Show simple item record

Quantitative Mapping of Endosomal DNA Processing by Single Molecule Counting

dc.contributor.authorPrakash, Ved
dc.contributor.authorTsekouras, Konstantinos
dc.contributor.authorVenkatachalapathy, Muthukumaran
dc.contributor.authorHeinicke, Laurie
dc.contributor.authorPressé, Steve
dc.contributor.authorWalter, Nils G.
dc.contributor.authorKrishnan, Yamuna
dc.date.accessioned2019-03-11T15:34:49Z
dc.date.available2020-05-01T18:03:25Zen
dc.date.issued2019-03-04
dc.identifier.citationPrakash, Ved; Tsekouras, Konstantinos; Venkatachalapathy, Muthukumaran; Heinicke, Laurie; Pressé, Steve ; Walter, Nils G.; Krishnan, Yamuna (2019). "Quantitative Mapping of Endosomal DNA Processing by Single Molecule Counting." Angewandte Chemie International Edition 58(10): 3073-3076.
dc.identifier.issn1433-7851
dc.identifier.issn1521-3773
dc.identifier.urihttps://hdl.handle.net/2027.42/148217
dc.description.abstractExtracellular DNA is engulfed by innate immune cells and digested by endosomal DNase II to generate an immune response. Quantitative information on endosomal stage‐specific cargo processing is a critical parameter to predict and model the innate immune response. Biochemical assays quantify endosomal processing but lack organelle‐specific information, while fluorescence microscopy has provided the latter without the former. Herein, we report a single molecule counting method based on fluorescence imaging that quantitatively maps endosomal processing of cargo DNA in innate immune cells with organelle‐specific resolution. Our studies reveal that endosomal DNA degradation occurs mainly in lysosomes and is negligible in late endosomes. This method can be used to study cargo processing in diverse endocytic pathways and measure stage‐specific activity of processing factors in endosomes.Elementary, my dear Watson: Organellar single‐molecule, high‐resolution localization and counting (oSHiRLoC), a fluorescence imaging method for the quantitative mapping of the endosomal processing of cargo DNA in innate immune cells with organelle‐specific resolution, is reported. By using this method, it is shown that endosomal DNA degradation occurs mainly in lysosomes and is negligible in late endosomes.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherDNA
dc.subject.otherlysosomes
dc.subject.otherphotobleaching
dc.subject.othersingle-molecule counting
dc.subject.otherDNase II
dc.titleQuantitative Mapping of Endosomal DNA Processing by Single Molecule Counting
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148217/1/anie201811746_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148217/2/anie201811746.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148217/3/anie201811746-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/anie.201811746
dc.identifier.sourceAngewandte Chemie International Edition
dc.identifier.citedreferenceS. Lorenz, S. Tomcin, V. Mailänder, Microsc. Microanal. 2011, 17, 440 – 445.
dc.identifier.citedreferenceE. B. Compeer, T. W. H. Flinsenberg, S. G. van der Grein, M. Boes, Front. Immunol. 2012, 3, 37.
dc.identifier.citedreferenceM. P. Chan, M. Onji, R. Fukui, K. Kawane, T. Shibata, S. Saitoh, et al., Nat. Commun. 2015, 6, 5853.
dc.identifier.citedreferenceM. Amessou, V. Popoff, B. Yelamos, A. Saint-Pol, L. Johannes, Curr. Protoc. Cell Biol. 2006, 32, 15.10.1– 15.10.21.
dc.identifier.citedreferenceA. Weihe, Methods Mol. Biol. 2014, 1132, 235 – 243.
dc.identifier.citedreferenceJ. J. Sperinde, S. J. Choi, F. C. Szoka, J. Gene Med. 2001, 3, 101 – 108.
dc.identifier.citedreferenceT. E. Tjelle, A. Brech, L. K. Juvet, G. Griffiths, T. Berg, J. Cell Sci. 1996, 109, 2905 – 2914.
dc.identifier.citedreferenceZ. Qian, P. G. Dougherty, D. Pei, Chem. Commun. 2015, 51, 2162 – 2165.
dc.identifier.citedreferenceC. J. Evans, R. J. Aguilera, Gene 2003, 322, 1 – 15.
dc.identifier.citedreferenceJ. A. Brown, R. T. Swank, J. Biol. Chem. 1983, 258, 15323 – 15328.
dc.identifier.citedreferenceJ. Yang, H. Chen, I. R. Vlahov, J.-X. Cheng, Proc. Natl. Acad. Sci. USA 2006, 103, 13872 – 13877.
dc.identifier.citedreferenceE. M. Puchner, J. M. Walter, R. Kasper, B. Huang, W. A. Lim, Proc. Natl. Acad. Sci. USA 2013, 110, 16015 – 16020.
dc.identifier.citedreferenceR. Jungmann, M. S. Avendaño, M. Dai, J. B. Woehrstein, S. S. Agasti, Z. Feiger, et al., Nat. Methods 2016, 13, 439 – 442.
dc.identifier.citedreferenceK. Tsekouras, T. C. Custer, H. Jashnsaz, N. G. Walter, S. Pressé, Mol. Biol. Cell 2016, 27, 3601 – 3615.
dc.identifier.citedreferenceS. Pitchiaya, L. A. Heinicke, J. I. Park, E. L. Cameron, N. G. Walter, Cell Rep. 2017, 19, 630 – 642.
dc.identifier.citedreferenceS. Modi, M. G. Swetha, D. Goswami, G. D. Gupta, S. Mayor, Y. Krishnan, Nat. Nanotechnol. 2009, 4, 325 – 330.
dc.identifier.citedreferenceS. Surana, J. M. Bhat, S. P. Koushika, Y. Krishnan, Nat. Commun. 2011, 2, 340.
dc.identifier.citedreferenceN. Narayanaswamy, K. Chakraborty, A. Saminathan, E. Zeichner, K. Leung, J. Devany, Y. Krishnan, Nat. Methods 2019, 16, 95 – 102.
dc.identifier.citedreferenceS. Thekkan, M. S. Jani, C. Cui, K. Dan, G. Zhou, L. Becker, Y. Krishnan, Nat. Chem. Biol. 2018, https://doi.org/10.1038/s41589-018-0176-3.
dc.identifier.citedreferenceC. I. Raje, S. Kumar, A. Harle, J. S. Nanda, M. Raje, J. Biol. Chem. 2007, 282, 3252 – 3261.
dc.identifier.citedreferenceS. J. Wadsworth, H. Goldfine, Infect. Immun. 2002, 70, 4650 – 4660.
dc.identifier.citedreferenceR. Dhami, E. H. Schuchman, J. Biol. Chem. 2004, 279, 1526 – 1532.
dc.identifier.citedreferenceK. Kawane, H. Fukuyama, G. Kondoh, J. Takeda, Y. Ohsawa, Y. Uchiyama, et al., Science 2001, 292, 1546 – 1549.
dc.identifier.citedreferenceK. Kawane, K. Motani, S. Nagata, Cold Spring Harbor Perspect. Biol. 2014, 6, a 016394.
dc.identifier.citedreferenceC. C. Scott, F. Vacca, J. Gruenberg, Cell Dev. Biol. 2014, 31, 2 – 10.
dc.identifier.citedreferenceN. Hiroi, V. M. Draviam, A. Funahashi, Front. Physiol. 2016, 7, 196.
dc.identifier.citedreferenceM. Rincon-Restrepo, A. Mayer, S. Hauert, D. K. Bonner, E. A. Phelps, J. A. Hubbell, et al., Biomaterials 2017, 132, 48 – 58.
dc.identifier.citedreferenceG. M. Barton, J. C. Kagan, R. Medzhitov, Nat. Immunol. 2006, 7, 49 – 56.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.