Show simple item record

Self‐Healing Supramolecular Hydrogels for Tissue Engineering Applications

dc.contributor.authorSaunders, Laura
dc.contributor.authorMa, Peter X.
dc.date.accessioned2019-02-12T20:24:56Z
dc.date.available2020-03-03T21:29:36Zen
dc.date.issued2019-01
dc.identifier.citationSaunders, Laura; Ma, Peter X. (2019). "Self‐Healing Supramolecular Hydrogels for Tissue Engineering Applications." Macromolecular Bioscience 19(1): n/a-n/a.
dc.identifier.issn1616-5187
dc.identifier.issn1616-5195
dc.identifier.urihttps://hdl.handle.net/2027.42/147853
dc.description.abstractSelf‐healing supramolecular hydrogels have emerged as a novel class of biomaterials that combine hydrogels with supramolecular chemistry to develop highly functional biomaterials with advantages including native tissue mimicry, biocompatibility, and injectability. These properties are endowed by the reversibly cross‐linked polymer network of the hydrogel. These hydrogels have great potential for realizing yet to be clinically translated tissue engineering therapies. This review presents methods of self‐healing supramolecular hydrogel formation and their uses in tissue engineering as well as future perspectives.Self‐healing supramolecular hydrogels are a novel class of biomaterials that offer unique advantages in tissue engineering. This review describes important methods of supramolecular hydrogel formation as well as recent advances and emerging applications of these hydrogels in regenerative medicine.
dc.publisherElsevier
dc.publisherWiley Periodicals, Inc.
dc.subject.otherself‐healing
dc.subject.othersupramolecular
dc.subject.othertissue engineering
dc.subject.otherhydrogels
dc.subject.otherbiomaterials
dc.titleSelf‐Healing Supramolecular Hydrogels for Tissue Engineering Applications
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147853/1/mabi201800313_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147853/2/mabi201800313.pdf
dc.identifier.doi10.1002/mabi.201800313
dc.identifier.sourceMacromolecular Bioscience
dc.identifier.citedreferenceP. Zhang, A. G. Cheetham, Y. A. Lin, H. Cui, ACS Nano 2013, 7, 5965.
dc.identifier.citedreferenceJ. Li, X. Li, X. Ni, X. Wang, H. Li, K. W. Leong, Biomaterials 2006, 27, 4132.
dc.identifier.citedreferenceB. Jeong, Y. H. Bae, D. S. Lee, S. W. Kim, Nature 1997, 388, 860.
dc.identifier.citedreferenceJ. Zhang, T. Tokatlian, J. Zhong, Q. K. T. Ng, M. Patterson, W. E. Lowry, S. T. Carmichael, T. Segura, Adv. Mater. 2011, 23, 5098.
dc.identifier.citedreferenceR. Murphy, D. P. Walsh, C. A. Hamilton, S. A. Cryan, M. In Het Panhuis, A. Heise, Biomacromolecules 2018, 19, 2691.
dc.identifier.citedreferenceS. Zhu, S. Li, H. Escuin‐Ordinas, R. Dimatteo, W. Xi, A. Ribas, T. Segura, J. Controlled Release 2018, 282, 156.
dc.identifier.citedreferenceC. K. Kuo, P. X. Ma, Biomaterials 2001, 22, 511.
dc.identifier.citedreferenceScaffolding in Tissue Engineering (Eds: P. X. Ma, J. Elisseeff ), CRC Press, Boca Raton, FL 2005.
dc.identifier.citedreferenceH. Park, S. W. Kang, B. S. Kim, D. J. Mooney, K. Y. Lee, Macromol. Biosci. 2009, 9, 895.
dc.identifier.citedreferenceY. Hori, A. M. Winans, C. C. Huang, E. M. Horrigan, D. J. Irvine, Biomaterials 2008, 29, 3671.
dc.identifier.citedreferenceL. Zhao, M. D. Weir, H. H. K. Xu, Biomaterials 2010, 31, 6502.
dc.identifier.citedreferenceC. K. Kuo, P. X. Ma, J. Biomed. Mater. Res., Part A 2008, 84A, 899.
dc.identifier.citedreferenceZ. Ren, Y. Zhang, Y. Li, B. Xu, W. Liu, J. Mater. Chem. B 2015, 3, 6347.
dc.identifier.citedreferenceJ. Y. Sun, X. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, Z. Suo, Nature 2012, 489, 133.
dc.identifier.citedreferenceH. Park, E. K. Woo, K. Y. Lee, J. Controlled Release 2014, 196, 146.
dc.identifier.citedreferenceY. L. Han, Y. Yang, S. Liu, J. Wu, Y. Chen, T. J. Lu, F. Xu, Biofabrication 2013, 5.
dc.identifier.citedreferenceQ. Wang, J. L. Mynar, M. Yoshida, E. Lee, M. Lee, K. Okuro, K. Kinbara, T. Aida, Nature 2010, 463, 339.
dc.identifier.citedreferenceK. L. Haas, K. J. Franz, Chem. Rev. 2009, 109, 4921.
dc.identifier.citedreferenceJ. W. Steed, J. L. Atwood, Supramolecular Chemistry, Wiley, Chichester, UK 2000.
dc.identifier.citedreferenceD. E. Fullenkamp, L. He, D. G. Barrett, W. R. Burghardt, P. B. Messersmith, Macromolecules 2013, 46, 1167.
dc.identifier.citedreferenceS. Varghese, A. Lele, R. Mashelkar, J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 666.
dc.identifier.citedreferenceR. Hogg, R. G. Wilkins, presented at Int. Conf. Coordination Chemistry, Detroit, 1962.
dc.identifier.citedreferenceN. Holten‐Andersen, M. J. Harrington, H. Birkedal, B. P. Lee, P. B. Messersmith, K. Y. C. Lee, J. H. Waite, Proc. Natl. Acad. Sci. USA 2011, 108, 2651.
dc.identifier.citedreferenceC. Wang, R. J. Stewart, J. Kopeček, Nature 1999, 397, 417.
dc.identifier.citedreferenceQ. Tang, D. Zhao, Q. Zhou, H. Yang, K. Peng, X. Zhang, Macromol. Rapid Commun. 2018, 39, 1800109.
dc.identifier.citedreferenceH. Hofmeier, R. Hoogenboom, M. E. L. Wouters, U. S. Schubert, J. Am. Chem. Soc. 2005, 127, 2913.
dc.identifier.citedreferenceY. Shi, M. Wang, C. Ma, Y. Wang, X. Li, G. Yu, Nano Lett. 2015, 15, 6276.
dc.identifier.citedreferenceJ. P. Vacanti, R. Langer, Lancet 1999, 354, S32.
dc.identifier.citedreferenceN. A. Peppas, J. Z. Hilt, A. Khademhosseini, R. Langer, Adv. Mater. 2006, 18, 1345.
dc.identifier.citedreferenceE. Caló, V. V. Khutoryanskiy, Eur. Polym. J. 2015, 65, 252.
dc.identifier.citedreferenceO. Wichterle, D. Lím, Nature 1960, 185, 117.
dc.identifier.citedreferenceK. Y. Lee, D. J. Mooney, Chem. Rev. 2001, 101, 1869.
dc.identifier.citedreferenceT. A. Telemeco, C. Ayres, G. L. Bowlin, G. E. Wnek, E. D. Boland, N. Cohen, C. M. Baumgarten, J. Mathews, D. G. Simpson, Acta Biomater. 2005, 1, 377.
dc.identifier.citedreferenceR. J. Wojtecki, M. A. Meador, S. J. Rowan, Nat. Mater. 2011, 10, 14.
dc.identifier.citedreferenceH. Wang, S. C. Heilshorn, Adv. Mater. 2015, 27, 3717.
dc.identifier.citedreferenceA. M. Rosales, K. S. Anseth, Nat. Rev. Mater. 2016, 1, 1.
dc.identifier.citedreferenceB. J. Adzima, C. J. Kloxin, C. N. Bowman, Adv. Mater. 2010, 22, 2784.
dc.identifier.citedreferenceX. Chen, M. A. Dam, K. Ono, A. Mal, H. Shen, S. R. Nutt, K. Sheran, F. Wudl, Science 2002, 295, 1698.
dc.identifier.citedreferenceJ. Wu, Z. G. Su, G. H. Ma, Int. J. Pharm. 2006, 315, 1.
dc.identifier.citedreferenceR. Zhang, M. Tang, A. Bowyer, R. Eisenthal, J. Hubble, Biomaterials 2005, 26, 4677.
dc.identifier.citedreferenceA. M. Kloxin, M. W. Tibbitt, K. S. Anseth, Nat. Protoc. 2010, 5, 1867.
dc.identifier.citedreferenceB. D. Fairbanks, S. P. Singh, C. N. Bowman, K. S. Anseth, Macromolecules 2011, 44, 2444.
dc.identifier.citedreferenceL. Angeles, C. Boulder, Science 2009, 324, 59.
dc.identifier.citedreferenceT. F. Scott, A. D. Schneider, W. D. Cook, C. N. Bowman, Science 2005, 308, 1615.
dc.identifier.citedreferenceS. J. Rowan, S. J. Cantrill, G. R. L. Cousins, J. K. M. Sanders, J. F. Stoddart, Angew. Chem., Int. Ed. 2002, 41, 898.
dc.identifier.citedreferenceJ. Qu, X. Zhao, P. X. Ma, B. Guo, Acta Biomater. 2017, 58, 168.
dc.identifier.citedreferenceE. A. Appel, J. del Barrio, X. J. Loh, O. A. Scherman, Chem. Soc. Rev. 2012, 41, 6195.
dc.identifier.citedreferenceM. P. Lutolf, Nat. Publ. Gr. 2009, 8, 451.
dc.identifier.citedreferenceY. Jin, C. Yu, R. J. Denman, W. Zhang, Chem. Soc. Rev. 2013, 42, 6634.
dc.identifier.citedreferenceN. Boehnke, C. Cam, E. Bat, T. Segura, H. D. Maynard, Biomacromolecules 2015, 16, 2101.
dc.identifier.citedreferenceD. D. McKinnon, D. W. Domaille, J. N. Cha, K. S. Anseth, Adv. Mater. 2014, 26, 865.
dc.identifier.citedreferenceT. Hozumi, T. Kageyama, S. Ohta, J. Fukuda, T. Ito, Biomacromolecules 2018, 19, 288.
dc.identifier.citedreferenceL. Shi, H Carstensen, K. Holzl, M. Lunzer, H. Li, J. Hilborn, A. Ovsianikov, D. A. Ossipov, Chem. Mater. 2017, 29, 5816.
dc.identifier.citedreferenceL. L. Wang, C. B. Highley, Y. C. Yeh, J. H. Galarraga, S. Uman, J. A. Burdick, J. Biomed. Mater. Res., Part A 2018, 106, 865.
dc.identifier.citedreferenceR. Dong, Y. Pang, Y. Su, X. Zhu, Biomater. Sci. 2015, 3, 937.
dc.identifier.citedreferenceM. J. Webber, E. A. Appel, E. W. Meijer, R. Langer, Nat. Mater. 2016, 15, 13.
dc.identifier.citedreferenceS. Seiffert, J. Sprakel, Chem. Soc. Rev. 2012, 41, 909.
dc.identifier.citedreferenceR. P. Sijbesma, F. H. Beijer, L. Brunsveld, B. J. B. Folmer, J. H. K. K. Hirschberg, Science 1997, 278, 1601.
dc.identifier.citedreferenceJ.‐M. Lehn, Angew. Chem., Int. Ed. Engl. 1988, 27, 89.
dc.identifier.citedreferenceT. Aida, E. W. Meijer, S. I. Stupp, Science 2012, 335, 813.
dc.identifier.citedreferenceR. Dong, Y. Zhou, X. Huang, X. Zhu, Y. Lu, J. Shen, Adv. Mater. 2015, 27, 498.
dc.identifier.citedreferenceS. Hou, P. X. Ma, Chem. Mater. 2015, 27, 7627.
dc.identifier.citedreferenceR. Langer, D. A. Tirrell, Nature 2004, 428, 487.
dc.identifier.citedreferenceS. R. Caliari, J. A. Burdick, Nat. Methods 2016, 13, 405.
dc.identifier.citedreferenceG. Chan, D. J. Mooney, Trends Biotechnol. 2008, 26, 382.
dc.identifier.citedreferenceB. D. Hoffman, C. Grashoff, M. A. Schwartz, Nature 2011, 475, 316.
dc.identifier.citedreferenceA. J. Engler, S. Sen, H. L. Sweeney, D. E. Discher, Cell 2006, 126, 677.
dc.identifier.citedreferenceP. X. Ma, Adv. Drug Delivery Rev. 2008, 60, 184.
dc.identifier.citedreferenceP. X. Ma, Mater. Today 2004, 7, 30.
dc.identifier.citedreferenceM. P. Lutolf, J. L. Lauer‐Fields, H. G. Schmoekel, A. T. Metters, F. E. Weber, G. B. Fields, J. A. Hubbell, Proc. Natl. Acad. Sci. USA 2003, 100, 5413.
dc.identifier.citedreferenceA. H. Zisch, M. P. Lutolf, J. A. Hubbell, Cardiovasc. Pathol. 2003, 12, 295.
dc.identifier.citedreferenceC. Chung, M. Beecham, R. L. Mauck, J. A. Burdick, Biomaterials 2009, 30, 4287.
dc.identifier.citedreferenceA. Phadke, C. Zhang, B. Arman, C.‐C. Hsu, R. A. Mashelkar, A. K. Lele, M. J. Tauber, G. Arya, S. Varghese, Proc. Natl. Acad. Sci. USA 2012, 109, 4383.
dc.identifier.citedreferenceR. Dong, X. Zhao, B. Guo, P. X. Ma, ACS Appl. Mater. Interfaces 2016, 8, 17138.
dc.identifier.citedreferenceS. Hou, X. Wang, S. Park, X. Jin, P. X. Ma, Adv. Healthcare Mater. 2015, 4, 1491.
dc.identifier.citedreferenceS. R. White, B. J. Blaiszik, S. L. B. Kramer, S. C. Olugebefola, J. S. Moore, N. R. Sottos, Am. Sci. 2011, 99, 392.
dc.identifier.citedreferenceJ. A. Burdick, K. S. Anseth, Biomaterials 2002, 23, 4315.
dc.identifier.citedreferenceY. Wang, C. K. Adokoh, R. Narain, Expert Opin. Drug Delivery 2018, 15, 77.
dc.identifier.citedreferenceY. H. Roh, R. C. H. Ruiz, S. Peng, J. B. Lee, D. Luo, Chem. Soc. Rev. 2011, 40, 5730.
dc.identifier.citedreferenceJ. H. K. K. Hirschberg, L. Brunsveid, A. Ramzi, J. A. J. M. Vekemans, R. P. Sijbesma, E. W. Meijer, Nature 2000, 407, 167.
dc.identifier.citedreferenceS. Keten, Z. Xu, B. Ihle, M. J. Buehler, Nat. Mater. 2010, 9, 359.
dc.identifier.citedreferenceM. G. Dobb, D. J. Johnson, B. P. Saville, J. Polym. Sci., Polym. Phys. Ed. 1977, 15, 2201.
dc.identifier.citedreferenceF. H. Beijer, R. P. Sijbesma, H. Kooijman, A. L. Spek, E. W. Meijer, J. Am. Chem. Soc. 1998, 120, 6761.
dc.identifier.citedreferenceF. H. Beijer, H. Kooijman, A. L. Spek, R. P. Sijbesma, E. W. Meijer, Angew. Chem., Int. Ed. 1998, 37, 75.
dc.identifier.citedreferenceO. J. G. M. Goor, S. I. S. Hendrikse, P. Y. W. Dankers, E. W. Meijer, Chem. Soc. Rev. 2017, 46, 6621.
dc.identifier.citedreferenceD. E. P. Muylaert, G. C. van Almen, H. Talacua, J. O. Fledderus, J. Kluin, S. I. S. Hendrikse, J. L. J. van Dongen, E. Sijbesma, A. W. Bosman, T. Mes, S. H. Thakkar, A. I. P. M. Smits, C. V. C. Bouten, P. Y. W. Dankers, M. C. Verhaar, Biomaterials 2016, 76, 187.
dc.identifier.citedreferenceC. T. S. Wong, P. Foo, J. Seok, W. Mulyasasmita, A. Parisi‐amon, S. C. Heilshorn, Proc. Natl. Acad. Sci. USA 2009, 106, 22067.
dc.identifier.citedreferenceP. Y. W. Dankers, T. M. Hermans, T. W. Baughman, Y. Kamikawa, R. E. Kieltyka, M. M. C. Bastings, H. M. Janssen, N. A. J. M. Sommerdijk, A. Larsen, M. J. A. Van Luyn, A. W. Bosman, E. R. Popa, G. Fytas, E. W. Meijer, Adv. Mater. 2012, 24, 2703.
dc.identifier.citedreferenceR. F. M. Lange, M. van Gurp, E. W. Meijer, J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 3657.
dc.identifier.citedreferenceG. B. W. L. Ligthart, H. Ohkawa, R. P. Sijbesma, E. W. Meijer, J. Am. Chem. Soc. 2005, 127, 810.
dc.identifier.citedreferenceP. Y. W. Dankers, M. J. A. Van Luyn, A. Huizinga‐Van Der Vlag, A. H. Petersen, J. A. Koerts, A. W. Bosman, E. R. Popa, Eur. Polym. J. 2015, 72, 484.
dc.identifier.citedreferenceM. M. C. Bastings, S. Koudstaal, R. E. Kieltyka, Y. Nakano, A. C. H. Pape, D. A. M. Feyen, F. J. van Slochteren, P. A. Doevendans, J. P. G. Sluijter, E. W. Meijer, S. A. J. Chamuleau, P. Y. W. Dankers, Adv. Healthcare Mater. 2014, 3, 70.
dc.identifier.citedreferenceS. Koudstaal, M. M. C. Bastings, D. A. M. Feyen, C. D. Waring, F. J. Van Slochteren, P. Y. W. Dankers, D. Torella, J. P. G. Sluijter, B. Nadal‐Ginard, P. A. Doevendans, G. M. Ellison, S. A. J. Chamuleau, J. Cardiovasc. Transl. Res. 2014, 7, 232.
dc.identifier.citedreferenceT. V. Chirila, H. H. Lee, M. Oddon, M. M. L. Nieuwenhuizen, I. Blakey, T. M. Nicholson, J. Appl. Polym. Sci. 2014, 131, 1.
dc.identifier.citedreferenceM. H. Bakker, P. Y. W. Dankers, in Self‐assembling Biomaterials, Elsevier, New York 2018, 177.
dc.identifier.citedreferenceC. M. A. Leenders, T. Mes, M. B. Baker, M. M. E. Koenigs, P. Besenius, A. R. A. Palmans, E. W. Meijer, Mater. Horiz. 2014, 1, 116.
dc.identifier.citedreferenceC. M. A. Leenders, L. Albertazzi, T. Mes, M. M. E. Koenigs, A. R. A. Palmans, E. W. Meijer, Chem. Commun. 2013, 49, 1963.
dc.identifier.citedreferenceP. J. M. Stals, J. F. Haveman, A. R. A. Palmans, A. P. H. J. Schenning, J. Chem. Educ. 2009, 86, 230.
dc.identifier.citedreferenceX. Lou, R. P. M. Lafleur, C. M. A. Leenders, S. M. C. Schoenmakers, N. M. Matsumoto, M. B. Baker, J. L. J. Van Dongen, A. R. A. Palmans, E. W. Meijer, Nat. Commun. 2017, 9, 1.
dc.identifier.citedreferenceS. P. W. Wijnands, W. Engelen, R. P. M. Lafleur, E. W. Meijer, M. Merkx, Nat. Commun. 2018, https://doi.org/10.1038/s41467‐017‐02559‐0.
dc.identifier.citedreferenceL. Albertazzi, R. W. Van Der Hofstad, E. W. Meijer, Science 2014, 491, 10.
dc.identifier.citedreferenceM. B. Baker, R. P. J. Gosens, L. Albertazzi, N. M. Matsumoto, A. R. A. Palmans, E. W. Meijer, ChemBioChem 2016, 17, 207.
dc.identifier.citedreferenceM. H. Bakker, C. C. Lee, E. W. Meijer, P. Y. W. Dankers, L. Albertazzi, ACS Nano 2016, 10, 1845.
dc.identifier.citedreferenceZ. Wei, J. H. Yang, J. Zhou, F. Xu, M. Zrínyi, P. H. Dussault, Y. Osada, Y. M. Chen, Chem. Soc. Rev. 2014, 43, 8114.
dc.identifier.citedreferenceG. Chang, Y. Chen, Y. Li, S. Li, F. Huang, Y. Shen, A. Xie, Carbohydr. Polym. 2015, 122, 336.
dc.identifier.citedreferenceX. Ma, Y. Zhao, Chem. Rev. 2015, 115, 7794.
dc.identifier.citedreferenceJ. Zhang, P. X. Ma, Adv. Drug Delivery Rev. 2013, 65, 1215.
dc.identifier.citedreferenceM. E. Davis, M. E. Brewster, Nat. Rev. Drug Discovery 2004, 3, 1023.
dc.identifier.citedreferenceA. Villiers, Compt. Rend. Acad. Sci. 1891, 112, 536.
dc.identifier.citedreferenceF. Schardinger, Z. Untersuch. Nahr. u. Genussm. 1903, 6, 865.
dc.identifier.citedreferenceR. Challa, A. Ahuja, J. Ali, R. K. Khar, AAPS PharmSciTech 2005, 6, E329.
dc.identifier.citedreferenceF. Yuen, K. C. Tam, Soft Matter 2010, 6, 4613.
dc.identifier.citedreferenceW. Deng, H. Yamaguchi, Y. Takashima, A. Harada, Angew. Chem., Int. Ed. 2007, 46, 5144.
dc.identifier.citedreferenceC. B. Rodell, N. N. Dusaj, C. B. Highley, J. A. Burdick, Adv. Mater. 2016, 28, 8419.
dc.identifier.citedreferenceJ. Li, A. Harada, M. Kamachi, Polym. J. 1994, 26, 1019.
dc.identifier.citedreferenceG. Wenz, B. Keller, Angew. Chem., Int. Ed. Engl. 1992, 31, 197.
dc.identifier.citedreferenceM. Miyauchi, Y. Kawaguchi, A. Harada, J. Inclusion Phenom. 2004, 50, 57.
dc.identifier.citedreferenceJ. Li, NPG Asia Mater. 2010, 2, 112.
dc.identifier.citedreferenceJ. Li, X. Jun, Adv. Drug Delivery Rev. 2013, 25, 2849.
dc.identifier.citedreferenceT. Kakuta, Y. Takashima, M. Nakahata, M. Otsubo, H. Yamaguchi, A. Harada, Adv. Mater. 2013, 25, 2849.
dc.identifier.citedreferenceC. E. Kandow, P. C. Georges, P. A. Janmey, K. A. Beningo, Methods Cell Biol. 2007, 83, 29.
dc.identifier.citedreferenceZ. Wang, Y. Ren, Y. Zhu, L. Hao, Y. Chen, G. An, H. Wu, X. Shi, C. Mao, Angew. Chemie Int. Ed. 2018, 57, 9008.
dc.identifier.citedreferenceC. B. Rodell, J. W. MacArthur, Jr., S. M. Dorsey, R. J. Wade, L. L. Wang, Y. J. Woo, J. A. Burdick, Adv. Funct. Mater. 2015, 25, 636.
dc.identifier.citedreferenceX. Song, J. Li, in Functional Hydrogels as Biomaterials, Springer, Berlin, Heidelberg 2018, 12, 141.
dc.identifier.citedreferenceE. Khodaverdi, M. Gharechahi, M. Alibolandi, F. M. Tekie, B. Khashyarmanesh, F. Hadizadeh, Int. J. Pharm. Invest. 2016, 6, 78.
dc.identifier.citedreferenceC. B. Highley, C. B. Rodell, J. A. Burdick, Adv. Mater. 2015, 27, 5075.
dc.identifier.citedreferenceK. Miyamae, M. Nakahata, Y. Takashima, A. Harada, Angew. Chem., Int. Ed. 2015, 54, 8984.
dc.identifier.citedreferenceZ. Zheng, J. Hu, H. Wang, J. Huang, Y. Yu, Q. Zhang, Y. Cheng, ACS Appl. Mater. Interfaces 2017, 9, 24511.
dc.identifier.citedreferenceM. Nakahata, Y. Takashima, H. Yamaguchi, A. Harada, Nat. Commun. 2011, 2, 511.
dc.identifier.citedreferenceX. Song, Y. Wen, J. ling Zhu, F. Zhao, Z. X. Zhang, J. Li, Biomacromolecules 2016, 17, 3957.
dc.identifier.citedreferenceJ. E. Mealy, C. B. Rodell, J. A. Burdick, J. Mater. Chem. B 2015, 3, 8010.
dc.identifier.citedreferenceK. Peng, I. Tomatsu, A. Kros, Chem. Commun. 2010, 46, 4094.
dc.identifier.citedreferenceA. Harada, Y. Takashima, M. Nakahata, Acc. Chem. Res. 2014, 47, 2128.
dc.identifier.citedreferenceL. Peng, H. Zhang, A. Feng, M. Huo, Z. Wang, J. Hu, W. Gao, J. Yuan, Polym. Chem. 2015. 6, 3652.
dc.identifier.citedreferenceH. Chen, X. Ma, S. Wu, H. Tian, Angew. Chem. 2014, 126, 14373.
dc.identifier.citedreferenceR. Dong, Y. Liu, Y. Zhou, D. Yan, X. Zhu, Polym. Chem. 2011, 2, 2771.
dc.identifier.citedreferenceS. Yagai, A. Kitamura, Chem. Soc. Rev. 2008, 37, 1520.
dc.identifier.citedreferenceG. M. Whitesides, B. Grzybowski, Science. 2002, 295, 2418.
dc.identifier.citedreferenceA. Lupas, Methods Enzymol. 1996, 266, 513.
dc.identifier.citedreferenceG. F. Smith, in Progress in Medicinal Chemistry, Elsevier 2009, 48, 1.
dc.identifier.citedreferenceM. Mihajlovic, M. Staropoli, M. S. Appavou, H. M. Wyss, W. Pyckhout‐Hintzen, R. P. Sijbesma, Macromolecules 2017, 50, 3333.
dc.identifier.citedreferenceD. C. Tuncaboylu, M. Sari, W. Oppermann, O. Okay, Macromolecules 2011, 44, 4997.
dc.identifier.citedreferenceW. A. Petka, J. L. Harden, K. P. McGrath, D. Wirtz, D. A. Tirrell, Science 1998, 281, 389.
dc.identifier.citedreferenceG. Fichman, E. Gazit, Acta Biomater. 2014, 10, 1671.
dc.identifier.citedreferenceK. M. Galler, A. Cavender, V. Yuwono, H. Dong, S. Shi, G. Schmalz, J. D. Hartgerink, R. N. D’Souza, Tissue Eng., Part A 2008, 14, 2051.
dc.identifier.citedreferenceJ. Huang, S. V. Gräter, F. Corbellini, S. Rinck, E. Bock, R. Kemkemer, H. Kessler, J. Ding, J. P. Spatz, Nano Lett. 2009, 9, 1111.
dc.identifier.citedreferenceA. P. Nowak, V. Breedveld, L. Pakstis, B. Ozbas, D. J. Pine, T. J. Deming, Nature 2002, 417, 424.
dc.identifier.citedreferenceR. S. Jacob, D. Ghosh, P. K. Singh, S. K. Basu, N. N. Jha, S. Das, P. K. Sukul, S. Patil, S. Sathaye, A. Kumar, A. Chowdhury, S. Malik, S. Sen, S. K. Maji, Biomaterials 2015, 54, 97.
dc.identifier.citedreferenceS. Ustun Yaylaci, M. Sardan Ekiz, E. Arslan, N. Can, E. Kilic, H. Ozkan, I. Orujalipoor, S. Ide, A. B. Tekinay, M. O. Guler, Biomacromolecules 2016, 17, 679.
dc.identifier.citedreferenceM. Ikeda, T. Tanida, T. Yoshii, K. Kurotani, S. Onogi, K. Urayama, I. Hamachi, Nat. Chem. 2014, 6, 511.
dc.identifier.citedreferenceS. S. Lee, E. L. Hsu, M. Mendoza, J. Ghodasra, M. S. Nickoli, A. Ashtekar, M. Polavarapu, J. Babu, R. M. Riaz, J. D. Nicolas, D. Nelson, S. Z. Hashmi, S. R. Kaltz, J. S. Earhart, B. R. Merk, J. S. Mckee, S. F. Bairstow, R. N. Shah, W. K. Hsu, S. I. Stupp, Adv. Healthcare Mater. 2015, 4, 131.
dc.identifier.citedreferenceA. Fernández‐Colino, F. J. Arias, M. Alonso, J. Carlos Rodríguez‐Cabello, Biomacromolecules 2014, 15, 3781.
dc.identifier.citedreferenceK. M. Galler, J. D. Hartgerink, A. C. Cavender, G. Schmalz, R. N. D’Souza, Tissue Eng., Part A 2012, 18, 176.
dc.identifier.citedreferenceK. M. Galler, L. Aulisa, K. R. Regan, R. N. D’Souza, J. D. Hartgerink, J. Am. Chem. Soc. 2010, 132, 3217.
dc.identifier.citedreferenceK. A. Black, B. F. Lin, E. A. Wonder, S. S. Desai, E. J. Chung, B. D. Ulery, R. S. Katari, M. V. Tirrell, Tissue Eng., Part A 2015, 21, 1333.
dc.identifier.citedreferenceH. Hosseinkhani, M. Hosseinkhani, A. Khademhosseini, H. Kobayashi, Y. Tabata, Biomaterials 2006, 27, 5836.
dc.identifier.citedreferenceJ. Hendriks, J. Riesle, C. A. van Blitterswijk, J. Tissue Eng. Regener. Med. 2010, 4, 524.
dc.identifier.citedreferenceM. E. Padin‐Iruegas, Y. Misao, M. E. Davis, V. F. M. Segers, G. Esposito, T. Tokunou, K. Urbanek, T. Hosoda, M. Rota, P. Anversa, A. Leri, R. T. Lee, J. Kajstura, Circ. Res. 2010, 120, 876.
dc.identifier.citedreferenceJ. Kisiday, M. Jin, B. Kurz, H. Hung, C. Semino, S. Zhang, A. J. Grodzinsky, Proc. Natl. Acad. Sci. USA 2002, 99, 9996.
dc.identifier.citedreferenceT. J. Deming, Soft Matter 2005, 1, 28.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.