Show simple item record

Evaluating Single Spacecraft Observations of Planetary Magnetotails With Simple Monte Carlo Simulations: 2. Magnetic Flux Rope Signature Selection Effects

dc.contributor.authorSmith, A. W.
dc.contributor.authorJackman, C. M.
dc.contributor.authorFrohmaier, C. M.
dc.contributor.authorFear, R. C.
dc.contributor.authorSlavin, J. A.
dc.contributor.authorCoxon, J. C.
dc.date.accessioned2019-02-12T20:25:23Z
dc.date.available2020-02-03T20:18:25Zen
dc.date.issued2018-12
dc.identifier.citationSmith, A. W.; Jackman, C. M.; Frohmaier, C. M.; Fear, R. C.; Slavin, J. A.; Coxon, J. C. (2018). "Evaluating Single Spacecraft Observations of Planetary Magnetotails With Simple Monte Carlo Simulations: 2. Magnetic Flux Rope Signature Selection Effects." Journal of Geophysical Research: Space Physics 123(12): 10,124-10,138.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/147874
dc.description.abstractA Monte Carlo method of investigating the effects of placing selection criteria on the magnetic signature of in situ encounters with flux ropes is presented. The technique is applied to two recent flux rope surveys of MESSENGER data within the Hermean magnetotail. It is found that the different criteria placed upon the signatures will preferentially identify slightly different subsets of the underlying population. Quantifying the selection biases first allows the distributions of flux rope parameters to be corrected, allowing a more accurate estimation of the intrinsic distributions. This is shown with regard to the distribution of flux rope radii observed. When accounting for the selection criteria, the mean radius of Hermean magnetotail quasi‐force‐free flux ropes is found to be 589−269+273 km. Second, it is possible to weight the known identifications in order to determine a rate of recurrence that accounts for the presence of the structures that will not be identified. In the case of the Hermean magnetotail, the average rate of quasi‐force‐free flux ropes is found to 0.12 min−1 when selection effects are accounted for (up from 0.05 min−1 previously inferred from observations). Key PointsA Monte Carlo method is presented to estimate and correct for sampling biases in spacecraft surveys of magnetic flux ropesMethod allows the correction of observed distributions (e.g., flux rope radii) according to the selection criteria employedAccounting for unidentified flux ropes increases the average rate of flux ropes in Mercury’s magnetotail from 0.05 to 0.12 min−1
dc.publisherWiley Periodicals, Inc.
dc.subject.otherflux ropes
dc.subject.otherMercury
dc.subject.othermagnetotail
dc.subject.otherreconnection
dc.subject.otherMonte Carlo
dc.subject.otherMESSENGER
dc.titleEvaluating Single Spacecraft Observations of Planetary Magnetotails With Simple Monte Carlo Simulations: 2. Magnetic Flux Rope Signature Selection Effects
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147874/1/jgra54690_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147874/2/jgra54690.pdf
dc.identifier.doi10.1029/2018JA025959
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSlavin, J. A., Owen, C. J., Kuznetsova, M. M., & Hesse, M. ( 1995 ). ISEE 3 observations of plasmoids with flux rope magnectic topologies. Geophysical Research Letters, 22 ( 15 ), 2061 – 2064. https://doi.org/10.1029/95GL01977
dc.identifier.citedreferencePriest, E. R. ( 1990 ). The equilibrium of magnetic flux ropes. Geophysical Monograph Series, 58, 1 – 22.
dc.identifier.citedreferenceVogt, M. F., Kivelson, M. G., Khurana, K. K., Joy, S. P., & Walker, R. J. ( 2010 ). Reconnection and flows in the Jovian magnetotail as inferred from magnetometer observations. Journal of Geophysical Research, 115, A06219. https://doi.org/10.1029/2009JA015098
dc.identifier.citedreferencePulkkinen, A., Rastätter, L., Kuznetsova, M., Singer, H., Balch, C., Weimer, D., Toth, G., Ridley, A., Gombosi, T., Wiltberger, M., Raeder, J., & Weigel, R. ( 2013 ). Community‐wide validation of geospace model ground magnetic field perturbation predictions to support model transition to operations. Space Weather, 11, 369 – 385. https://doi.org/10.1002/swe.20056
dc.identifier.citedreferenceRetinò, A., Nakamura, R., Vaivads, A., Khotyaintsev, Y., Hayakawa, T., Tanaka, K., Kasahara, S., Fujimoto, M., Shinohara, I., Eastwood, J. P., André, M., Baumjohann, W., Daly, P. W., Kronberg, E. A., & Cornilleau‐Wehrlin, N. ( 2008 ). Cluster observations of energetic electrons and electromagnetic fields within a reconnecting thin current sheet in the Earth’s magnetotail. Journal of Geophysical Research, 113, A12215. https://doi.org/10.1029/2008JA013511
dc.identifier.citedreferenceRussell, C., & Elphic, R. ( 1978 ). Initial ISEE magnetometer results: Magnetopause observations. Space Science Reviews, 22 ( 6 ), 681 – 715. https://doi.org/10.1007/BF00212619
dc.identifier.citedreferenceScholer, M. ( 1988 ). Magnetic flux transfer at the magnetopause based on single X line bursty reconnection. Geophysical Research Letters, 15 ( 4 ), 291 – 294. https://doi.org/10.1029/GL015i004p00291
dc.identifier.citedreferenceSibeck, D. G., Siscoe, G. L., Slavin, J. A., Smith, E. J., Bame, S. J., & Scarf, F. L. ( 1984 ). Magnetotail flux ropes. Geophysical Research Letters, 11 ( 10 ), 1090 – 1093. https://doi.org/10.1029/GL011i010p01090
dc.identifier.citedreferenceSlavin, J. A., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gold, R. E., Ho, G. C., Imber, S. M., Korth, H., Krimigis, S. M., McNutt, R. L., Raines, J. M., Sarantos, M., Schriver, D., Solomon, S. C., Trávníček, P., & Zurbuchen, T. H. ( 2012 ). MESSENGER and Mariner 10 flyby observations of magnetotail structure and dynamics at Mercury. Journal of Geophysical Research, 117, A01215. https://doi.org/10.1029/2011JA016900
dc.identifier.citedreferenceSlavin, J. A., Baker, D. N., Craven, J. D., Elphic, R. C., Fairfield, D. H., Frank, L. A., Galvin, A. B., Hughes, W. J., Manka, R. H., Mitchell, D. G., Richardson, I. G., Sanderson, T. R., Sibeck, D. J., Smith, E. J., & Zwickl, R. D. ( 1989 ). CDAW 8 observations of plasmoid signatures in the geomagnetic tail: An assessment. Journal of Geophysical Research, 94 ( A11 ), 15,153 – 15,175. https://doi.org/10.1029/JA094iA11p15153
dc.identifier.citedreferenceSlavin, J. A., Lepping, R. P., Gjerloev, J., Fairfield, D. H., Hesse, M., Owen, C. J., Moldwin, M. B., Nagai, T., Ieda, A., & Mukai, T. ( 2003 ). Geotail observations of magnetic flux ropes in the plasma sheet. Journal of Geophysical Research, 108 ( A1 ), 1015. https://doi.org/10.1029/2002JA009557
dc.identifier.citedreferenceSlavin, J. A., Smith, M. F., Mazur, E. L., Baker, D. N., Hones, E. W., Iyemori, T., & Greenstadt, E. W. ( 1993 ). ISEE 3 observations of traveling compression regions in the Earth’s magnetotail. Journal of Geophysical Research, 98 ( A9 ), 15,425 – 15,446. https://doi.org/10.1029/93JA01467
dc.identifier.citedreferenceSmith, A. W., Jackman, C. M., Frohmaier, C. M., Coxon, J. C., Slavin, J. A., & Fear, R. C. ( 2018 ). Evaluating single spacecraft observations of planetary magnetotails with simple Monte Carlo simulations: 1. Spatial distributions. Journal of Geophysical Research: Space Physics, 123. https://doi.org/10.1029/2018JA025958
dc.identifier.citedreferenceSmith, A. W., Jackman, C. M., & Thomsen, M. F. ( 2016 ). Magnetic reconnection in Saturn’s magnetotail: A comprehensive magnetic field survey. Journal of Geophysical Research: Space Physics, 121, 2984 – 3005. https://doi.org/10.1002/2015JA022005
dc.identifier.citedreferenceSmith, A. W., Slavin, J. A., Jackman, C. M., Fear, R. C., Poh, G. K., DiBraccio, G. A., Jasinski, J. M., & Trenchi, L. ( 2017 ). Automated force‐free flux rope identification. Journal of Geophysical Research: Space Physics, 122, 780 – 791. https://doi.org/10.1002/2016JA022994
dc.identifier.citedreferenceSmith, A. W., Slavin, J. A., Jackman, C. M., Poh, G. K., & Fear, R. C. ( 2017 ). Flux ropes in the Hermean magnetotail: Distribution, properties, and formation. Journal of Geophysical Research: Space Physics, 122, 8136 – 8153. https://doi.org/10.1002/2017JA024295
dc.identifier.citedreferenceSolomon, S. C., McNutt, R. L., Gold, R. E., & Domingue, D. L. ( 2007 ). MESSENGER mission overview. Space Science Reviews, 131 ( 1‐4 ), 3 – 39. https://doi.org/10.1007/s11214-007-9247-6
dc.identifier.citedreferenceStephenson, D. B., & Stephenson, D. B. ( 2000 ). Use of the “odds ratio” for diagnosing forecast skill. Weather and Forecasting, 15 ( 2 ), 221 – 232. https://doi.org/10.1175/1520-0434(2000)015<0221:UOTORF>2.0.CO;2
dc.identifier.citedreferenceSun, W. J., Fu, S. Y., Slavin, J. A., Raines, J. M., Zong, Q. G., Poh, G. K., & Zurbuchen, T. H. ( 2016 ). Spatial distribution of Mercury’s flux ropes and reconnection fronts: MESSENGER observations. Journal of Geophysical Research: Space Physics, 121, 7590 – 7607. https://doi.org/10.1002/2016JA022787
dc.identifier.citedreferenceTeh, W. L., Nakamura, T. K. M., Nakamura, R., Baumjohann, W., Russell, C. T., Pollock, C., Lindqvist, P. A., Ergun, R. E., Burch, J. L., Torbert, R. B., & Giles, B. L. ( 2017 ). Evolution of a typical ion‐scale magnetic flux rope caused by thermal pressure enhancement. Journal of Geophysical Research: Space Physics, 122, 2040 – 2050. https://doi.org/10.1002/2016JA023777
dc.identifier.citedreferenceVignes, D., Acuña, M., Connerney, J., Crider, D., Rème, H., & Mazelle, C. ( 2004 ). Magnetic flux ropes in the Martian atmosphere: Global characteristics. Space Science Reviews, 111 ( 1/2 ), 223 – 231. https://doi.org/10.1023/B:SPAC.0000032716.21619.f2
dc.identifier.citedreferenceWalsh, A. P., Fazakerley, A. N., Wilson, R. J., Alexeev, I. V., Henderson, P. D., Owen, C. J., Lucek, E., Carr, C., & Dandouras, I. ( 2007 ). Near‐simultaneous magnetotail flux rope observations with Cluster and Double Star. Annales Geophysicae, 25 ( 8 ), 1887 – 1897. https://doi.org/10.5194/angeo-25-1887-2007
dc.identifier.citedreferenceWang, R., Lu, Q., Nakamura, R., Huang, C., Du, A., Guo, F., Teh, W., Wu, M., Lu, S., & Wang, S. ( 2016 ). Coalescence of magnetic flux ropes in the ion diffusion region of magnetic reconnection. Nature Physics, 12 ( 3 ), 263 – 267. https://doi.org/10.1038/nphys3578
dc.identifier.citedreferenceZhao, Y., Wang, R., Lu, Q., Du, A., Yao, Z., & Wu, M. ( 2016 ). Coalescence of magnetic flux ropes observed in the tailward high‐speed flows. Journal of Geophysical Research: Space Physics, 121, 10,898 – 10,909. https://doi.org/10.1002/2016JA023526
dc.identifier.citedreferenceZhou, M., Ashour‐Abdalla, M., Deng, X., Pang, Y., Fu, H., Walker, R., Lapenta, G., Huang, S., Xu, X., & Tang, R. ( 2017 ). Observation of three‐dimensional magnetic reconnection in the terrestrial magnetotail. Journal of Geophysical Research: Space Physics, 122, 9513 – 9520. https://doi.org/10.1002/2017JA024597
dc.identifier.citedreferenceAkhavan‐Tafti, M., Slavin, J. A., Le, G., Eastwood, J. P., Strangeway, R. J., Russell, C. T., Nakamura, R., Baumjohann, W., Torbert, R. B., Giles, B. L., Gershman, D. J., & Burch, J. L. ( 2018 ). MMS examination of FTEs at the Earth’s subsolar magnetopause. Journal of Geophysical Research: Space Physics, 123, 1224 – 1241. https://doi.org/10.1002/2017JA024681
dc.identifier.citedreferenceAnderson, B. J., Acuña, M. H., Lohr, D. A., Scheifele, J., Raval, A., Korth, H., & Slavin, J. A. ( 2007 ). The magnetometer instrument on MESSENGER. Space Science Reviews, 131 ( 1‐4 ), 417 – 450. https://doi.org/10.1007/s11214-007-9246-7
dc.identifier.citedreferenceBorg, A. L., Taylor, M. G. G. T., & Eastwood, J. P. ( 2012 ). Observations of magnetic flux ropes during magnetic reconnection in the Earth’s magnetotail. Annales Geophysicae, 30 ( 1992 ), 761 – 773. https://doi.org/10.5194/angeo-30-761-2012
dc.identifier.citedreferenceBriggs, J. A., Brain, D. A., Cartwright, M. L., Eastwood, J. P., & Halekas, J. S. ( 2011 ). A statistical study of flux ropes in the Martian magnetosphere. Planetary and Space Science, 59 ( 13 ), 1498 – 1505. https://doi.org/10.1016/j.pss.2011.06.010
dc.identifier.citedreferenceBurlaga, L. F. ( 1988 ). Magnetic clouds and force‐free fields with constant alpha. Journal of Geophysical Research, 93 ( 7 ), 7217 – 7224. https://doi.org/10.1029/JA093iA07p07217
dc.identifier.citedreferenceDiBraccio, G. A., Slavin, J. A., Imber, S. M., Gershman, D. J., Raines, J. M., Jackman, C. M., Boardsen, S. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., McNutt, R. L., & Solomon, S. C. ( 2015 ). MESSENGER observations of flux ropes in Mercury’s magnetotail. Planetary and Space Science, 115, 77 – 89. https://doi.org/10.1016/j.pss.2014.12.016
dc.identifier.citedreferenceEastwood, J. P., Phan, T. D., Cassak, P. A., Gershman, D. J., Haggerty, C., Malakit, K., Shay, M. A., Mistry, R., Øieroset, M., Russell, C. T., Slavin, J. A., Argall, M. R., Avanov, L. A., Burch, J. L., Chen, L. J., Dorelli, J. C., Ergun, R. E., Giles, B. L., Khotyaintsev, Y., Lavraud, B., Lindqvist, P. A., Moore, T. E., Nakamura, R., Paterson, W., Pollock, C., Strangeway, R. J., Torbert, R. B., & Wang, S. ( 2016 ). Ion‐scale secondary flux ropes generated by magnetopause reconnection as resolved by MMS. Geophysical Research Letters, 43, 4716 – 4724. https://doi.org/10.1002/2016GL068747
dc.identifier.citedreferenceFear, R., Milan, S., Fazakerley, A., Owen, C., Asikainen, T., Taylor, M., Lucek, E., Reme, H., Dandouras, I., & Daly, P. ( 2007 ). Motion of flux transfer events: A test of the Cooling model. Annales de Geophysique, 25 ( 1978 ), 1669 – 1690. https://doi.org/10.5194/angeo-25-1669-2007
dc.identifier.citedreferenceFermo, R. L., Drake, J. F., & Swisdak, M. ( 2010 ). A statistical model of magnetic islands in a current layer. Citation: Physics of Plasmas, 17, 41075541. https://doi.org/10.1063/1.3286437
dc.identifier.citedreferenceFermo, R. L., Drake, J. F., Swisdak, M., & Hwang, K. J. ( 2011 ). Comparison of a statistical model for magnetic islands in large current layers with Hall MHD simulations and Cluster FTE observations. Journal of Geophysical Research, 116, A09226. https://doi.org/10.1029/2010JA016271
dc.identifier.citedreferenceHeidke, P. ( 1926 ). Berechnung Des Erfolges Und Der Güte Der Windstärkevorhersagen Im Sturmwarnungsdienst. Geografiska Annaler, 8 ( 4 ), 301 – 349. https://doi.org/10.1080/20014422.1926.11881138
dc.identifier.citedreferenceHughes, W. J., & Sibeck, D. G. ( 1987 ). On the 3‐dimensional structure of plasmoids. Geophysical Research Letters, 14 ( 6 ), 636 – 639. https://doi.org/10.1029/GL014i006p00636
dc.identifier.citedreferenceIeda, a., Machida, S., Mukai, T., Saito, Y., Yamamoto, T., Nishida, a., Terasawa, T., & Kokubun, S. ( 1998 ). Statistical analysis of the plasmoid evolution with Geotail observations. Journal of Geophysical Research, 103 ( A3 ), 4453. https://doi.org/10.1029/97JA03240
dc.identifier.citedreferenceImber, S. M., & Slavin, J. A. ( 2017 ). MESSENGER observations of magnetotail loading and unloading: Implications for substorms at Mercury. Journal of Geophysical Research: Space Physics, 122, 11,402 – 11,412. https://doi.org/10.1002/2017JA024332
dc.identifier.citedreferenceImber, S. M., Slavin, J. A., Auster, H. U., & Angelopoulos, V. ( 2011 ). A THEMIS survey of flux ropes and traveling compression regions: Location of the near‐Earth reconnection site during solar minimum. Journal of Geophysical Research, 116, A02201. https://doi.org/10.1029/2010JA016026
dc.identifier.citedreferenceJackman, C. M., Slavin, J. A., Kivelson, M. G., Southwood, D. J., Achilleos, N., Thomsen, M. F., Dibraccio, G. A., Eastwood, J. P., Freeman, M. P., Dougherty, M. K., & Vogt, M. F. ( 2014 ). Saturn’s dynamic magnetotail: A comprehensive magnetic field and plasma survey of plasmoids and traveling compression regions and their role in global magnetospheric dynamics. Journal of Geophysical Research: Space Physics, 119, 5465 – 5494. https://doi.org/10.1002/2013JA019388
dc.identifier.citedreferenceKawano, H., Kokubun, S., & Takahashi, K. ( 1992 ). Survey of transient magnetic field events in the dayside magnetosphere. Journal of Geophysical Research, 97 ( A7 ), 10,677 – 10,692. https://doi.org/10.1029/92JA00369
dc.identifier.citedreferenceKiehas, S. A., Angelopoulos, V., Runov, A., Moldwin, M. B., & Mstl, C. ( 2012 ). On the formation of tilted flux ropes in the Earth’s magnetotail observed with ARTEMIS. Journal of Geophysical Research, 117, A05231. https://doi.org/10.1029/2011JA017377
dc.identifier.citedreferenceLee, L. C., & Fu, Z. F. ( 1985 ). A theory of magnetic flux transfer at the Earth’s magnetopause. Geophysical Research Letters, 12 ( 2 ), 105 – 108. https://doi.org/10.1029/GL012i002p00105
dc.identifier.citedreferenceLepping, R. P., Jones, J. A., & Burlaga, L. F. ( 1990 ). Magnetic field structure of interplanetary magnetic clouds at 1 AU. Journal of Geophysical Research, 95 ( A8 ), 11,957 – 11,965. https://doi.org/10.1029/JA095iA08p11957
dc.identifier.citedreferenceLundquist, S. ( 1950 ). Magneto‐hydrostatic fields. Arkiv för Fysik, 2, 361 – 365.
dc.identifier.citedreferenceMoldwin, M. B., & Hughes, W. J. ( 1991 ). Plasmoids as magnetic flux ropes. Physics, 96 ( A8 ), 51 – 64. https://doi.org/10.1029/91JA01167
dc.identifier.citedreferenceMoldwin, M. B., & Hughes, W. J. ( 1992 ). On the formation and evolution of plasmoids: A survey of ISEE 3 geotail data. Journal of Geophysical Research, 97 ( A12 ), 19,259 – 19,282. https://doi.org/10.1029/92JA01598
dc.identifier.citedreferencePoh, G., Slavin, J. A., Jia, X., Raines, J. M., Imber, S. M., Sun, W. J., Gershman, D. J., DiBraccio, G. A., Genestreti, K. J., & Smith, A. W. ( 2017 ). Mercury’s cross‐tail current sheet: Structure, X‐line location and stress balance. Geophysical Research Letters, 44, 678 – 686. https://doi.org/10.1002/2016GL071612
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.