Show simple item record

Detonation Velocity Measurement of a Hydrogen Peroxide Solvate of CL‐20

dc.contributor.authorVuppuluri, Vasant S.
dc.contributor.authorBennion, Jonathan C.
dc.contributor.authorWiscons, Ren A.
dc.contributor.authorGunduz, I. Emre
dc.contributor.authorMatzger, Adam J.
dc.contributor.authorSon, Steven F.
dc.date.accessioned2019-03-11T15:35:02Z
dc.date.available2020-05-01T18:03:25Zen
dc.date.issued2019-03
dc.identifier.citationVuppuluri, Vasant S.; Bennion, Jonathan C.; Wiscons, Ren A.; Gunduz, I. Emre; Matzger, Adam J.; Son, Steven F. (2019). "Detonation Velocity Measurement of a Hydrogen Peroxide Solvate of CL‐20." Propellants, Explosives, Pyrotechnics 44(3): 313-318.
dc.identifier.issn0721-3115
dc.identifier.issn1521-4087
dc.identifier.urihttps://hdl.handle.net/2027.42/148226
dc.description.abstractSynthesis and development of new energetic molecules is a resource‐intensive process, yielding materials with relatively unpredictable performance properties. Cocrystallization and crystalline solvate formation have been explored as possible routes towards developing new energetic materials that reduce the initial investment required for discovery and performance uncertainty because existing energetic molecules with known properties serve as the constituents. The formation of a hydrogen peroxide (HP) solvate of CL‐20 was previously reported and has a density comparable to that of ϵ‐CL‐20, the densest and most stable polymorph of CL‐20. CL‐20/HP produces a second crystalline form, which was unexpected given the high density of the original CL‐20/HP solvate. Both forms were predicted to have improved detonation performance relative to that of ϵ‐CL‐20. In this work, the detonation velocity of a solvate of CL‐20/HP is measured and compared to that of CL‐20. Using the measured enthalpy of formation, the solvate was predicted to detonate 80 m s−1 faster at a powder density of 1.4 g cm−3; however, experimentally, the solvate detonates 300 m s−1 faster than CL‐20. Thermochemical predictions are also used to show that the solvate detonates 100 m s−1 faster than ϵ‐CL‐20 at the theoretical maximum density, making it the first energetic cocrystal or solvate of ϵ‐CL‐20 predicted to detonate faster than CL‐20 at full density.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherCL-20
dc.subject.othersolvate
dc.subject.otherdetonation
dc.titleDetonation Velocity Measurement of a Hydrogen Peroxide Solvate of CL‐20
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148226/1/prep201800202.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148226/2/prep201800202_am.pdf
dc.identifier.doi10.1002/prep.201800202
dc.identifier.sourcePropellants, Explosives, Pyrotechnics
dc.identifier.citedreferenceS. R. Anderson, P. Dubé, M. Krawiec, J. S. Salan, D. J. am Ende, P. Samuels, Promising CL-20- based energetic material by cocrystallization. Propellants Explos. Pyrotech. 2016, 41, 783–786.
dc.identifier.citedreferenceG. F. Cawsey, J. L. Farrands, S. Thomas, Observations of Detonation in Solid Explosives by Microwave Interferometry. Proc. R. Soc. A: Math. Phys. Eng. Sci. 1958, 248, 499–521.
dc.identifier.citedreferenceP. L. M. Heydemann, Determination and correction of quadrature fringe measurement errors in interferometers. Appl. Opt. 1981, 20, 3382–3384.
dc.identifier.citedreferenceE. Layer, K. Tomczyk, Hilbert Transform. in: Signal Transforms in Dynamic Measurements, Springer, 2015, p. 107.
dc.identifier.citedreferenceD. E. Kittell, J. O. Mares, S. F. Son,Using time-frequency analysis to determine time-resolved detonation velocity with microwave interferometry. Rev. Sci. Instrum. 2015, 86, 044705.
dc.identifier.citedreferenceW. Gander, G. H. Golub, R. Strebel, Least-squares fitting of circles and ellipses. BIT 1994, 34, 558–578.
dc.identifier.citedreferenceV. S. Vuppuluri, P. J. Samuels, K. C. Caflin, I. E. Gunduz, S. F. Son, Detonation Performance Characterization of a Novel CL-20 Cocrystal Using Microwave Interferometry. Propellants Explos. Pyrotech. 2018, 43, 38–47.
dc.identifier.citedreferenceK. A. Kersten, R. Kaur, A. J. Matzger, Survey and analysis of crystal polymorphism in organic structures. Int. Union Crystallogr. J. 2018, 5, 124–129.
dc.identifier.citedreferenceA. T. Nielsen, A. P. Chafin, S. L. Christian, D. W. Moore, M. P. Nadler, R. A. Nissan, D. J. Vanderah, R. D. Gilardi, C. F. George, J. L. Flippen-Anderson, Synthesis of polyazapolycyclic caged polynitramines. Tetrahedron 1998, 54, 11793–11812.
dc.identifier.citedreferenceK. B. Landenberger, A. J. Matzger, Cocrystals of 1,3,5,7-Tetranitro-1,3,5,7-tetrazacyclooctane (HMX). Cryst. Growth Des. 2012, 12, 3603–3609.
dc.identifier.citedreferenceJ. C. Bennion, N. Chowdhury, J. W. Kampf, A. J. Matzger, Hydrogen Peroxide Solvates of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane. Angew. Chem. Int. Ed. 2016, 55, 13118–13121; Angew. Chem. 2016, 128, 13312–13315.
dc.identifier.citedreferenceO. Bolton, A. J. Matzger, Improved stability and smart-material functionality realized in an energetic cocrystal. Angew. Chem. Int. Ed. 2011, 50, 8960–8963; Angew. Chem. 2011, 123, 9122–9125.
dc.identifier.citedreferenceO. Bolton, L. R. Simke, P. F. Pagoria, A. J. Matzger, High Power Explosive with Good Sensitivity: A 2 : 1 Cocrystal of CL-20:HMX. Cryst. Growth Des. 2012, 12, 4311–4314.
dc.identifier.citedreferenceS. L. Bastea, L. E. Fried, K. R. Glaeseman, W. M. Howard, I. F. W. Kuo, P. C. Souers, P. A. Vitello, Cheetah 7.0 thermochemical code. Lawrence Livermore National Laboratory, Livermore, CA, 2012.
dc.identifier.citedreferenceB. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszevski, S. J. Bittner, S. G. Nijsure, K. A. Amin, M. Minko, A. F. Wagner, Introduction to active thermochemical tables: several key enthalpies of formation revisited. J. Phys. Chem. A, 2004, 108, 9979–9997.
dc.identifier.citedreferenceR. L. Simpson, P. A. Urtiew, D. L. Ornellas, G. L. Moody, K. J. Scribner, D. M. Hoffman, CL- 20 performance exceeds that of HMX and its sensitivity is moderate. Propellants Explos. Pyrotech. 1997, 22, 249–255.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.