Show simple item record

Diverse genotypes of the amphibianâ killing fungus produce distinct phenotypes through plastic responses to temperature

dc.contributor.authorMuletz‐wolz, Carly R.
dc.contributor.authorBarnett, Samuel E.
dc.contributor.authorDiRenzo, Graziella V.
dc.contributor.authorZamudio, Kelly R.
dc.contributor.authorToledo, Luís Felipe
dc.contributor.authorJames, Timothy Y.
dc.contributor.authorLips, Karen R.
dc.date.accessioned2019-03-11T15:35:00Z
dc.date.available2020-05-01T18:03:25Zen
dc.date.issued2019-03
dc.identifier.citationMuletz‐wolz, Carly R. ; Barnett, Samuel E.; DiRenzo, Graziella V.; Zamudio, Kelly R.; Toledo, Luís Felipe ; James, Timothy Y.; Lips, Karen R. (2019). "Diverse genotypes of the amphibianâ killing fungus produce distinct phenotypes through plastic responses to temperature." Journal of Evolutionary Biology 32(3): 287-298.
dc.identifier.issn1010-061X
dc.identifier.issn1420-9101
dc.identifier.urihttps://hdl.handle.net/2027.42/148224
dc.description.abstractPhenotypes are the target of selection and affect the ability of organisms to persist in variable environments. Phenotypes can be influenced directly by genes and/or by phenotypic plasticity. The amphibianâ killing fungus Batrachochytrium dendrobatidis (Bd) has a global distribution, unusually broad host range, and high genetic diversity. Phenotypic plasticity may be an important process that allows this pathogen to infect hundreds of species in diverse environments. We quantified phenotypic variation of nine Bd genotypes from two Bd lineages (Global Pandemic Lineage [GPL] and Brazil) and a hybrid (GPLâ Brazil) grown at three temperatures (12, 18 and 24°C). We measured five functional traits including two morphological traits (zoospore and zoosporangium sizes) and three life history traits (carrying capacity, time to fastest growth and exponential growth rate) in a phylogenetic framework. Temperature caused highly plastic responses within each genotype, with all Bd genotypes showing phenotypic plasticity in at least three traits. Among genotypes, Bd generally showed the same direction of plastic response to temperature: larger zoosporangia, higher carrying capacity, longer time to fastest growth and slower exponential growth at lower temperatures. The exception was zoospore size, which was highly variable. Our findings indicate that Bd genotypes have evolved novel phenotypes through plastic responses to temperature over very short timescales. High phenotypic variability likely extends to other traits and may facilitate the large host range and rapid spread of Bd.
dc.publisherWiley Periodicals, Inc.
dc.publisherR Foundation for Statistical Computing
dc.subject.otherphenotypic plasticity
dc.subject.otheramphibians
dc.subject.otherBatrachochytrium dendrobatidis
dc.subject.otherchytrid
dc.subject.otherclimate
dc.subject.otherdisease ecology
dc.subject.otherpathogen
dc.subject.otherphylogenetic conservatism
dc.titleDiverse genotypes of the amphibianâ killing fungus produce distinct phenotypes through plastic responses to temperature
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148224/1/jeb13413_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148224/2/jeb13413.pdf
dc.identifier.doi10.1111/jeb.13413
dc.identifier.sourceJournal of Evolutionary Biology
dc.identifier.citedreferenceRefsnider, J. M., Poorten, T. J., Langhammer, P. F., Burrowes, P. A., & Rosenblum, E. B. ( 2015 ). Genomic correlates of virulence attenuation in the deadly amphibian chytrid fungus, Batrachochytrium dendrobatidis. G3 (Bethesda), 5, 2291 â 2298.
dc.identifier.citedreferenceRaffel, T. R., Rohr, J. R., Kiesecker, J. M., & Hudson, P. J. ( 2006 ). Negative effects of changing temperature on amphibian immunity under field conditions. Functional Ecology, 20, 819 â 828. https://doi.org/10.1111/j.1365-2435.2006.01159.x
dc.identifier.citedreferenceRâ Coreâ Team ( 2017 ). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
dc.identifier.citedreferenceRead, A. F. ( 1994 ). The evolution of virulence. Trends in Microbiology, 2, 73 â 76. https://doi.org/10.1016/0966-842X(94)90537-1
dc.identifier.citedreferenceReed, T. E., Waples, R. S., Schindler, D. E., Hard, J. J., & Kinnison, M. T. ( 2010 ). Phenotypic plasticity and population viability: The importance of environmental predictability. Proceedings of the Royal Society Bâ Biological Sciences, 277, 3391 â 3400. https://doi.org/10.1098/rspb.2010.0771
dc.identifier.citedreferenceRelyea, R. A., Stephens, P. R., Barrow, L. N., Blaustein, A. R., Bradley, P. W., Buck, J. C., â ¦ Hammond, J. I. ( 2018 ). Phylogenetic patterns of trait and trait plasticity evolution: Insights from amphibian embryos. Evolution, 72, 663 â 678. https://doi.org/10.1111/evo.13428
dc.identifier.citedreferenceRevell, L. J. ( 2012 ). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217 â 223. https://doi.org/10.1111/j.2041-210X.2011.00169.x
dc.identifier.citedreferenceRevell, L. J., Harmon, L. J., & Collar, D. C. ( 2008 ). Phylogenetic signal, evolutionary process, and rate. Systematic Biology, 57, 591 â 601. https://doi.org/10.1080/10635150802302427
dc.identifier.citedreferenceRibas, L., Li, M.â S., Doddington, B. J., Robert, J., Seidel, J. A., Kroll, J. S., â ¦ Fisher, M. C. ( 2009 ). Expression profiling the temperatureâ dependent amphibian response to infection by Batrachochytrium dendrobatidis. PLoS One, 4, e8408.
dc.identifier.citedreferenceRodder, D., Kielgast, J., & Lotters, S. ( 2010 ). Future potential distribution of the emerging amphibian chytrid fungus under anthropogenic climate change. Diseases of Aquatic Organisms, 92, 201 â 207. https://doi.org/10.3354/dao02197
dc.identifier.citedreferenceRodriguez, D., Becker, C. G., Pupin, N. C., Haddad, C. F. B., & Zamudio, K. R. ( 2014 ). Longâ term endemism of two highly divergent lineages of the amphibianâ killing fungus in the Atlantic Forest of Brazil. Molecular Ecology, 23, 774 â 787. https://doi.org/10.1111/mec.12615
dc.identifier.citedreferenceRosenblum, E. B., James, T. Y., Zamudio, K. R., Poorten, T. J., Ilut, D., Rodriguez, D., â ¦ Stajich, J. E. ( 2013 ). Complex history of the amphibianâ killing chytrid fungus revealed with genome resequencing data. Proceedings of the National Academy of Sciences of the United States of America, 110, 9385 â 9390. https://doi.org/10.1073/pnas.1300130110
dc.identifier.citedreferenceSapsford, S. J., Alford, R. A., & Schwarzkopf, L. ( 2013 ). Elevation, temperature, and aquatic connectivity all influence the infection dynamics of the amphibian chytrid fungus in adult frogs. PLoS One, 8, e82425.
dc.identifier.citedreferenceScheiner, S. M. ( 1993 ). Genetics and evolution of phenotypic plasticity. Annual Review of Ecology and Systematics, 24, 35 â 68. https://doi.org/10.1146/annurev.es.24.110193.000343
dc.identifier.citedreferenceSchneider, C. A., Rasband, W. S., & Eliceiri, K. W. ( 2012 ). NIH Image to ImageJ: 25 years of image analysis. Nature methods, 9, 671 â 675.
dc.identifier.citedreferenceSchloegel, L. M., Toledo, L. F., Longcore, J. E., Greenspan, S. E., Vieira, C. A., Lee, M., â ¦ James, T. Y. ( 2012 ). Novel, panzootic and hybrid genotypes of amphibian chytridiomycosis associated with the bullfrog trade. Molecular Ecology, 21, 5162 â 5177. https://doi.org/10.1111/j.1365-294X.2012.05710.x
dc.identifier.citedreferenceSkerratt, L. F., Berger, L., Speare, R., Cashins, S., McDonald, K. R., Phillott, A. D., â ¦ Kenyon, N. ( 2007 ). Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth, 4, 125 â 134. https://doi.org/10.1007/s10393-007-0093-5
dc.identifier.citedreferenceStevenson, L. A., Alford, R. A., Bell, S. C., Roznik, E. A., Berger, L., & Pike, D. A. ( 2013 ). Variation in thermal performance of a widespread pathogen, the amphibian chytrid fungus Batrachochytrium dendrobatidis. PLoS One, 8, e73830.
dc.identifier.citedreferenceSylvia, D. M., Fuhrmann, J. J., Hartel, P. G., & Zuberer, D. A. ( 2005 ). Principles and applications of soil microbiology ( 2nd ed. ). Upper Saddle River, NJ: Prentice Hall.
dc.identifier.citedreferenceValladares, F., Sanchezâ Gomez, D., & Zavala, M. A. ( 2006 ). Quantitative estimation of phenotypic plasticity: Bridging the gap between the evolutionary concept and its ecological applications. Journal of Ecology, 94, 1103 â 1116. https://doi.org/10.1111/j.1365-2745.2006.01176.x
dc.identifier.citedreferenceVoyles, J. ( 2011 ). Phenotypic profiling of Batrachochytrium dendrobatidis, a lethal fungal pathogen of amphibians. Fungal Ecology, 4, 196 â 200. https://doi.org/10.1016/j.funeco.2010.12.003
dc.identifier.citedreferenceVoyles, J., Johnson, L. R., Rohr, J., Kelly, R., Barron, C., Miller, D., â ¦ Rosenblum, E. B. ( 2017 ). Diversity in growth patterns among strains of the lethal fungal pathogen Batrachochytrium dendrobatidis across extended thermal optima. Oecologia, 184, 363 â 373. https://doi.org/10.1007/s00442-017-3866-8
dc.identifier.citedreferenceWennersten, L., & Forsman, A. ( 2012 ). Populationâ level consequences of polymorphism, plasticity and randomized phenotype switching: A review of predictions. Biological Reviews, 87, 756 â 767. https://doi.org/10.1111/j.1469-185X.2012.00231.x
dc.identifier.citedreferenceWestâ Eberhard, M. J. ( 1989 ). Phenotypic plasticity and the origins of diversity. Annual Review of Ecology and Systematics, 20, 249 â 278. https://doi.org/10.1146/annurev.es.20.110189.001341
dc.identifier.citedreferenceWestâ Eberhard, M. J. ( 2005 ). Developmental plasticity and the origin of species differences. Proceedings of the National Academy of Sciences of the United States of America, 102, 6543 â 6549. https://doi.org/10.1073/pnas.0501844102
dc.identifier.citedreferenceWickham, H. ( 2009 ). ggplot2: Elegant graphics for data analysis. New York, NY: Springerâ Verlag. https://doi.org/10.1007/978-0-387-98141-3
dc.identifier.citedreferenceWoodhams, D. C., & Alford, R. A. ( 2005 ). Ecology of chytridiomycosis in rainforest stream frog assemblages of tropical Queensland. Conservation Biology, 19, 1449 â 1459. https://doi.org/10.1111/j.1523-1739.2005.004403.x
dc.identifier.citedreferenceWoodhams, D. C., Alford, R. A., Briggs, C. J., Johnson, M., & Rollinsâ Smith, L. A. ( 2008 ). Lifeâ history tradeâ offs influence disease in changing climates: Strategies of an amphibian pathogen. Ecology, 89, 1627 â 1639. https://doi.org/10.1890/06-1842.1
dc.identifier.citedreferenceZamudio, K. R., Bell, R. C., & Mason, N. A. ( 2016 ). Phenotypes in phylogeography: Speciesâ traits, environmental variation, and vertebrate diversification. Proceedings of the National Academy of Sciences of the United States of America, 113, 8041 â 8048. https://doi.org/10.1073/pnas.1602237113
dc.identifier.citedreferenceZhang, C., Yang, J., Sha, L., Ci, X., Li, J., Cao, M., â ¦ Lin, L. ( 2017 ). Lack of phylogenetic signals within environmental niches of tropical tree species across life stages. Scientific Reports, 7, 42007.
dc.identifier.citedreferenceAmeztegui, A. ( 2017 ). Plasticity: An R package to determine several plasticity indices. GitHub repository. Retrieved from https://github.com/ameztegui/Plasticity
dc.identifier.citedreferenceAngelard, C., Tanner, C. J., Fontanillas, P., Niculitaâ Hirzel, H., Masclaux, F., & Sanders, I. R. ( 2014 ). Rapid genotypic change and plasticity in arbuscular mycorrhizal fungi is caused by a host shift and enhanced by segregation. ISME Journal, 8, 284 â 294. https://doi.org/10.1038/ismej.2013.154
dc.identifier.citedreferenceBashi, E., & Rotem, J. ( 1974 ). Adaptation of four pathogens to semiâ arid habitats as conditioned by penetration rate and germinating spore survival. Phytopathology, 64, 1035 â 1039. https://doi.org/10.1094/Phyto-64-1035
dc.identifier.citedreferenceBates, D., Mächler, M., Bolker, B., & Walker, S. ( 2015 ). Fitting linear mixedâ effects models using lme4. Journal of Statistical Software, 67, 48. https://doi.org/10.1016/0022-0981(79)90003-0
dc.identifier.citedreferenceBecker, C. G., Greenspan, S. E., Tracy, K. E., Dash, J. A., Lambertini, C., Jenkinson, T. S., â ¦ Zamudio, K. R. ( 2017 ). Variation in phenotype and virulence among enzootic and panzootic amphibian chytrid lineages. Fungal Ecology, 26, 45 â 50. https://doi.org/10.1016/j.funeco.2016.11.007
dc.identifier.citedreferenceBerger, L., Hyatt, A. D., Speare, R., & Longcore, J. E. ( 2005 ). Life cycle stages of the amphibian chytrid Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms, 68, 51 â 63. https://doi.org/10.3354/dao068051
dc.identifier.citedreferenceBerger, L., Speare, R., Hines, H. B., Marantelli, G., Hyatt, A. D., McDonald, K. R., â ¦ Tyler, M. J. ( 2004 ). Effect of season and temperature on mortality in amphibians due to chytridiomycosis. Australian Veterinary Journal, 82, 434 â 439. https://doi.org/10.1111/j.1751-0813.2004.tb11137.x
dc.identifier.citedreferenceBlomberg, S. P., Garland, T., & Ives, A. R. ( 2003 ). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57, 717 â 745. https://doi.org/10.1111/j.0014-3820.2003.tb00285.x
dc.identifier.citedreferenceBoyle, D. G., Hyatt, A. D., Daszak, P., Berger, L., Longcore, J. E., Porter, D., â ¦ Olson, V. ( 2003 ). Cryoâ archiving of Batrachochytrium dendrobatidis and other chytridiomycetes. Diseases of Aquatic Organisms, 56, 59 â 64. https://doi.org/10.3354/dao056059
dc.identifier.citedreferenceBradshaw, A. D. ( 1965 ). Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics, 13, 115 â 155. https://doi.org/10.1016/S0065-2660(08)60048-6
dc.identifier.citedreferenceBriggs, C. J., Knapp, R. A., & Vredenburg, V. T. ( 2010 ). Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians. Proceedings of the National Academy of Sciences of the United States of America, 107, 9695 â 9700. https://doi.org/10.1073/pnas.0912886107
dc.identifier.citedreferenceBurns, J. H., & Strauss, S. Y. ( 2012 ). Effects of competition on phylogenetic signal and phenotypic plasticity in plant functional traits. Ecology, 93, S126 â S137. https://doi.org/10.1890/11-0401.1
dc.identifier.citedreferenceCaroli, A., Frisoni, G. B., & Alzheimer’s Disease Neuroimaging Initiative ( 2010 ). The dynamics of Alzheimer’s disease biomarkers in the Alzheimer’s disease neuroimaging initiative cohort. Neurobiology of Aging, 31, 1263 â 1274. https://doi.org/10.1016/j.neurobiolaging.2010.04.024
dc.identifier.citedreferenceDavies, T. J., Wolkovich, E. M., Kraft, N. J. B., Salamin, N., Allen, J. M., Ault, T. R., â ¦ Bonser, S. ( 2013 ). Phylogenetic conservatism in plant phenology. Journal of Ecology, 101, 1520 â 1530. https://doi.org/10.1111/1365-2745.12154
dc.identifier.citedreferenceDesprezâ Loustau, M. L., Robin, C., Buee, M., Courtecuisse, R., Garbaye, J., Suffert, F., â ¦ Rizz, D. M. ( 2007 ). The fungal dimension of biological invasions. Trends in Ecology and Evolution, 22, 472 â 480. https://doi.org/10.1016/j.tree.2007.04.005
dc.identifier.citedreferenceDorman, M., Sapir, Y., & Volis, S. ( 2009 ). Local adaptation in four Iris species tested in a commonâ garden experimentbij_126. Biological Journal of the Linnean Society, 98, 267 â 277. https://doi.org/10.1111/j.1095-8312.2009.01265.x
dc.identifier.citedreferenceEllison, A. R., Tunstall, T., DiRenzo, G. V., Hughey, M. C., Rebollar, E. A., Belden, L. K., â ¦ Zamudio, K. R. ( 2014 ). More than skin deep: Functional genomic basis for resistance to amphibian chytridiomycosis. Genome Biology and Evolution, 7, 286 â 298.
dc.identifier.citedreferenceFarrer, R. A., Henk, D. A., Garner, T. W., Balloux, F., Woodhams, D. C., & Fisher, M. C. ( 2013 ). Chromosomal copy number variation, selection and uneven rates of recombination reveal cryptic genome diversity linked to pathogenicity. PLoS Genetics, 9, e1003703. https://doi.org/10.1371/journal.pgen.1003703
dc.identifier.citedreferenceFarrer, R. A., Weinert, L. A., Bielby, J., Garner, T. W., Balloux, F., Clare, F., â ¦ Fisher, M. C. ( 2011 ). Multiple emergences of genetically diverse amphibianâ infecting chytrids include a globalized hypervirulent recombinant lineage. Proceedings of the National Academy of Sciences of the United States of America, 108, 18732 â 18736. https://doi.org/10.1073/pnas.1111915108
dc.identifier.citedreferenceFisher, M. C., Bosch, J., Yin, Z., Stead, D. A., Walker, J., Selway, L., â ¦ Garner, T. W. ( 2009 ). Proteomic and phenotypic profiling of the amphibian pathogen Batrachochytrium dendrobatidis shows that genotype is linked to virulence. Molecular Ecology, 18, 415 â 429. https://doi.org/10.1111/j.1365-294X.2008.04041.x
dc.identifier.citedreferenceFisher, M. C., Henk, D. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L., & Gurr, S. J. ( 2012 ). Emerging fungal threats to animal, plant and ecosystem health. Nature, 484, 186 â 194. https://doi.org/10.1038/nature10947
dc.identifier.citedreferenceForsman, A., Ahnesjo, J., Caesar, S., & Karlsson, M. ( 2008 ). A model of ecological and evolutionary consequences of color polymorphism. Ecology, 89, 34 â 40. https://doi.org/10.1890/07-0572.1
dc.identifier.citedreferenceFoster, A. B. ( 1979 ). Phenotypic plasticity in the reef corals Montastraeaâ annularis (Ellis and Solander) and Siderastreaâ siderea (Ellis and Solander). Journal of Experimental Marine Biology and Ecology, 39, 25 â 54.
dc.identifier.citedreferenceFreckleton, R. P., Harvey, P. H., & Pagel, M. ( 2002 ). Phylogenetic analysis and comparative data: A test and review of evidence. The American Naturalist, 160, 712 â 726. https://doi.org/10.1086/343873
dc.identifier.citedreferenceGarbelotto, M., Rocca, G. D., Osmundson, T., di Lonardo, V., & Danti, R. ( 2015 ). An increase in transmissionâ related traits and in phenotypic plasticity is documented during a fungal invasion. Ecosphere, 6, art180.
dc.identifier.citedreferenceGhalambor, C. K., McKay, J. K., Carroll, S. P., & Reznick, D. N. ( 2007 ). Adaptive versus nonâ adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Functional Ecology, 21, 394 â 407. https://doi.org/10.1111/j.1365-2435.2007.01283.x
dc.identifier.citedreferenceGomezâ Mestre, I., & Buchholz, D. R. ( 2006 ). Developmental plasticity mirrors differences among taxa in spadefoot toads linking plasticity and diversity. Proceedings of the National Academy of Sciences of the United States of America, 103, 19021 â 19026. https://doi.org/10.1073/pnas.0603562103
dc.identifier.citedreferenceGravel, D., Albouy, C., & Thuiller, W. ( 2016 ). The meaning of functional trait composition of food webs for ecosystem functioning. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 371, 20150268.
dc.identifier.citedreferenceGreen, J. L., Bohannan, B. J. M., & Whitaker, R. J. ( 2008 ). Microbial biogeography: From taxonomy to traits. Science, 320, 1039 â 1043. https://doi.org/10.1126/science.1153475
dc.identifier.citedreferenceGreenspan, S. E., Lambertini, C., Carvalho, T., James, T. Y., Toledo, L. F., Haddad, C. F. B., & Becker, C. G. ( 2018 ). Hybrids of amphibian chytrid show high virulence in native hosts. Scientific Reports, 8, 9600. https://doi.org/10.1038/s41598-018-27828-w
dc.identifier.citedreferenceGreenspan, S. E., Longcore, J. E., & Calhoun, A. J. K. ( 2012 ). Host invasion by Batrachochytrium dendrobatidis: Fungal and epidermal ultrastructure in model anurans. Diseases of Aquatic Organisms, 100, 201 â 210. https://doi.org/10.3354/dao02483
dc.identifier.citedreferenceJames, T. Y., Toledo, L. F., Rodder, D., Leite, D. D., Belasen, A. M., Betancourtâ Roman, C. M., â ¦ Longcore, J. E. ( 2015 ). Disentangling host, pathogen, and environmental determinants of a recently emerged wildlife disease: Lessons from the first 15 years of amphibian chytridiomycosis research. Ecology and Evolution, 5, 4079 â 4097. https://doi.org/10.1002/ece3.1672
dc.identifier.citedreferenceJenkinson, T. S., Roman, C. M. B., Lambertini, C., Valenciaâ Aguilar, A., Rodriguez, D., Nunesâ deâ Almeida, C. H. L., â ¦ James, T. Y. ( 2016 ). Amphibianâ killing chytrid in Brazil comprises both locally endemic and globally expanding populations. Molecular Ecology, 25, 2978 â 2996. https://doi.org/10.1111/mec.13599
dc.identifier.citedreferenceKembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., â ¦ Webb, C. O. ( 2010 ). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463 â 1464. https://doi.org/10.1093/bioinformatics/btq166
dc.identifier.citedreferenceKriger, K. M., Pereoglou, F., & Hero, J. M. ( 2007 ). Latitudinal variation in the prevalence and intensity of chytrid ( Batrachochytrium dendrobatidis ) infection in eastern Australia. Conservation Biology, 21, 1280 â 1290. https://doi.org/10.1111/j.1523-1739.2007.00777.x
dc.identifier.citedreferenceLambertini, C., Becker, C. G., Jenkinson, T. S., Rodriguez, D., da Silva Leite, D., James, T. Y., â ¦ Toledo, L. F. ( 2016 ). Local phenotypic variation in amphibianâ killing fungus predicts infection dynamics. Fungal Ecology, 20, 15 â 21. https://doi.org/10.1016/j.funeco.2015.09.014
dc.identifier.citedreferenceLande, R. ( 2009 ). Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. Journal of Evolutionary Biology, 22, 1435 â 1446. https://doi.org/10.1111/j.1420-9101.2009.01754.x
dc.identifier.citedreferenceLennon, J. T., Aanderud, Z. T., Lehmkuhl, B. K., & Schoolmaster, D. R. Jr ( 2012 ). Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology, 93, 1867 â 1879. https://doi.org/10.1890/11-1745.1
dc.identifier.citedreferenceLenth, R. V. ( 2016 ). Leastâ squares means: The R package lsmeans. Journal of Statistical Software, 1 ( 1 ), 1 â 33.
dc.identifier.citedreferenceLips, K. R., Brem, F., Brenes, R., Reeve, J. D., Alford, R. A., Voyles, J., â ¦ Collins, J. P. ( 2006 ). Emerging infectious disease and the loss of biodiversity in a neotropical amphibian community. Proceedings of the National Academy of Sciences of the United States of America, 103, 3165 â 3170. https://doi.org/10.1073/pnas.0506889103
dc.identifier.citedreferenceLongo, A. V., Burrowes, P. A., & Joglar, R. L. ( 2010 ). Seasonality of Batrachochytrium dendrobatidis infection in directâ developing frogs suggests a mechanism for persistence. Diseases of Aquatic Organisms, 92, 253 â 260.
dc.identifier.citedreferenceLongo, A. V., & Zamudio, K. R. ( 2017 ). Environmental fluctuations and host skin bacteria shift survival advantage between frogs and their fungal pathogen. ISME Journal, 11, 349 â 361. https://doi.org/10.1038/ismej.2016.138
dc.identifier.citedreferenceMaguire, C., DiRenzo, G. V., Tunstall, T. S., Muletz, C. R., Zamudio, K. R., & Lips, K. R. ( 2016 ). Dead or alive? Viability of chytrid zoospores shed from live amphibian hosts. Diseases of Aquatic Organisms, 119, 179 â 187. https://doi.org/10.3354/dao02991
dc.identifier.citedreferenceMartiny, A. C., Treseder, K., & Pusch, G. ( 2013 ). Phylogenetic conservatism of functional traits in microorganisms. ISME Journal, 7, 830 â 838. https://doi.org/10.1038/ismej.2012.160
dc.identifier.citedreferenceMatesanz, S., Gianoli, E., & Valladares, F. ( 2010 ). Global change and the evolution of phenotypic plasticity in plants. Annals of the New York Academy of Sciences, 1206, 35 â 55.
dc.identifier.citedreferenceMcGill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. ( 2006 ). Rebuilding community ecology from functional traits. Trends in Ecology and Evolution, 21, 178 â 185. https://doi.org/10.1016/j.tree.2006.02.002
dc.identifier.citedreferenceMuggia, L., Perezâ Ortega, S., Fryday, A., Spribille, T., & Grube, M. ( 2014 ). Global assessment of genetic variation and phenotypic plasticity in the lichenâ forming species Tephromela atra. Fungal Diversity, 64, 233 â 251. https://doi.org/10.1007/s13225-013-0271-4
dc.identifier.citedreferenceMuletz Wolz, C. R., Yarwood, S. A., Campbell Grant, E. H., Fleischer, R. C., & Lips, K. R. ( 2018 ). Effects of host species and environment on the skin microbiome of Plethodontid salamanders. Journal of Animal Ecology, 87, 341 â 353.
dc.identifier.citedreferenceNicotra, A. B., Atkin, O. K., Bonser, S. P., Davidson, A. M., Finnegan, E. J., Mathesius, U., â ¦ van Kleunen, M. ( 2010 ). Plant phenotypic plasticity in a changing climate. Trends in Plant Science, 15, 684 â 692. https://doi.org/10.1016/j.tplants.2010.09.008
dc.identifier.citedreferenceO’Hanlon, S. J., Rieux, A., Farrer, R. A., Rosa, G. M., Waldman, B., Bataille, A., â ¦ Fisher, M. C. ( 2018 ). Recent Asian origin of chytrid fungi causing global amphibian declines. Science, 360, 621 â 627. https://doi.org/10.1126/science.aar1965
dc.identifier.citedreferenceOhmer, M. E. B., Cramp, R. L., Russo, C. J. M., White, C. R., & Franklin, C. E. ( 2017 ). Skin sloughing in susceptible and resistant amphibians regulates infection with a fungal pathogen. Scientific Reports, 7, 3529. https://doi.org/10.1038/s41598-017-03605-z
dc.identifier.citedreferenceOlson, D. H., Aanensen, D. M., Ronnenberg, K. L., Powell, C. I., Walker, S. F., Bielby, J., â ¦ Bd Mapping Group ( 2013 ). Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLoS One, 8, e56802.
dc.identifier.citedreferenceParadis, E., Claude, J., & Strimmer, K. ( 2004 ). APE: Analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289 â 290. https://doi.org/10.1093/bioinformatics/btg412
dc.identifier.citedreferencePelini, S. L., Diamond, S. E., MacLean, H., Ellison, A. M., Gotelli, N. J., Sanders, N. J., & Dunn, R. R. ( 2012 ). Common garden experiments reveal uncommon responses across temperatures, locations, and species of ants. Ecology and Evolution, 2, 3009 â 3015. https://doi.org/10.1002/ece3.407
dc.identifier.citedreferencePigliucci, M., Cammell, K., & Schmitt, J. ( 1999 ). Evolution of phenotypic plasticity a comparative approach in the phylogenetic neighbourhood of Arabidopsis thaliana. Journal of Evolutionary Biology, 12, 779 â 791. https://doi.org/10.1046/j.1420-9101.1999.00074.x
dc.identifier.citedreferencePigliucci, M., Murren, C. J., & Schlichting, C. D. ( 2006 ). Phenotypic plasticity and evolution by genetic assimilation. Journal of Experimental Biology, 209, 2362 â 2367. https://doi.org/10.1242/jeb.02070
dc.identifier.citedreferencePiotrowski, J. S., Annis, S. L., & Longcore, J. E. ( 2004 ). Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia, 96, 9 â 15. https://doi.org/10.1080/15572536.2005.11832990
dc.identifier.citedreferencePioviaâ Scott, J., Pope, K., Worth, S. J., Rosenblum, E. B., Poorten, T., Refsnider, J., â ¦ Foley, J. ( 2015 ). Correlates of virulence in a frogâ killing fungal pathogen: Evidence from a California amphibian decline. ISME Journal, 9, 1570 â 1578. https://doi.org/10.1038/ismej.2014.241
dc.identifier.citedreferencePollard, H., Cruzan, M., & Pigliucci, M. ( 2001 ). Comparative studies of reaction norms in Arabidopsis. I. Evolution of response to daylength. Evolutionary Ecology Research, 3, 129 â 155.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.