Show simple item record

Evaluating Single‐Spacecraft Observations of Planetary Magnetotails With Simple Monte Carlo Simulations: 1. Spatial Distributions of the Neutral Line

dc.contributor.authorSmith, A. W.
dc.contributor.authorJackman, C. M.
dc.contributor.authorFrohmaier, C. M.
dc.contributor.authorCoxon, J. C.
dc.contributor.authorSlavin, J. A.
dc.contributor.authorFear, R. C.
dc.date.accessioned2019-02-12T20:25:24Z
dc.date.available2020-02-03T20:18:25Zen
dc.date.issued2018-12
dc.identifier.citationSmith, A. W.; Jackman, C. M.; Frohmaier, C. M.; Coxon, J. C.; Slavin, J. A.; Fear, R. C. (2018). "Evaluating Single‐Spacecraft Observations of Planetary Magnetotails With Simple Monte Carlo Simulations: 1. Spatial Distributions of the Neutral Line." Journal of Geophysical Research: Space Physics 123(12): 10,109-10,123.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/147875
dc.description.abstractA simple Monte Carlo model is presented that considers the effects of spacecraft orbital sampling on the inferred distribution of magnetic flux ropes, generated through magnetic reconnection in the magnetotail current sheet. When generalized, the model allows the determination of the number of orbits required to constrain the underlying population of structures: It is able to quantify this as a function of the physical parameters of the structures (e.g., azimuthal extent and probability of generation). The model is shown adapted to the Hermean magnetotail, where the outputs are compared to the results of a recent survey. This comparison suggests that the center of Mercury’s neutral line is located dawnward of midnight by 0.37−1.02+1.21RM and that the flux ropes are most likely to be wide azimuthally (∼50% of the width of the Hermean tail). The downtail location of the neutral line is not self‐consistent or in agreement with previous (independent) studies unless dissipation terms are included planetward of the reconnection site; potential physical explanations are discussed. In the future the model could be adapted to other environments, for example, the dayside magnetopause or other planetary magnetotails.Key PointsMonte Carlo model allows the estimation of X‐line location and reconnection frequency given sampling with a single spacecraftMercury’s magnetotail reconnection site is consistent with a center offset (0.37‐1.02+1.21RM) dawnward of midnightMercury’s downtail X‐line location is only self‐consistent if dissipation terms are included planetward of the X‐line
dc.publisherWiley Periodicals, Inc.
dc.subject.otherflux ropes
dc.subject.otherMercury
dc.subject.othermagnetotail
dc.subject.otherreconnection
dc.subject.otherMonte Carlo
dc.subject.otherMESSENGER
dc.titleEvaluating Single‐Spacecraft Observations of Planetary Magnetotails With Simple Monte Carlo Simulations: 1. Spatial Distributions of the Neutral Line
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147875/1/jgra54689.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147875/2/jgra54689_am.pdf
dc.identifier.doi10.1029/2018JA025958
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSibeck, D. G., Siscoe, G. L., Slavin, J. A., Smith, E. J., Bame, S. J., & Scarf, F. L. ( 1984 ). Magnetotail flux ropes. Geophysical Research Letters, 11 ( 10 ), 1090 – 1093. https://doi.org/10.1029/GL011i010p01090
dc.identifier.citedreferenceLindsay, S. T., James, M. K., Bunce, E. J., Imber, S. M., Korth, H., Martindale, A., & Yeoman, T. K. ( 2015 ). MESSENGER X‐ray observations of magnetosphere‐surface interaction on the nightside of Mercury. Planetary and Space Science, 125, 72 – 79. https://doi.org/10.1016/j.pss.2016.03.005
dc.identifier.citedreferenceLu, S., Lu, Q., Lin, Y., Wang, X., Ge, Y., Wang, R., Zhou, M., Fu, H., Huang, C., Wu, M., & Wang, S. ( 2015 ). Dipolarization fronts as earthward propagating flux ropes: A three‐dimensional global hybrid simulation. Journal of Geophysical Research: Space Physics, 120, 6286 – 6300. https://doi.org/10.1002/2015JA021213
dc.identifier.citedreferenceMoldwin, M. B., & Hughes, W. J. ( 1991 ). Plasmoids as magnetic flux ropes. Physics, 96 ( A8 ), 51 – 64. https://doi.org/10.1029/91JA01167
dc.identifier.citedreferenceMoldwin, M. B., & Hughes, W. J. ( 1992 ). On the formation and evolution of plasmoids: A survey of ISEE 3 Geotail data. Journal of Geophysical Research, 97 ( A12 ), 19,259 – 19,282. https://doi.org/10.1029/92ja01598
dc.identifier.citedreferenceØieroset, M., Phan, T. D., Fujimoto, M., Lin, R. P., & Lepping, R. P. ( 2001 ). In situ detection of collisionless reconnection in the Earth’s magnetotail. Nature, 412 ( 6845 ), 414 – 417. https://doi.org/10.1038/35086520
dc.identifier.citedreferencePoh, G., Slavin, J. A., Jia, X., Raines, J. M., Imber, S. M., Sun, W. J., Gershman, D. J., DiBraccio, G. A., Genestreti, K. J., & Smith, A. W. ( 2017a ). Mercury’s cross‐tail current sheet: Structure, X‐line location and stress balance. Geophysical Research Letters, 44, 678 – 686. https://doi.org/10.1002/2016GL071612
dc.identifier.citedreferencePoh, G., Slavin, J. A., Jia, X., Raines, J. M., Imber, S. M., Sun, W. J., Gershman, D. J., DiBraccio, G. A., Genestreti, K. J., & Smith, A. W. ( 2017b ). Coupling between Mercury and its nightside magnetosphere: Cross‐tail current sheet asymmetry and substorm current wedge formation. Journal of Geophysical Research: Space Physics, 122, 8419 – 8433. https://doi.org/10.1002/2017JA024266
dc.identifier.citedreferenceRaines, J. M., Gershman, D. J., Zurbuchen, T. H., Sarantos, M., Slavin, J. A., Gilbert, J. A., Korth, H., Anderson, B. J., Gloeckler, G., Krimigis, S. M., Baker, D. N., McNutt, R. L., & Solomon, S. C. ( 2013 ). Distribution and compositional variations of plasma ions in Mercury’s space environment: The first three Mercury years of MESSENGER observations. Journal of Geophysical Research: Space Physics, 118, 1604 – 1619. https://doi.org/10.1029/2012JA018073
dc.identifier.citedreferenceRussell, C., & Elphic, R. ( 1978 ). Initial ISEE magnetometer results: Magnetopause observations. Space Science Reviews, 22 ( 6 ), 681 – 715. https://doi.org/10.1007/BF00212619
dc.identifier.citedreferenceShay, M. A., & Swisdak, M. ( 2004 ). Three species collisionless reconnection: Effect of O + on magnetotail reconnection. Physical Review Letters, 93 ( 17 ), 175001. https://doi.org/10.1103/PhysRevLett.93.175001
dc.identifier.citedreferenceSolomon, S. C., McNutt, R. L., Gold, R. E., & Domingue, D. L. ( 2007 ). MESSENGER mission overview. Space Science Reviews, 131 ( 1‐4 ), 3 – 39. https://doi.org/10.1007/s11214-007-9247-6
dc.identifier.citedreferenceSiscoe, G. L., Ness, N. F., & Yeates, C. M. ( 1975 ). Substorms on Mercury? Journal of Geophysical Research, 80 ( 31 ), 4359 – 4363. https://doi.org/10.1029/JA080i031p04359
dc.identifier.citedreferenceSlavin, J. A., Acuña, M. H., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gloeckler, G., Gold, R. E., Ho, G. C., Korth, H., Krimigis, S. M., McNutt, R. L., Raines, J. M., Sarantos, M., Schriver, D., Solomon, S. C., Travnicek, P., & Zurbuchen, T. H. ( 2009 ). MESSENGER observations of magnetic reconnection in Mercury’s magnetosphere. Science, 324 ( 5927 ), 606 – 610. https://doi.org/10.1126/science.1172011
dc.identifier.citedreferenceSlavin, J. A., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gold, R. E., Ho, G. C., Imber, S. M., Korth, H., Krimigis, S. M., McNutt, R. L., Raines, J. M., Sarantos, M., Schriver, D., Solomon, S. C., Trávníček, P., & Zurbuchen, T. H. ( 2012 ). MESSENGER and Mariner 10 flyby observations of magnetotail structure and dynamics at Mercury. Journal of Geophysical Research, 117, A01215. https://doi.org/10.1029/2011JA016900
dc.identifier.citedreferenceSlavin, J. A., Baker, D. N., Craven, J. D., Elphic, R. C., Fairfield, D. H., Frank, L. A., Galvin, A. B., Hughes, W. J., Manka, R. H., Mitchell, D. G., Richardson, I. G., Sanderson, T. R., Sibeck, D. J., Smith, E. J., & Zwickl, R. D. ( 1989 ). CDAW 8 observations of plasmoid signatures in the geomagnetic tail: An assessment. Journal of Geophysical Research, 94 ( A11) ), 15153. https://doi.org/10.1029/JA094iA11p15153
dc.identifier.citedreferenceSlavin, J. A., Lepping, R. P., Gjerloev, J., Fairfield, D. H., Hesse, M., Owen, C. J., Moldwin, M. B., Nagai, T., Ieda, A., & Mukai, T. ( 2003 ). Geotail observations of magnetic flux ropes in the plasma sheet. Journal of Geophysical Research, 108 ( A1 ), 1015. https://doi.org/10.1029/2002JA009557
dc.identifier.citedreferenceSlavin, J. A., Owen, C. J., Kuznetsova, M. M., & Hesse, M. ( 1995 ). ISEE 3 observations of plasmoids with flux rope magnectic topologies. Geophysical Research Letters, 22 ( 15 ), 2061 – 2064. https://doi.org/10.1029/95GL01977
dc.identifier.citedreferenceSlavin, J. A., Smith, M. F., Mazur, E. L., Baker, D. N., Hones, E. W., Iyemori, T., & Greenstadt, E. W. ( 1993 ). ISEE 3 observations of traveling compression regions in the Earth’s magnetotail. Journal of Geophysical Research, 98 ( A9 ), 15425. https://doi.org/10.1029/93JA01467
dc.identifier.citedreferenceSmith, A. W., Jackman, C. M., Frohmaier, C. M., Fear, R. C., Slavin, J. A., & Coxon, J. C. ( 2018 ). Evaluating single spacecraft observations of planetary magnetotails with simple Monte Carlo simulations: 2. Magnetic flux rope signature selection effects. Journal of Geophysical Research: Space Physics.
dc.identifier.citedreferenceSmith, A. W., Jackman, C. M., Thomsen, M. F., Lamy, L., & Sergis, N. ( 2018 ). Multi‐instrument investigation of the location of Saturn’s magnetotail X‐line. Journal of Geophysical Research: Space Physics, 123, 5494 – 5505. https://doi.org/10.1029/2018JA025532
dc.identifier.citedreferenceSmith, A. W., Slavin, J. A., Jackman, C. M., Poh, G. K., & Fear, R. C. ( 2017 ). Flux ropes in the Hermean magnetotail: Distribution, properties, and formation. Journal of Geophysical Research: Space Physics, 122, 8136 – 8153. https://doi.org/10.1002/2017JA024295
dc.identifier.citedreferenceSouthwood, D., Farrugia, C., & Saunders, M. ( 1988 ). What are flux transfer events? Planetary and Space Science, 36 ( 5 ), 503 – 508. https://doi.org/10.1016/0032-0633(88)90109-2
dc.identifier.citedreferenceSun, W. J., Fu, S. Y., Slavin, J. A., Raines, J. M., Zong, Q. G., Poh, G. K., & Zurbuchen, T. H. ( 2016 ). Spatial distribution of Mercury’s flux ropes and reconnection fronts: MESSENGER observations. Journal of Geophysical Research A: Space Physics, 121, 7590 – 7607. https://doi.org/10.1002/2016JA022787
dc.identifier.citedreferenceVignes, D., Acuña, M., Connerney, J., Crider, D., Rème, H., & Mazelle, C. ( 2004 ). Magnetic flux ropes in the Martian atmosphere: Global characteristics. Space Science Reviews, 111 ( 1/2 ), 223 – 231. https://doi.org/10.1023/B:SPAC.0000032716.21619.f2
dc.identifier.citedreferenceZhong, J., Wei, Y., Pu, Z. Y., Wang, X. G., Wan, W. X., Slavin, J. A., Cao, X., Raines, J. M., Zhang, H., Xiao, C. J., Du, A. M., Wang, R. S., Dewey, R. M., Chai, L. H., Rong, Z. J., & Li, Y. ( 2018 ). MESSENGER observations of rapid and impulsive magnetic reconnection in Mercury’s magnetotail. The Astrophysical Journal Letters, 860 ( 2 ), L20. https://doi.org/10.3847/2041-8213/aaca92
dc.identifier.citedreferenceAlexandrova, A., Nakamura, R., Semenov, V. S., & Nakamura, T. K. M. ( 2015 ). Motion of reconnection region in the Earth’s magnetotail. Geophysical Research Letters, 42, 4685 – 4693. https://doi.org/10.1002/2015GL064421
dc.identifier.citedreferenceAnderson, B. J., Acuña, M. H., Lohr, D. A., Scheifele, J., Raval, A., Korth, H., & Slavin, J. A. ( 2007 ). The magnetometer instrument on MESSENGER. Space Science Reviews, 131 ( 1‐4 ), 417 – 450. https://doi.org/10.1007/s11214-007-9246-7
dc.identifier.citedreferenceAnderson, B. J., Johnson, C. L., Korth, H., Slavin, J. A., Winslow, R. M., Phillips, R. J., McNutt, R. L., & Solomon, S. C. ( 2014 ). Steady‐state field‐aligned currents at Mercury. Geophysical Research Letters, 41, 7444 – 7452. https://doi.org/10.1002/2014GL061677
dc.identifier.citedreferenceBaker, D. N., Dewey, R. M., Lawrence, D. J., Goldsten, J. O., Peplowski, P. N., Korth, H., Slavin, J. A., Krimigis, S. M., Anderson, B. J., Ho, G. C., McNutt, R. L., Raines, J. M., Schriver, D., & Solomon, S. C. ( 2016 ). Intense energetic electron flux enhancements in Mercury’s magnetosphere: An integrated view with high‐resolution observations from MESSENGER. Journal of Geophysical Research: Space Physics, 121, 2171 – 2184. https://doi.org/10.1002/2015JA021778
dc.identifier.citedreferenceBaker, D. N., Hones, E. W., Young, D. T., & Birn, J. ( 1982 ). The possible role of ionospheric oxygen in the initiation and development of plasma sheet instabilities. Geophysical Research Letters, 9 ( 12 ), 1337 – 1340. https://doi.org/10.1029/GL009i012p01337
dc.identifier.citedreferenceBorg, A. L., Taylor, M. G. G. T., & Eastwood, J. P. ( 2012 ). Annales Geophysicae Observations of magnetic flux ropes during magnetic reconnection in the Earth’s magnetotail. Annales Geophysicae, 30 ( 1992 ), 761 – 773. https://doi.org/10.5194/angeo-30-761-2012
dc.identifier.citedreferenceBriggs, J. A., Brain, D. A., Cartwright, M. L., Eastwood, J. P., & Halekas, J. S. ( 2011 ). A statistical study of flux ropes in the Martian magnetosphere. Planetary and Space Science, 59 ( 13 ), 1498 – 1505. https://doi.org/10.1016/j.pss.2011.06.010
dc.identifier.citedreferenceChriston, S. P. ( 1987 ). A comparison of the Mercury and Earth magnetospheres: Electron measurements and substorm time scales. Icarus, 71 ( 3 ), 448 – 471. https://doi.org/10.1016/0019-1035(87)90040-6
dc.identifier.citedreferenceDelcourt, D. C. ( 2013 ). On the supply of heavy planetary material to the magnetotail of Mercury. Annales Geophysicae, 31, 1673 – 1679. https://doi.org/10.5194/angeo-31-1673-2013
dc.identifier.citedreferenceDewey, R. M., Slavin, J. A., Raines, J. M., Baker, D. N., & Lawrence, D. J. ( 2017 ). Energetic electron acceleration and injection during dipolarization events in Mercury’s magnetotail. Journal of Geophysical Research: Space Physics, 112, 12,170 – 12,188. https://doi.org/10.1002/2017JA024617
dc.identifier.citedreferenceDiBraccio, G. A., Slavin, J. A., Imber, S. M., Gershman, D. J., Raines, J. M., Jackman, C. M., Boardsen, S. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., McNutt, R. L., & Solomon, S. C. ( 2015 ). MESSENGER observations of flux ropes in Mercury’s magnetotail. Planetary and Space Science, 115, 77 – 89. https://doi.org/10.1016/j.pss.2014.12.016
dc.identifier.citedreferenceDungey, J. ( 1961 ). Interplanetary magnetic field and the auroral zones. Physical Review Letters, 6, 47 – 48. https://doi.org/10.1103/PhysRevLett.6.47
dc.identifier.citedreferenceEastwood, J. P., Phan, T. D., Øieroset, M., & Shay, M. A. ( 2010 ). Average properties of the magnetic reconnection ion diffusion region in the Earth’s magnetotail: The 2001–2005 Cluster observations and comparison with simulations. Journal of Geophysical Research, 115. https://doi.org/10.1029/2009JA014962
dc.identifier.citedreferenceForeman‐Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. ( 2012 ). Emcee: The MCMC Hammer. Publications of the Astronomical Society of the Pacific, 125 ( 925 ), 306 – 312. https://doi.org/10.1086/670067
dc.identifier.citedreferenceGershman, D. J., Slavin, J. A., Raines, J. M., Zurbuchen, T. H., Anderson, B. J., Korth, H., Baker, D. N., & Solomon, S. C. ( 2014 ). Ion kinetic properties in Mercury’s pre‐midnight plasma sheet. Geophysical Research Letters, 41, 5740 – 5747. https://doi.org/10.1002/2014GL060468
dc.identifier.citedreferenceHones, E. W., Baker, D. N., Bame, S. J., Feldman, W. C., Gosling, J. T., McComas, D. J., Zwickl, R. D., Slavin, J. A., Smith, E. J., & Tsurutani, B. T. ( 1984 ). Structure of the magnetotail at 220 RE and its response to geomagnetic activity. Geophysical Research Letters, 11 ( 1 ), 5 – 7. https://doi.org/10.1029/GL011i001p00005
dc.identifier.citedreferenceHughes, W. J., & Sibeck, D. G. ( 1987 ). On the 3‐dimensional structure of plasmoids. Geophysical Research Letters, 14 ( 6 ), 636 – 639. https://doi.org/10.1029/GL014i006p00636
dc.identifier.citedreferenceIeda, a., Machida, S., Mukai, T., Saito, Y., Yamamoto, T., Nishida, a., Terasawa, T., & Kokubun, S. ( 1998 ). Statistical analysis of the plasmoid evolution with Geotail observations. Journal of Geophysical Research, 103 ( A3 ), 4453. https://doi.org/10.1029/97JA03240
dc.identifier.citedreferenceImber, S. M., & Slavin, J. A. ( 2017 ). MESSENGER observations of magnetotail loading and unloading: Implications for substorms at Mercury. Journal of Geophysical Research: Space Physics, 122, 11,402 – 11,412. https://doi.org/10.1002/2017JA024332
dc.identifier.citedreferenceImber, S. M., Slavin, J. A., Auster, H. U., & Angelopoulos, V. ( 2011 ). A THEMIS survey of flux ropes and traveling compression regions: Location of the near‐Earth reconnection site during solar minimum. Journal of Geophysical Research, 116, A02201. https://doi.org/10.1029/2010JA016026
dc.identifier.citedreferenceJia, X., Slavin, J. A., Gombosi, T. I., Daldorff, L. K. S., Toth, G., & Holst, B. vander ( 2011 ). Global MHD simulations of Mercury’s magnetosphere with coupled planetary interior: Induction effect of the planetary conducting core on the global interaction. Journal of Geophysical Research, 120, 4763 – 4775. https://doi.org/10.1002/2015JA021143
dc.identifier.citedreferenceKasahara, S., Kronberg, E. A., Krupp, N., Kimura, T., Tao, C., Badman, S. V., Retinò, A., & Fujimoto, M. ( 2011 ). Magnetic reconnection in the Jovian tail: X‐line evolution and consequent plasma sheet structures. Journal of Geophysical Research, 116, 15. https://doi.org/10.1029/2011JA016892
dc.identifier.citedreferenceKronberg, E. A., Woch, J., Krupp, N., Lagg, A., Khurana, K. K., & Glassmeier, K. H. ( 2005 ). Mass release at Jupiter: Substorm‐like processes in the Jovian magnetotail. Journal of Geophysical Research, 110, A03211. https://doi.org/10.1029/2004JA010777
dc.identifier.citedreferenceLee, L. C., & Fu, Z. F. ( 1985 ). A theory of magnetic flux transfer at the Earth’s magnetopause. Geophysical Research Letters, 12 ( 2 ), 105 – 108. https://doi.org/10.1029/GL012i002p00105
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.