Show simple item record

Relative impact of indels versus SNPs on complex disease

dc.contributor.authorGagliano, Sarah A.
dc.contributor.authorSengupta, Sebanti
dc.contributor.authorSidore, Carlo
dc.contributor.authorMaschio, Andrea
dc.contributor.authorCucca, Francesco
dc.contributor.authorSchlessinger, David
dc.contributor.authorAbecasis, Gonçalo R.
dc.date.accessioned2019-02-12T20:25:12Z
dc.date.available2020-04-01T15:06:25Zen
dc.date.issued2019-02
dc.identifier.citationGagliano, Sarah A.; Sengupta, Sebanti; Sidore, Carlo; Maschio, Andrea; Cucca, Francesco; Schlessinger, David; Abecasis, Gonçalo R. (2019). "Relative impact of indels versus SNPs on complex disease." Genetic Epidemiology 43(1): 112-117.
dc.identifier.issn0741-0395
dc.identifier.issn1098-2272
dc.identifier.urihttps://hdl.handle.net/2027.42/147866
dc.description.abstractIt is unclear whether insertions and deletions (indels) are more likely to influence complex traits than abundant single‐nucleotide polymorphisms (SNPs). We sought to understand which category of variation is more likely to impact health. Using the SardiNIA study as an exemplar, we characterized 478,876 common indels and 8,246,244 common SNPs in up to 5,949 well‐phenotyped individuals from an isolated valley in Sardinia. We assessed association between 120 traits, resulting in 89 nonoverlapping‐associated loci.We evaluated whether indels were enriched among credible sets of potential causal variants. These credible sets included 1,319 SNPs and 88 indels. We did not find indels to be significantly enriched. Indels were the most likely causal variant in seven loci, including one locus associated with monocyte count where an indel with causality and mechanism previously demonstrated (rs200748895:TGCTG/T) had a 0.999 posterior probability. Overall, our results show a very modest and nonsignificant enrichment for common indels in associated loci.
dc.publisherWiley Periodicals, Inc.
dc.subject.othergenome‐wide association
dc.subject.othercomplex traits
dc.subject.otherinsertions and deletions (indels)
dc.titleRelative impact of indels versus SNPs on complex disease
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147866/1/gepi22175_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147866/2/gepi22175-sup-0001-Gagliano-Supplementary.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147866/3/gepi22175.pdf
dc.identifier.doi10.1002/gepi.22175
dc.identifier.sourceGenetic Epidemiology
dc.identifier.citedreferenceKang, H. M., Zhan, X., Sim, X., & Ma, C. (2012, November). EPACTS: A flexible and efficient sequence‐based genetic analysis software package. Paper presented at the 62nd Annual Meeting of The American Society of Human Genetics, San Francisco, CA.
dc.identifier.citedreferenceLek, M., Karczewski, K. J., Minikel, E. V., Samocha, K. E., Banks, E., Fennell, T., … MacArthur, D. G. ( 2016 ). Analysis of protein‐coding genetic variation in 60,706 humans. Nature, 536, 285 – 291. https://doi.org/10.1038/nature19057
dc.identifier.citedreferenceVoight, B. F., Kang, H. M., Ding, J., Palmer, C. D., Sidore, C., Chines, P. S., … Boehnke, M. ( 2012 ). The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genetics, 8, e1002793. https://doi.org/10.1371/journal.pgen.1002793
dc.identifier.citedreferenceTan, A., Abecasis, G. R., & Kang, H. M. ( 2015 ). Unified representation of genetic variants. Bioinformatics, 31 ( 13 ), 2202 – 2204. https://doi.org/10.1093/bioinformatics/btv112
dc.identifier.citedreferenceSteri, M., Orrù, V., Idda, M. L., Pitzalis, M., Pala, M., Zara, I., … Cucca, F. ( 2017 ). Overexpression of the cytokine BAFF and autoimmunity risk. N Engl J Med, 376, 1615 – 1626. https://doi.org/10.1056/NEJMoa1610528
dc.identifier.citedreferenceSingleton, A. B., et al. ( 2013 ). α‐Synuclein locus triplication causes Parkinson’s disease. Science, 302 ( 5646 ), 841 – 841. https://doi.org/10.1126/science.1090278
dc.identifier.citedreferenceSidore, C., Busonero, F., Maschio, A., Porcu, E., Naitza, S., Zoledziewska, M., … Abecasis, G. R. ( 2015 ). Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers. Nature Genetics, 47, 1272 – 1281. https://doi.org/10.1038/ng.3368.
dc.identifier.citedreferencePistis, G., Porcu, E., Vrieze, S. I., Sidore, C., Steri, M., Danjou, F., … Sanna, S. ( 2015 ). Rare variant genotype imputation with thousands of study‐specific whole‐genome sequences: Implications for cost‐effective study designs. European Journal of Human Genetics, 23, 975 – 983. https://doi.org/10.1038/ejhg.2014.216
dc.identifier.citedreferencePilia, G., Chen, W. M., Scuteri, A., Orrú, M., Albai, G., Dei, M., … Schlessinger, D. ( 2006 ). Heritability of cardiovascular and personality traits in 6,148 Sardinians. PLoS Genetics, 2 ( 8 ), e132. https://doi.org/10.1371/journal.pgen.0020132
dc.identifier.citedreferenceParkes, M., Cortes, A., van Heel, D. A., & Brown, M. A. ( 2013 ). Genetic insights into common pathways and complex relationships among immune‐mediated diseases. Nature Reviews Genetics, 14, 661 – 673. https://doi.org/10.1038/nrg3502
dc.identifier.citedreferenceMullaney, J. M., Mills, R. E., Pittard, W. S., & Devine, S. E. ( 2010 ). Small insertions and deletions (INDELs) in human genomes. Human Molecular Genetics, 19 ( R2 ), R131 – R136. https://doi.org/10.1093/hmg/ddq400
dc.identifier.citedreferenceMorgulis, A., Gertz, E. M., Schäffer, A. A., & Agarwala, R. ( 2006 ). A fast and symmetric DUST implementation to mask low‐complexity DNA sequences. Journal of Computational Biology, 13 ( 5 ), 1028 – 1040. https://doi.org/10.1089/cmb.2006.13.1028
dc.identifier.citedreferenceMontgomery, S. B., Goode, D. L., Kvikstad, E., Albers, C. A., Zhang, Z. D., Mu, X. J., … Lunter, G. ( 2013 ). The origin, evolution, and functional impact of short insertion‐deletion variants identified in 179 human genomes. Genome Research, 23 ( 5 ), 749 – 761 https://doi.org/10.1101/gr.148718.112
dc.identifier.citedreferenceMills, R. E., Luttig, C. T., Larkins, C. E., Beauchamp, A., Tsui, C., Pittard, W. S., & Devine, S. E. ( 2006 ). An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Research, 16 ( 9 ), 1182 – 1190. https://doi.org/10.1101/gr.4565806
dc.identifier.citedreferenceMedvedev, P., Stanciu, M., & Brudno, M. ( 2009 ). Computational methods for discovering structural variation with next‐generation sequencing. Nature Methods, 6, S13 – S20. https://doi.org/10.1038/nmeth.1374
dc.identifier.citedreferenceMcLaren, W., Pritchard, B., Rios, D., Chen, Y., Flicek, P., & Cunningham, F. ( 2010 ). Deriving the consequences of genomic variants with the ensembl API and SNP effect predictor. Bioinformatics, 26, 2069 – 2070. https://doi.org/10.1093/bioinformatics/btq330
dc.identifier.citedreferenceMcCarthy, S., et al. ( 2016 ). A reference panel of 64,976 haplotypes for genotype imputation. Nature Genetics, 48, 1279 – 1283. https://doi.org/10.1038/ng.3643
dc.identifier.citedreferenceLoewe, L. ( 2008 ). Genetic mutation. Nature Education, 1 ( 1 ), 113.
dc.identifier.citedreferenceLench, N., Barrett, A., Fielding, S., McKay, F., Hill, M., Jenkins, L., … Chitty, L. S. ( 2013 ). The clinical implementation of non‐invasive prenatal diagnosis for single‐gene disorders: Challenges and progress made. Prenatal Diagnosis, 33, 555 – 562. https://doi.org/10.1002/pd.4124
dc.identifier.citedreferencede la Chaux, N., Messer, P. W., & Arndt, P. F. ( 2007 ). DNA indels in coding regions reveal selective constraints on protein evolution in the human lineage. BMC Evolutionary Biology, 7, 191. https://doi.org/10.1186/1471‐2148‐7‐191
dc.identifier.citedreferenceDas, S., Forer, L., Schönherr, S., Sidore, C., Locke, A. E., Kwong, A., … Fuchsberger, C. ( 2016 ). Next‐generation genotype imputation service and methods. Nature Genetics, 48, 1284 – 1287. https://doi.org/10.1038/ng.3656
dc.identifier.citedreferenceHarrow, J., Frankish, A., Gonzalez, J. M., Tapanari, E., Diekhans, M., Kokocinski, F., … Hubbard, T. J. ( 2012 ). GENCODE: The reference human genome annotation for The ENCODE Project. Genome Research, 22 ( 9 ), 1760 – 1774. https://doi.org/10.1101/gr.135350.111
dc.identifier.citedreferenceKang, H. M., Sul, J. H., Service, S. K., Zaitlen, N. A., Kong, S., Freimer, N. B., … Eskin, E. ( 2010 ). Variance component model to account for sample structure in genome‐wide association studies. Nature Genetics, 42, 348 – 354. https://doi.org/10.1038/ng.548
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.