Show simple item record

Copper‐Mediated Aminoquinoline‐Directed Radiofluorination of Aromatic C−H Bonds with K18F

dc.contributor.authorLee, So Jeong
dc.contributor.authorMakaravage, Katarina J.
dc.contributor.authorBrooks, Allen F.
dc.contributor.authorScott, Peter J. H.
dc.contributor.authorSanford, Melanie S.
dc.date.accessioned2019-03-11T15:34:48Z
dc.date.available2020-05-01T18:03:25Zen
dc.date.issued2019-03-04
dc.identifier.citationLee, So Jeong; Makaravage, Katarina J.; Brooks, Allen F.; Scott, Peter J. H.; Sanford, Melanie S. (2019). "Copper‐Mediated Aminoquinoline‐Directed Radiofluorination of Aromatic C−H Bonds with K18F." Angewandte Chemie International Edition 58(10): 3119-3122.
dc.identifier.issn1433-7851
dc.identifier.issn1521-3773
dc.identifier.urihttps://hdl.handle.net/2027.42/148216
dc.description.abstractA Cu‐mediated ortho‐C−H radiofluorination of aromatic carboxylic acids that are protected as 8‐aminoquinoline benzamides is described. The method uses K18F and is compatible with a wide range of functional groups. The reaction is showcased in the high specific activity automated synthesis of the RARβ2 agonist [18F]AC261066.Late‐stage fluorination: K18F is applied in a newly developed Cu‐mediated ortho‐C(sp2)−H radiofluorination of aromatic carboxylic acids that are protected as 8‐aminoquinoline benzamides. Fluorination of 18 examples in up to 62 % radiochemical yield and high specific activity is reported, including the automated synthesis of [18F]AC261066.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherC−H fluorination
dc.subject.otherlate-stage fluorination
dc.subject.otherfluorine-18
dc.subject.otherC−H functionalization
dc.subject.otherPET radiochemistry
dc.titleCopper‐Mediated Aminoquinoline‐Directed Radiofluorination of Aromatic C−H Bonds with K18F
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148216/1/anie201812701_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148216/2/anie201812701-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148216/3/anie201812701.pdf
dc.identifier.doi10.1002/anie.201812701
dc.identifier.sourceAngewandte Chemie International Edition
dc.identifier.citedreferenceM. S. McCammant, S. Thompson, A. F. Brooks, S. W. Krska, P. J. H. Scott, M. S. Sanford, Org. Lett. 2017, 19, 3939.
dc.identifier.citedreferenceN. J. Taylor, E. Emer, S. Preshlock, M. Schedler, M. Tredwell, S. Verhoog, J. Mercier, C. Genicot, V. Gouverneur, J. Am. Chem. Soc. 2017, 139, 8267.
dc.identifier.citedreference 
dc.identifier.citedreferenceM. B. Nodwell, H. Yang, M. Čolović, Z. Yuanm, H. Merkens, R. E. Martin, F. Bénard, P. Schaffer, R. Britton, J. Am. Chem. Soc. 2017, 139, 3595;
dc.identifier.citedreferenceZ. Yuan, M. Nodwell, H. Yang, N. Malik, H. Merkens, F. Bernard, R. Martin, P. Schaffer, R. Britton, Angew. Chem. Int. Ed. 2018, 57, 12733; Angew. Chem. 2018, 130, 12915.
dc.identifier.citedreference 
dc.identifier.citedreferenceX. Huang, W. Liu, H. Ren, R. Neelamegam, J. M. Hooker, J. T. Groves, J. Am. Chem. Soc. 2014, 136, 6842;
dc.identifier.citedreferenceX. Huang, W. Liu, J. M. Hooker, J. T. Groves, Angew. Chem. Int. Ed. 2015, 54, 5241; Angew. Chem. 2015, 127, 5330;
dc.identifier.citedreferenceW. Liu, X. Huang, M. S. Placzek, S. W. Krska, P. McQuade, J. M. Hooker, J. T. Groves, Chem. Sci. 2018, 9, 1168.
dc.identifier.citedreferenceO. Jacobson, D. O. Kiesewetter, X. Chen, Bioconjugate Chem. 2015, 26, 1.
dc.identifier.citedreferenceJ. Bergman, O. Solin, Nucl. Med. Biol. 1997, 24, 677.
dc.identifier.citedreferenceT. Truong, K. Klimovica, O. Daugulis, J. Am. Chem. Soc. 2013, 135, 9342.
dc.identifier.citedreferenceP. J. H. Scott, A. F. Brooks, N. Ichiishi, M. S. Sanford, Preparation of Ag 18 F and its use in the Synthesis of PET Radiotracers, U.S. Patent 2016/0317682 A1, Nov 3, 2016.
dc.identifier.citedreferenceOther bases were also compatible (e.g. comparable RCCs could be obtained using 1,5-diazabicyclo[4.3.0]non-5-ene; see Supporting Information).
dc.identifier.citedreferenceWhen Table 1, entry 5 was set up in a glovebox and kept under an inert atmosphere the RCC dropped prohibitively (to 6±4 %), further consistent with the role of air as the oxidant.
dc.identifier.citedreferenceProduct identities were confirmed by radio-HPLC. To further confirm that radiofluorination occurred at the expected ortho -site (rather than on the quinoline ring) we conducted control experiments and demonstrated baseline separation of regioisomeric products by HPLC (see Supporting Information).
dc.identifier.citedreferenceSome arenes bearing electron-withdrawing substituents give rise to minor side products. We ruled out the formation of side products derived from competing S N Ar reactions (see Supporting Information), but have not been able to positively identity the side products to date.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. Ding, Y. Zhang, J. Li, Org. Chem. Front. 2017, 4, 1528;
dc.identifier.citedreferenceH. Chen, P. Li, M. Wang, L. Wang, Eur. J. Org. Chem. 2018, 2091.
dc.identifier.citedreferenceCompounds 15 – 18 contain functional groups that could potentially direct C−H fluorination elsewhere in the molecule (e.g. 17H contains 2 amide groups). Small impurity peaks were detected in the crude radio-HPLC traces of these products; however, 15 18 F – 18 18 F were the major products in each case, and they appear to be readily separable from the side products formed in the reaction.
dc.identifier.citedreferenceB. W. Lund, F. Piu, N. K. Gauthier, A. Eeg, E. Currier, V. Sherbukhin, M. R. Brann, U. Hacksell, R. Olsson, J. Med. Chem. 2005, 48, 7517.
dc.identifier.citedreferenceThese unoptimized automation results demonstrate that this method can be used to prepare sufficient amounts of radiotracers for pre-clinical evaluation in rodents and non-human primates. We expect that yields can be further improved through careful optimization of the automated method. This work is currently underway, along with qualification of a synthesis and formulation of 20 18 F for preclinical use.
dc.identifier.citedreferenceRadioiodination of this scaffold has been reported. See: L. W. Deady, J. Desneves, L. M. A. Tilley, J. Labelled Compd. Radiopharm. 2000, 43, 977.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. Wang, M. Sánchez-Roselló, J. L. Aceña, C. del Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, Chem. Rev. 2014, 114, 2432;
dc.identifier.citedreferenceE. P. Gillis, K. J. Eastman, M. D. Hill, D. J. Donnelly, N. A. Meanwell, J. Med. Chem. 2015, 58, 8315.
dc.identifier.citedreferenceN. A. Meanwell, J. Med. Chem. 2018, 61, 5822.
dc.identifier.citedreferenceS. M. Ametamey, M. Honer, P. A. Schubiger, Chem. Rev. 2008, 108, 1501.
dc.identifier.citedreference 
dc.identifier.citedreferenceM. M. Alauddin, Am. J. Nucl. Med. Mol. Imaging 2012, 2, 55;
dc.identifier.citedreferenceP. Brust, J. van den Hoff, J. Steinbach, Neurosci. Bull. 2014, 30, 777.
dc.identifier.citedreferenceFor recent reviews and perspectives on late-stage fluorination, see:
dc.identifier.citedreferenceA. F. Brooks, J. J. Topczewski, N. Ichiishi, M. S. Sanford, P. J. H. Scott, Chem. Sci. 2014, 5, 4545;
dc.identifier.citedreferenceM. G. Campbell, T. Ritter, Chem. Rev. 2015, 115, 612;
dc.identifier.citedreferenceS. Preshlock, M. Tredwell, V. Gouverneur, Chem. Rev. 2016, 116, 719;
dc.identifier.citedreferenceM. S. Sanford, P. J. H. Scott, ACS Cent. Sci. 2016, 2, 128;
dc.identifier.citedreferenceM. G. Campbell, J. Mercier, C. Genicot, V. Gouverneur, J. M. Hooker, T. Ritter, Nat. Chem. 2017, 9, 1.
dc.identifier.citedreference 
dc.identifier.citedreferenceE. Lee, A. S. Kamlet, D. C. Powers, C. N. Neumann, G. B. Boursalian, T. Furuya, D. C. Choi, J. M. Hooker, T. Ritter, Science 2011, 334, 639;
dc.identifier.citedreferenceE. Lee, J. M. Hooker, T. Ritter, J. Am. Chem. Soc. 2012, 134, 17456;
dc.identifier.citedreferenceN. Ichiishi, A. F. Brooks, J. J. Topczewski, M. E. Rodnick, M. S. Sanford, P. J. H. Scott, Org. Lett. 2014, 16, 3224;
dc.identifier.citedreferenceM. Tredwell, S. M. Preshlock, N. J. Taylor, S. Gruber, M. Huiban, J. Passchier, J. Mercier, C. Génicot, V. Gouverneur, Angew. Chem. Int. Ed. 2014, 53, 7751; Angew. Chem. 2014, 126, 7885;
dc.identifier.citedreferenceA. V. Mossine, A. F. Brooks, K. J. Makaravage, J. M. Miller, N. Ichiishi, M. S. Sanford, P. J. H. Scott, Org. Lett. 2015, 17, 5780;
dc.identifier.citedreferenceB. D. Zlatopolskiy, J. Zischler, P. Krapf, F. Zarrad, E. A. Urusova, E. Kordys, H. Endepols, B. Neumaier, Chem. Eur. J. 2015, 21, 5972;
dc.identifier.citedreferenceK. J. Makaravage, A. F. Brooks, A. V. Mossine, M. S. Sanford, P. J. H. Scott, Org. Lett. 2016, 18, 5440;
dc.identifier.citedreferenceC. N. Neumann, J. M. Hooker, T. Ritter, Nature 2016, 534, 369;
dc.identifier.citedreferenceM. H. Beyzavi, D. Mandal, M. G. Strebl, C. N. Neumann, E. M. D′Amato, J. Chen, J. M. Hooker, T. Ritter, ACS Cent. Sci. 2017, 3, 944;
dc.identifier.citedreferenceA. V. Mossine, A. F. Brooks, V. Bernard-Gauthier, J. J. Bailey, N. Ichiishi, R. Schirrmacher, M. S. Sanford, P. J. H. Scott, J. Labelled Compd. Radiopharm. 2018, 61, 228;
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.