Show simple item record

Self‐healing encapsulation and controlled release of vaccine antigens from PLGA microparticles delivered by microneedle patches

dc.contributor.authorMazzara, J. Maxwell
dc.contributor.authorOchyl, Lukasz J.
dc.contributor.authorHong, Justin K. Y.
dc.contributor.authorMoon, James J.
dc.contributor.authorPrausnitz, Mark R.
dc.contributor.authorSchwendeman, Steven P.
dc.date.accessioned2019-02-12T20:25:03Z
dc.date.available2020-03-03T21:29:36Zen
dc.date.issued2019-01
dc.identifier.citationMazzara, J. Maxwell; Ochyl, Lukasz J.; Hong, Justin K. Y.; Moon, James J.; Prausnitz, Mark R.; Schwendeman, Steven P. (2019). "Self‐healing encapsulation and controlled release of vaccine antigens from PLGA microparticles delivered by microneedle patches." Bioengineering & Translational Medicine 4(1): 116-128.
dc.identifier.issn2380-6761
dc.identifier.issn2380-6761
dc.identifier.urihttps://hdl.handle.net/2027.42/147859
dc.description.abstractThere is an urgent need to reduce reliance on hypodermic injections for many vaccines to increase vaccination safety and coverage. Alternative approaches include controlled release formulations, which reduce dosing frequencies, and utilizing alternative delivery devices such as microneedle patches (MNPs). This work explores development of controlled release microparticles made of poly (lactic‐co‐glycolic acid) (PLGA) that stably encapsulate various antigens though aqueous active self‐healing encapsulation (ASE). These microparticles are incorporated into rapid‐dissolving MNPs for intradermal vaccination.PLGA microparticles containing Alhydrogel are loaded with antigens separate from microparticle fabrication using ASE. This avoids antigen expsoure to many stressors. The microparticles demonstrate bi‐phasic release, with initial burst of soluble antigen, followed by delayed release of Alhydrogel‐complexed antigen over approximately 2 months in vitro. For delivery, the microparticles are incorporated into MNPs designed with pedestals to extend functional microneedle length. These microneedles readily penetrate skin and rapidly dissolve to deposit microparticles intradermally. Microparticles remain in the tissue for extended residence, with MNP‐induced micropores resealing readily. In animal models, these patches generate robust immune responses that are comparable to conventional administration techniques. This lays the framework for a versatile vaccine delivery system that could be self‐applied with important logistical advantages over hypodermic injections.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othercontrolled release
dc.subject.otherPLGA
dc.subject.othervaccine delivery
dc.subject.othermicroneedles
dc.titleSelf‐healing encapsulation and controlled release of vaccine antigens from PLGA microparticles delivered by microneedle patches
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiomedical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147859/1/btm210103-sup-0001-supinfo.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147859/2/btm210103_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147859/3/btm210103.pdf
dc.identifier.doi10.1002/btm2.10103
dc.identifier.sourceBioengineering & Translational Medicine
dc.identifier.citedreferenceNaito S, Ito Y, Kiyohara T, Kataoka M, Ochiai M, Takada K. Antigen‐loaded dissolving microneedle array as a novel tool for percutaneous vaccination. Vaccine. 2012; 30 ( 6 ): 1191 ‐ 1197.
dc.identifier.citedreferenceMarrack P, McKee AS, Munks MW. Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol. 2009; 9 ( 4 ): 287 ‐ 293.
dc.identifier.citedreferenceShirodkar S, Hutchinson RL, Perry DL, White JL, Hem SL. Aluminum compounds used as adjuvants in vaccines. Pharm Res. 1990; 7 ( 12 ): 1282 ‐ 1288.
dc.identifier.citedreferenceJiang G, Joshi SB, Peek LJ, et al. Anthrax vaccine powder formulations for nasal mucosal delivery. J Pharm Sci. 2006; 95 ( 1 ): 80 ‐ 96.
dc.identifier.citedreferenceDemuth PC, Garcia‐Beltran WF, Ai‐Ling ML, Hammond PT, Irvine DJ. Composite dissolving microneedles for coordinated control of antigen and adjuvant delivery kinetics in transcutaneous vaccination. Adv Funct Mater. 2013; 23 ( 2 ): 161 ‐ 172.
dc.identifier.citedreferenceZaric M, Lyubomska O, Poux C, et al. Dissolving microneedle delivery of nanoparticle‐encapsulated antigen elicits efficient cross‐priming and Th1 immune responses by murine Langerhans cells. J Invest Dermatol. 2015; 135 ( 2 ): 425 ‐ 434.
dc.identifier.citedreferenceLarraneta E, McCrudden MT, Courtenay AJ, Donnelly RF. Microneedles: a new frontier in nanomedicine delivery. Pharm Res. 2016; 33 ( 5 ): 1055 ‐ 1073.
dc.identifier.citedreferenceChu LY, Choi SO, Prausnitz MR. Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: bubble and pedestal microneedle designs. J Pharm Sci. 2010; 99 ( 10 ): 4228 ‐ 4238.
dc.identifier.citedreferenceChu LY, Prausnitz MR. Separable arrowhead microneedles. J Control Release. 2011; 149 ( 3 ): 242 ‐ 249.
dc.identifier.citedreferenceChen MC, Huang SF, Lai KY, Ling MH. Fully embeddable chitosan microneedles as a sustained release depot for intradermal vaccination. Biomaterials. 2013; 34 ( 12 ): 3077 ‐ 3086.
dc.identifier.citedreferenceMorefield GL, Jiang D, Romero‐Mendez IZ, Geahlen RL, Hogenesch H, Hem SL. Effect of phosphorylation of ovalbumin on adsorption by aluminum‐containing adjuvants and elution upon exposure to interstitial fluid. Vaccine. 2005; 23 ( 12 ): 1502 ‐ 1506.
dc.identifier.citedreferenceHem SL, Hogen EH. Aluminum‐containing adjuvants: properties, formulation, and use. In: Singh M, ed. Vaccine Adjuvants and Delivery Systems. Hoboken, NJ: John Wiley & Sons; 2007: 81 ‐ 114.
dc.identifier.citedreferenceHansen B, Belfast M, Soung G, et al. Effect of the strength of adsorption of hepatitis B surface antigen to aluminum hydroxide adjuvant on the immune response. Vaccine. 2009; 27 ( 6 ): 888 ‐ 892.
dc.identifier.citedreferenceIyer S, Robinett RS, HogenEsch H, Hem SL. Mechanism of adsorption of hepatitis B surface antigen by aluminum hydroxide adjuvant. Vaccine. 2004; 22 ( 11–12 ): 1475 ‐ 1479.
dc.identifier.citedreferenceLee JW, Choi SO, Felner EI, Prausnitz MR. Dissolving microneedle patch for transdermal delivery of human growth hormone. Small. 2011; 7 ( 4 ): 531 ‐ 539.
dc.identifier.citedreferenceKalluri H, Kolli CS, Banga AK. Characterization of microchannels created by metal microneedles: formation and closure. AAPS J. 2011; 13 ( 3 ): 473 ‐ 481.
dc.identifier.citedreferenceDonnelly RF, Singh TR, Tunney MM, et al. Microneedle arrays allow lower microbial penetration than hypodermic needles in vitro. Pharm Res. 2009; 26 ( 11 ): 2513 ‐ 2522.
dc.identifier.citedreferenceGupta J, Gill HS, Andrews SN, Prausnitz MR. Kinetics of skin resealing after insertion of microneedles in human subjects. J Control Release. 2011; 154 ( 2 ): 148 ‐ 155.
dc.identifier.citedreferenceRovee DT, Maibach HI. The epidermis in wound healing. Boca Raton, FL: CRC Press; 2004.
dc.identifier.citedreferencePark JH, Allen MG, Prausnitz MR. Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Control Release. 2005; 104 ( 1 ): 51 ‐ 66.
dc.identifier.citedreferenceBailey B. Development and Characterization of Novel Self‐Encapsulating Poly(lactic‐co‐glycolic acid) Microspheres for Vaccine Delivery. Ph.D. thesis, University of Michigan, Ann Arbor, MI; 2016.
dc.identifier.citedreferenceClausen OP, Schjolberg AR. Turnover and maturation kinetics in regenerating mouse epidermis. Apmis. 1988; 96: 111 ‐ 119.
dc.identifier.citedreferenceStorni T, Kundig TM, Senti G, Johansen P. Immunity in response to particulate antigen‐delivery systems. Adv Drug Deliv Rev. 2005; 57 ( 3 ): 333 ‐ 355.
dc.identifier.citedreferenceEtheridge RD, Pesti GM, Foster EH. A comparison of nitrogen values obtained utilizing the Kjeldahl nitrogen and Dumas combustion methodologies (Leco CNS 2000) on samples typical of an animal nutrition analytical laboratory. Anim Feed Sci Tech. 1998; 73 ( 1–2 ): 21 ‐ 28.
dc.identifier.citedreferenceGlenn GM, Kenney RT. Mass vaccination: solutions in the skin. Curr Top Microbiol. 2006; 304: 247 ‐ 268.
dc.identifier.citedreferenceBelshe RB, Newman FK, Wilkins K, et al. Comparative immunogenicity of trivalent influenza vaccine administered by intradermal or intramuscular route in healthy adults. Vaccine. 2007; 25 ( 37–38 ): 6755 ‐ 6763.
dc.identifier.citedreferenceKoutsonanos DG, Compans RW, Skountzou I. Targeting the skin for microneedle delivery of influenza vaccine. Adv Exp Med Biol. 2013; 785: 121 ‐ 132.
dc.identifier.citedreferenceMarshall S, Sahm LJ, Moore AC. The success of microneedle‐mediated vaccine delivery into skin. Hum Vaccin Immunother. 2016; 12 ( 11 ): 2975 ‐ 2983.
dc.identifier.citedreferenceCleland JL. Single‐administration vaccines: controlled‐release technology to mimic repeated immunizations. Trends Biotechnol. 1999; 17 ( 1 ): 25 ‐ 29.
dc.identifier.citedreferenceKim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012; 64 ( 14 ): 1547 ‐ 1568.
dc.identifier.citedreferencePrausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008; 26 ( 11 ): 1261 ‐ 1268.
dc.identifier.citedreferenceNorman JJ, Arya JM, McClain MA, Frew PM, Meltzer MI, Prausnitz MR. Microneedle patches: usability and acceptability for self‐vaccination against influenza. Vaccine. 2014; 32: 1856 ‐ 1862.
dc.identifier.citedreferenceIndermun S, Luttge R, Choonara YE, et al. Current advances in the fabrication of microneedles for transdermal delivery. J Control Release. 2014; 185: 130 ‐ 138.
dc.identifier.citedreferenceLofthouse S. Immunological aspects of controlled antigen delivery. Adv Drug Deliv Rev. 2002; 54 ( 6 ): 863 ‐ 870.
dc.identifier.citedreferenceO’Hagan DT, Singh M, Gupta RK. Poly(lactide‐co‐glycolide) microparticles for the development of single‐dose controlled‐release vaccines. Adv Drug Deliv Rev. 1998; 32 ( 3 ): 225 ‐ 246.
dc.identifier.citedreferenceKohn J, Niemi SM, Albert EC, Murphy JC, Langer R, Fox JG. Single‐step immunization using a controlled release, biodegradable polymer with sustained adjuvant activity. J Immunol Methods. 1986; 95 ( 1 ): 31 ‐ 38.
dc.identifier.citedreferenceSanchez A, Gupta RK, Alonso MJ, Siber GR, Langer R. Pulsed controlled‐release system for potential use in vaccine delivery. J Pharm Sci. 1996; 85 ( 6 ): 547 ‐ 552.
dc.identifier.citedreferenceKemp JM, Kajihara M, Nagahara S, Sano A, Brandon M, Lofthouse S. Continuous antigen delivery from controlled release implants induces significant and anamnestic immune responses. Vaccine. 2002; 20 ( 7–8 ): 1089 ‐ 1098.
dc.identifier.citedreferenceJohansen P, Storni T, Rettig L, et al. Antigen kinetics determines immune reactivity. Proc Natl Acad Sci USA. 2008; 105 ( 13 ): 5189 ‐ 5194.
dc.identifier.citedreferenceWischke C, Schwendeman SP. Degradable polymeric carriers for parenteral controlled drug delivery. In: Siepmann J, Siegel RA, Rathbone MJ, eds. Fundamentals and Applications of Controlled Release Drug Delivery. Boston, MA: Springer US; 2012: 171 ‐ 228.
dc.identifier.citedreferenceSchwendeman SP, Costanitino HR, Gupta RK, Langer R. Peptide, protein, and vaccine delivery from implantable polymeric systems. In: Controlled Drug Delivery, Challenges and Strategies. Washington, DC: American Chemical Society; 1997: 229 ‐ 267.
dc.identifier.citedreferenceHoffman AS. The origins and evolution of "controlled" drug delivery systems. J Control Release. 2008; 132 ( 3 ): 153 ‐ 163.
dc.identifier.citedreferenceSchwendeman SP, Costantino HR, Gupta RK, Peptide LR. Protein, and vaccine delivery from implantable polymeric systems progress and challenges. In: Park K, ed. Controlled Drug delivery: Challenges and Strategies. Washington DC: American Chemical Society; 1997: 229 ‐ 267.
dc.identifier.citedreferenceSchwendeman SP. Recent advances in the stabilization of proteins encapsulated in injectable PLGA delivery systems. Crit Rev Ther Drug Carrier Syst. 2002; 19 ( 1 ): 73 ‐ 98.
dc.identifier.citedreferenceMaa YF, Hsu CC. Protein denaturation by combined effect of shear and air‐liquid interface. Biotechnol Bioeng. 1997; 54 ( 6 ): 503 ‐ 512.
dc.identifier.citedreferenceSah H. Protein behavior at the water/methylene chloride interface. J Pharm Sci. 1999; 88 ( 12 ): 1320 ‐ 1325.
dc.identifier.citedreferenceAlexander P, Hamilton LD, Stacey KA. Irradiation of proteins in the solid state. I. Aggregation and disorganization of secondary structure in bovine serum albumin. Radiat Res. 1960; 12: 510 ‐ 525.
dc.identifier.citedreferenceDesai KG, Schwendeman SP. Active self‐healing encapsulation of vaccine antigens in PLGA microspheres. J Control Release. 2013; 165 ( 1 ): 62 ‐ 74.
dc.identifier.citedreferenceShah RB, Schwendeman SP. A biomimetic approach to active self‐microencapsulation of proteins in PLGA. J Control Release. 2014; 196: 60 ‐ 70.
dc.identifier.citedreferenceReinhold SE, Desai KG, Zhang L, Olsen KF, Schwendeman SP. Self‐healing microencapsulation of biomacromolecules without organic solvents. Angew Chem Int Ed Engl. 2012; 51 ( 43 ): 10800 ‐ 10803.
dc.identifier.citedreferenceHuang J, Mazzara JM, Schwendeman SP, Thouless MD. Self‐healing of pores in PLGAs. J Control Release. 2015; 206: 20 ‐ 29.
dc.identifier.citedreferenceDonnelly RF, Raj Singh TR, Woolfson AD. Microneedle‐based drug delivery systems: microfabrication, drug delivery, and safety. Drug Deliv. 2010; 17 ( 4 ): 187 ‐ 207.
dc.identifier.citedreferencePark JH, Allen MG, Prausnitz MR. Polymer microneedles for controlled‐release drug delivery. Pharm Res. 2006; 23 ( 5 ): 1008 ‐ 1019.
dc.identifier.citedreferenceGill HS, Denson DD, Burris BA, Prausnitz MR. Effect of microneedle design on pain in human volunteers. Clin J Pain. 2008; 24 ( 7 ): 585 ‐ 594.
dc.identifier.citedreferenceHaq MI, Smith E, John DN, et al. Clinical administration of microneedles: skin puncture, pain and sensation. Biomed Microdevices. 2009; 11 ( 1 ): 35 ‐ 47.
dc.identifier.citedreferenceArya J, Prausnitz MR. Microneedle patches for vaccination in developing countries. J Control Release. 2016; 240: 135 ‐ 141.
dc.identifier.citedreferenceQuan FS, Kim YC, Vunnava A, et al. Intradermal vaccination with influenza virus‐like particles by using microneedles induces protection superior to that with intramuscular immunization. J Virol. 2010; 84 ( 15 ): 7760 ‐ 7769.
dc.identifier.citedreferenceKim YC, Quan FS, Compans RW, Kang SM, Prausnitz MR. Formulation and coating of microneedles with inactivated influenza virus to improve vaccine stability and immunogenicity. J Control Release. 2010; 142 ( 2 ): 187 ‐ 195.
dc.identifier.citedreferenceMazzara JM, Balagna MA, Thouless MD, Schwendeman SP. Healing kinetics of microneedle‐formed pores in PLGA films. J Control Release. 2013; 171 ( 2 ): 172 ‐ 177.
dc.identifier.citedreferenceBlasi P, D’Souza SS, Selmin F, DeLuca PP. Plasticizing effect of water on poly(lactide‐co‐glycolide). J Control Release. 2005; 108 ( 1 ): 1 ‐ 9.
dc.identifier.citedreferenceChampion JA, Walker A, Mitragotri S. Role of particle size in phagocytosis of polymeric microspheres. Pharm Res. 2008; 25 ( 8 ): 1815 ‐ 1821.
dc.identifier.citedreferenceBaylor NW, Egan W, Richman P. Aluminum salts in vaccines—US perspective. Vaccine. 2002; 20 ( suppl 3 ): S18 ‐ S23.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.