooshmand M, Gadaleta M, Grisan E, Yoon SK, Rossi M. Toward lightweight biometric signal processing for wearable devices. Conf Proc IEEE Eng Med Biol Soc 2015; 2015: 4190 – 3.
dc.identifier.citedreferencePatterson ES, Sillars DM, Staggers N, et al. Safe practice recommendations for the use of copy‐forward with nursing flow sheets in hospital settings. Jt Comm J Qual Patient Saf 2017; 43: 375 – 385.
dc.identifier.citedreferenceDaymont C, Ross ME, Russell LA, Fiks AG, Wasserman RC, Grundmeier RW. Automated identification of implausible values in growth data from pediatric electronic health records. J Am Med Inform Assoc 2017; 24: 1080 – 7.
dc.identifier.citedreferencePolnaszek B, Gilmore‐Bykovskyi A, Hovanes M, et al. Overcoming the challenges of unstructured data in multi‐site, electronic medical record‐based abstraction. Med Care 2016; 54: e65 – 72.
dc.identifier.citedreferenceLuo L, Li L, Hu J, Wang X, Hou B, Zhang T, Zhao LP. A hybrid solution for extracting structured medical information from unstructured data in medical records via a double‐reading/entry system. BMC Med Inform Decis Mak 2016; 16: 114.
dc.identifier.citedreferenceGriffey RT, Pines JM, Farley HL, et al. Chief complaint‐based performance measures: a new focus for acute care quality measurement. Ann Emerg Med 2015; 65: 387 – 95.
dc.identifier.citedreferenceBerdahl C, Schuur JD, Fisher NL, Burstin H, Pines JM. Policy measures and reimbursement for emergency medical imaging in the era of payment reform: proceedings from a panel discussion of the 2015 Academic Emergency Medicine Consensus Conference. Acad Emerg Med 2015; 22: 1393 – 9.
dc.identifier.citedreferenceLee D, de Keizer N, Lau F, Cornet R. Literature review of SNOMED CT use. J Am Med Inform Assoc 2014; 21: e11 – 9.
dc.identifier.citedreferenceHaneuse S, Daniels M. A general framework for considering selection bias in EHR‐based studies: what data are observed and why? EGEMS (Wash DC) 2016; 4: 1203.
dc.identifier.citedreferenceSaver JL, Starkman S, Eckstein M, et al. Methodology of the Field Administration of Stroke Therapy ‐ Magnesium (FAST‐MAG) phase 3 trial: Part 2 ‐ prehospital study methods. Int J Stroke 2014; 9: 220 – 5.
dc.identifier.citedreferenceFuryk J, McBain‐Rigg K, Watt K, et al. Qualitative evaluation of a deferred consent process in paediatric emergency research: a PREDICT study. BMJ Open 2017; 7: e018562.
dc.identifier.citedreferenceO’Malley GF, Giraldo P, Deitch K, et al. A novel emergency department‐based community notification method for clinical research without consent. Acad Emerg Med 2017; 24: 721 – 31.
dc.identifier.citedreferenceOfferman SR, Nishijima DK, Ballard DW, Chetipally UK, Vinson DR, Holmes JF. The use of delayed telephone informed consent for observational emergency medicine research is ethical and effective. Acad Emerg Med 2013; 20: 403 – 7.
dc.identifier.citedreferenceBrienza AM, Sylvester R, Ryan CM, et al. Success rates for notification of enrollment in exception from informed consent clinical trials. Acad Emerg Med 2016; 23: 772 – 5.
dc.identifier.citedreferenceMathes T, Buehn S, Prengel P, Pieper D. Registry‐based randomized controlled trials merged the strength of randomized controlled trails and observational studies and give rise to more pragmatic trials. J Clin Epidemiol 2018; 120 – 7.
dc.identifier.citedreferenceBalas EA, Vernon M, Magrabi F, Gordon LT, Sexton J. Big data clinical research: validity, ethics, and regulation. Stud Health Technol Inform 2015; 216: 448 – 52.
dc.identifier.citedreferenceZarin DA, Tse T, Williams RJ, Carr S. Trial reporting in ClinicalTrials.gov ‐ The final rule. N Engl J Med 2016; 375: 1998 – 2004.
dc.identifier.citedreferenceAllison DB, Cui X, Page GP, Sabripour M. Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet 2006; 7: 55 – 65.
dc.identifier.citedreferenceRaghupathi W, Raghupathi V. Big data analytics in healthcare: promise and potential. Health Inf Sci Syst 2014; 2: 3.
dc.identifier.citedreferenceKruse CS, Kothman K, Anerobi K, Abanaka L. Adoption factors of the electronic health record: a systematic review. JMIR Med Inform 2016; 4: e19.
dc.identifier.citedreferenceJanke AT, Overbeek DL, Kocher KE, Levy PD. Exploring the potential of predictive analytics and big data in emergency care. Ann Emerg Med 2016; 67: 227 – 36.
dc.identifier.citedreferenceNational Hospital Ambulatory Medical Care Survey: 2015 Emergency Department Summary Tables. Available at: https://www.cdc.gov/nchs/data/nhamcs/web_tables/2015_ed_web_tables.pdf. Accessed Jun 15, 2018.
dc.identifier.citedreferenceNational Hospital Ambulatory Medical Care Survey: 2014 State and National Summary Tables. Available at: https://www.cdc.gov/nchs/data/ahcd/namcs_summary/2014_namcs_web_tables.pdf. Accessed Jun 15, 2018.
dc.identifier.citedreferenceAgency for Heathcare Research and Quality. Trends in Hospital Inpatient Stays by Age and Payer, 2000–2015. Available at: https://www.hcup-us.ahrq.gov/reports/statbriefs/sb235-Inpatient-Stays-Age-Payer-Trends.pdf. Accessed Jun 15, 2018.
dc.identifier.citedreferencePines JM, Lotrecchiano GR, Zocchi MS, et al. A conceptual model for episodes of acute, unscheduled care. Ann Emerg Med 2016; 68: 484 – 91.
dc.identifier.citedreferenceGalarraga JE, Pines JM. Costs of ED episodes of care in the United States. Am J Emerg Med 2016; 34: 357 – 65.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.