Show simple item record

Physicochemical and biological properties of novel chlorhexidine‐loaded nanotube‐modified dentin adhesive

dc.contributor.authorFeitosa, Sabrina A.
dc.contributor.authorPalasuk, Jadesada
dc.contributor.authorGeraldeli, Saulo
dc.contributor.authorWindsor, Lester Jack
dc.contributor.authorBottino, Marco C.
dc.date.accessioned2019-03-11T15:35:01Z
dc.date.available2020-06-01T14:50:01Zen
dc.date.issued2019-04
dc.identifier.citationFeitosa, Sabrina A.; Palasuk, Jadesada; Geraldeli, Saulo; Windsor, Lester Jack; Bottino, Marco C. (2019). "Physicochemical and biological properties of novel chlorhexidine‐loaded nanotube‐modified dentin adhesive." Journal of Biomedical Materials Research Part B: Applied Biomaterials 107(3): 868-875.
dc.identifier.issn1552-4973
dc.identifier.issn1552-4981
dc.identifier.urihttps://hdl.handle.net/2027.42/148225
dc.description.abstractA commercially available three‐step (etch‐and‐rinse) adhesive was modified by adding chlorhexidine (CHX)‐loaded nanotubes (Halloysite®, HNT) at two concentrations (CHX10% and CHX20%). The experimental groups were: SBMP (unmodified adhesive, control), HNT (SBMP modified with HNT), CHX10 (SBMP modified with HNT loaded with CHX10%), and CHX20 (SBMP modified with HNT loaded with CHX20%). Changes in the degree of conversion (DC%), Knoop hardness (KHN), water sorption (WS), solubility (SL), antimicrobial activity, cytotoxicity, and anti‐matrix metalloproteinase [MMP‐1] activity (collagenase‐I) were evaluated. In regards to DC%, two‐way ANOVA followed by Tukey’s post‐hoc test revealed that only the factor “adhesive” was statistically significant (p < 0.05). No significant differences were detected in DC% when 20 s light‐curing was used (p > 0.05). For Knoop microhardness, one‐way ANOVA followed by the Tukey’s test showed statistically significant differences when comparing HNT (20.82 ± 1.65) and CHX20% (21.71 ± 2.83) with the SBMP and CHX10% groups. All adhesives presented similar WS and cytocompatibility. The CHX‐loaded nanotube‐modified adhesive released enough CHX to inhibit the growth of S. mutans and L. casei. Adhesive eluates were not able to effectively inhibit MMP‐1 activity. The evaluation of higher CHX concentrations might be necessary to provide an effective and predictable MMP inhibition. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res B Part B, 2018. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 868–875, 2019.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherhalloysite
dc.subject.otherchlorhexidine
dc.subject.othernanotubes
dc.subject.othermatrix metalloproteinase
dc.subject.otheradhesive
dc.subject.otherdentin
dc.titlePhysicochemical and biological properties of novel chlorhexidine‐loaded nanotube‐modified dentin adhesive
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiomedical Engineering
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148225/1/jbmb34183_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148225/2/jbmb34183.pdf
dc.identifier.doi10.1002/jbm.b.34183
dc.identifier.sourceJournal of Biomedical Materials Research Part B: Applied Biomaterials
dc.identifier.citedreferenceAli AA, El Deeb HA, Badran O, Mobarak EH. Bond durability of self‐etch adhesive to ethanol‐based chlorhexidine pretreated dentin after storage in artificial saliva and under intrapulpal pressure simulation. Oper Dent 2013; 38 ( 4 ): 439 – 446.
dc.identifier.citedreferenceInternational Organization for Standardization. Biological evaluation of medical devices. Part 5: Tests for cytotoxicity: in vitro methods, 1993. ISO 10993‐5.
dc.identifier.citedreferenceGregson KS, Shih H, Gregory RL. The impact of three strains of oral bacteria on the surface and mechanical properties of a dental resin material. Clin Oral Investig 2012; 16 ( 4 ): 1095 – 1103.
dc.identifier.citedreferenceHuang R, Li M, Gregory RL. Effect of nicotine on growth and metabolism of Streptococcus mutans. Eur J Oral Sci 2012; 120 ( 4 ): 319 – 325.
dc.identifier.citedreferenceBirkedal‐Hansen H, Yamada S, Windsor J, Poulsen AH, Lyons G, Stetler‐Stevenson W, Birkedal‐Hansen B. Matrix metalloproteinases. Curr Protoc Cell Biol 2003; 17 ( 1 ): 10.8.1 – 10.8.23.
dc.identifier.citedreferenceWindsor LJ, Steele DL, LeBlanc SB, Taylor KB. Catalytic domain comparisons of human fibroblast‐type collagenase, stromelysin‐1, and matrilysin. Biochim Biophys Acta 1997; 1334 ( 2–3 ): 261 – 272.
dc.identifier.citedreferenceFu Y, Zhao D, Yao P, Wang W, Zhang L, Lvov Y. Highly aging‐resistant elastomers doped with antioxidant‐loaded clay nanotubes. ACS Appl Mater Interfaces 2015; 7 ( 15 ): 8156 – 8165.
dc.identifier.citedreferenceLvov YM, Shchukin DG, Möhwald H, Price RR. Halloysite clay nanotubes for controlled release of protective agents. ACS Nano 2008; 2 ( 5 ): 814 – 820.
dc.identifier.citedreferenceTully J, Yendluri R, Lvov Y. Halloysite clay nanotubes for enzyme immobilization. Biomacromolecules 2016; 17 ( 2 ): 615 – 621.
dc.identifier.citedreferenceLvov Y, Wang W, Zhang L, Fakhrullin R. Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater 2016; 28 ( 6 ): 1227 – 1250.
dc.identifier.citedreferenceIto S, Hashimoto M, Wadgaonkar B, Svizero N, Carvalho RM, Yiu C, Rueggeberg FA, Foulger S, Saito T, Nishitani Y, Yoshiyama M, Tay FR, Pashley DH. Effects of resin hydrophilicity on water sorption and changes in modulus of elasticity. Biomaterials 2005; 26 ( 33 ): 6449 – 6459.
dc.identifier.citedreferenceVitória LA, Aguiar TR, Santos PR, Cavalcanti AN, Mathias P. Changes in water sorption and solubility of dental adhesive systems after cigarette smoke. ISRN Dent 2013; 2013: 5. http://dx.doi.org/10.1155/2013/605847, Article ID 605847.
dc.identifier.citedreferenceFabre HS, Fabre S, Cefaly DF, de Oliveira Carrilho MR, Garcia FC, Wang L. Water sorption and solubility of dentin bonding agents light‐cured with different light sources. J Dent 2007; 35 ( 3 ): 253 – 258.
dc.identifier.citedreferenceMcDonnell G, Russell AD. Antiseptics and disinfectants: Activity, action, and resistance. Clin Microbiol Rev 1999; 12 ( 1 ): 147 – 179.
dc.identifier.citedreferenceSacramento PA, de Castilho AR, Banzi EC, Puppi‐Rontani RM. Influence of cavity disinfectant and adhesive systems on the bonding procedure in demineralized dentin—A one‐year in vitro evaluation. J Adhes Dent 2012; 14 ( 6 ): 575 – 583.
dc.identifier.citedreferenceStanislawczuk R, Amaral RC, Zander‐Grande C, Gagler D, Reis A, Loguercio AD. Chlorhexidine‐containing acid conditioner preserves the longevity of resin‐dentin bonds. Oper Dent 2009; 34 ( 4 ): 481 – 490.
dc.identifier.citedreferenceStanislawczuk R, Pereira F, Muñoz MA, Luque I, Farago PV, Reis A, Loguercio AD. Effects of chlorhexidine‐containing adhesives on the durability of resin‐dentine interfaces. J Dent 2014; 42 ( 1 ): 39 – 47.
dc.identifier.citedreferenceVergaro V, Abdullayev E, Lvov YM, Zeitoun A, Cingolani R, Rinaldi R, Leporatti S. Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromolecules 2010; 11 ( 3 ): 820 – 826.
dc.identifier.citedreferenceda Silva EM, de Sá Rodrigues CU, de Oliveira Matos MP, de Carvalho TR, Dos Santos GB, Amaral CM. Experimental etch‐and‐rinse adhesive systems containing MMP‐inhibitors: Physicochemical characterization and resin‐dentin bonding stability. J Dent 2015; 43 ( 12 ): 1491 – 1497.
dc.identifier.citedreferencePerote LC, Kamozaki MB, Gutierrez NC, Tay FR, Pucci CR. Effect of matrix metalloproteinase‐inhibiting solutions and aging methods on dentin bond strength. J Adhes Dent 2015; 17 ( 4 ): 347 – 352.
dc.identifier.citedreferenceMurphy G. Matrix metalloproteinases and their inhibitors. Acta Orthop Scand Suppl 1995; 266: 55 – 60.
dc.identifier.citedreferenceNagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 2006; 69 ( 3 ): 562 – 573.
dc.identifier.citedreferenceSambandam V, Neelakantan P. Matrix metalloproteinases (MMP) in restorative dentistry and endodontics. J Clin Pediatr Dent 2014; 39 ( 1 ): 57 – 59.
dc.identifier.citedreferenceWang D, Zhang L, Li F, Ma K, Chen J. Localization and quantitative detection of matrix metalloproteinase in human coronal dentine. Zhonghua Kou Qiang Yi Xue Za Zhi 2014; 49: 688 – 692.
dc.identifier.citedreferenceGendron R, Grenier D, Sorsa T, Mayrand D. Inhibition of the activities of matrix metalloproteinases 2, 8, and 9 by chlorhexidine. Clin Diagn Lab Immunol 1999; 6 ( 3 ): 437 – 439.
dc.identifier.citedreferenceWang D, Zhang L, Li F, Xu S, Chen J. Study of the types of matrix metalloproteinases involved in dentin bonding interface degradation. Hua Xi Kou Qiang Yi Xue Za Zhi 2014; 32: 394 – 399.
dc.identifier.citedreferenceNakabayashi N, Nakamura M, Yasuda N. Hybrid layer as a dentin‐bonding mechanism. J Esthet Dent 1991; 3 ( 4 ): 133 – 138.
dc.identifier.citedreferenceFrankenberger R, Pashley DH, Reich SM, Lohbauer U, Petschelt A, Tay FR. Characterization of resin‐dentine interfaces by compressive cyclic loading. Biomaterials 2005; 26 ( 14 ): 2043 – 2052.
dc.identifier.citedreferenceBreschi L, Mazzoni A, Nato F, Carrilho M, Visintini E, Tjäderhane L, Ruggeri A Jr, Tay FR, Dorigo E d S, Pashley DH. Chlorhexidine stabilizes the adhesive interface: A 2‐year in vitro study. Dent Mater 2010; 26 ( 4 ): 320 – 325.
dc.identifier.citedreferenceLiu Y, Tjäderhane L, Breschi L, Mazzoni A, Li N, Mao J, Pashley DH, Tay FR. Limitations in bonding to dentin and experimental strategies to prevent bond degradation. J Dent Res 2011; 90 ( 8 ): 953 – 968.
dc.identifier.citedreferenceFrassetto A, Breschi L, Turco G, Marchesi G, Di Lenarda R, Tay FR, Pashley DH, Cadenaro M. Mechanisms of degradation of the hybrid layer in adhesive dentistry and therapeutic agents to improve bond durability—A literature review. Dent Mater 2016; 32 ( 2 ): 41 – 53.
dc.identifier.citedreferenceMazzoni A, Pashley DH, Nishitani Y, Breschi L, Mannello F, Tjäderhane L, Toledano M, Pashley EL, Tay FR. Reactivation of inactivated endogenous proteolytic activities in phosphoric acid‐etched dentine by etch‐and‐rinse adhesives. Biomaterials 2006; 27 ( 25 ): 4470 – 4476.
dc.identifier.citedreferencePashley DH, Tay FR, Yiu C, Hashimoto M, Breschi L, Carvalho RM, Ito S. Collagen degradation by host‐derived enzymes during aging. J Dent Res 2004; 83 ( 3 ): 216 – 221.
dc.identifier.citedreferencePashley DH, Tay FR, Breschi L, Tjäderhane L, Carvalho RM, Carrilho M, Tezvergil‐Mutluay A. State of the art etch‐and‐rinse adhesives. Dent Mater 2011; 27 ( 1 ): 1 – 16.
dc.identifier.citedreferenceChaussain‐Miller C, Fioretti F, Goldberg M, Menashi S. The role of matrix metalloproteinases (MMPs) in human caries. J Dent Res 2006; 85 ( 1 ): 22 – 32.
dc.identifier.citedreferenceTjäderhane L, Larjava H, Sorsa T, Uitto VJ, Larmas M, Salo T. The activation and function of host matrix metalloproteinases in dentin matrix breakdown in caries lesions. J Dent Res 1998; 77 ( 8 ): 1622 – 1629.
dc.identifier.citedreferenceVisse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ Res 2003; 92 ( 8 ): 827 – 839.
dc.identifier.citedreferenceSulkala M, Tervahartiala T, Sorsa T, Larmas M, Salo T, Tjäderhane L. Matrix metalloproteinase‐8 (MMP‐8) is the major collagenase in human dentin. Arch Oral Biol 2007; 52 ( 2 ): 121 – 127.
dc.identifier.citedreferenceTjäderhane L, Nascimento FD, Breschi L, Mazzoni A, Tersariol ILS, Geraldeli S, Tezvergil‐Mutluay A, Carrilho M, Carvalho RM, Tay FR, Pashley DH. Optimizing dentin bond durability: Strategies to prevent hydrolytic degradation of the hybrid layer. Dent Mater 2013; 29 ( 10 ): 999 – 1011.
dc.identifier.citedreferenceZheng P, Chen H. Evaluate the effect of different mmps inhibitors on adhesive physical properties of dental adhesives, bond strength and mmp substarte activity. Sci Rep 2017; 7 ( 1 ): 4975.
dc.identifier.citedreferenceda Silva EM, de Sá Rodrigues CU, de Oliveira Matos MP, de Carvalho TR, dos Santos GB, Amaral CM. Experimental etch‐and‐rinse adhesive systems containing MMP‐inhibitors: Physicochemical characterization and resin‐dentin bonding stability. J Dent 2015; 43 ( 12 ): 1491 – 1497.
dc.identifier.citedreferenceDe Munck J, Van den Steen PE, Mine A, Van Landuyt KL, Poitevin A, Opdenakker G, Van Meerbeek B. Inhibition of enzymatic degradation of adhesive‐dentin interfaces. J Dent Res 2009; 88 ( 12 ): 1101 – 1106.
dc.identifier.citedreferenceCadenaro M, Pashley DH, Marchesi G, Carrilho M, Antoniolli F, Mazzoni A, Tay FR, Di Lenarda R, Breschi L. Influence of chlorhexidine on the degree of conversion and E‐modulus of experimental adhesive blends. Dent Mater 2009; 25 ( 10 ): 1269 – 1274.
dc.identifier.citedreferenceAlkatheeri MS, Palasuk J, Eckert GJ, Platt JA, Bottino MC. Halloysite nanotube incorporation into adhesive systems‐effect on bond strength to human dentin. Clin Oral Investig 2015; 19 ( 8 ): 1905 – 1912.
dc.identifier.citedreferenceBottino MC, Batarseh G, Palasuk J, Alkatheeri MS, Windsor LJ, Platt JA. Nanotube‐modified dentin adhesive—Physicochemical and dentin bonding characterizations. Dent Mater 2013; 29 ( 11 ): 1158 – 1165.
dc.identifier.citedreferenceFeitosa SA, Palasuk J, Kamocki K, Geraldeli S, Gregory RL, Platt JA, Windsor LJ, Bottino MC. Doxycycline‐encapsulated nanotube‐modified dentin adhesives. J Dent Res 2014; 93 ( 12 ): 1270 – 1276.
dc.identifier.citedreferenceFeitosa SA, Münchow EA, Al‐Zain AO, Kamocki K, Platt JA, Bottino MC. Synthesis and characterization of novel halloysite‐incorporated adhesive resins. J Dent 2015; 43 ( 11 ): 1316 – 1322.
dc.identifier.citedreferencePalasuk J, Windsor LJ, Platt JA, Lvov Y, Geraldeli S, Bottino MC. Doxycycline‐loaded nanotube‐modified adhesives inhibit MMP in a dose‐dependent fashion. Clin Oral Investig 2018; 22 ( 3 ): 1243 – 1252.
dc.identifier.citedreferenceBourbia M, Ma D, Cvitkovitch DG, Santerre JP, Finer Y. Cariogenic bacteria degrade dental resin composites and adhesives. J Dent Res 2013; 92 ( 11 ): 989 – 994.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.