Show simple item record

Regional subcortical shape analysis in premanifest Huntington’s disease

dc.contributor.authorTang, Xiaoying
dc.contributor.authorRoss, Christopher A.
dc.contributor.authorJohnson, Hans
dc.contributor.authorPaulsen, Jane S.
dc.contributor.authorYounes, Laurent
dc.contributor.authorAlbin, Roger L.
dc.contributor.authorRatnanather, J. Tilak
dc.contributor.authorMiller, Michael I.
dc.date.accessioned2019-03-11T15:35:37Z
dc.date.available2020-06-01T14:50:01Zen
dc.date.issued2019-04-01
dc.identifier.citationTang, Xiaoying; Ross, Christopher A.; Johnson, Hans; Paulsen, Jane S.; Younes, Laurent; Albin, Roger L.; Ratnanather, J. Tilak; Miller, Michael I. (2019). "Regional subcortical shape analysis in premanifest Huntington’s disease." Human Brain Mapping 40(5): 1419-1433.
dc.identifier.issn1065-9471
dc.identifier.issn1097-0193
dc.identifier.urihttps://hdl.handle.net/2027.42/148249
dc.description.abstractHuntington’s disease (HD) involves preferential and progressive degeneration of striatum and other subcortical regions as well as regional cortical atrophy. It is caused by a CAG repeat expansion in the Huntingtin gene, and the longer the expansion the earlier the age of onset. Atrophy begins prior to manifest clinical signs and symptoms, and brain atrophy in premanifest expansion carriers can be studied. We employed a diffeomorphometric pipeline to contrast subcortical structures’ morphological properties in a control group with three disease groups representing different phases of premanifest HD (far, intermediate, and near to onset) as defined by the length of the CAG expansion and the participant’s age (CAG‐Age‐Product). A total of 1,428 magnetic resonance image scans from 694 participants from the PREDICT‐HD cohort were used. We found significant region‐specific atrophies in all subcortical structures studied, with the estimated abnormality onset time varying from structure to structure. Heterogeneous shape abnormalities of caudate nuclei were present in premanifest HD participants estimated furthest from onset and putaminal shape abnormalities were present in participants intermediate to onset. Thalamic, hippocampal, and amygdalar shape abnormalities were present in participants nearest to onset. We assessed whether the estimated progression of subcortical pathology in premanifest HD tracked specific pathways. This is plausible for changes in basal ganglia circuits but probably not for changes in hippocampus and amygdala. The regional shape analyses conducted in this study provide useful insights into the effects of HD pathology in subcortical structures.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othersubregion
dc.subject.othersubcortical structures
dc.subject.othershape
dc.subject.otherpremanifest Huntington’s disease
dc.subject.othercircuit
dc.titleRegional subcortical shape analysis in premanifest Huntington’s disease
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurosciences
dc.subject.hlbsecondlevelKinesiology and Sports
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148249/1/hbm24456.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148249/2/hbm24456_am.pdf
dc.identifier.doi10.1002/hbm.24456
dc.identifier.sourceHuman Brain Mapping
dc.identifier.citedreferenceSurmeier, D. J., Obeso, J. A., & Halliday, G. M. ( 2017 ). Parkinson’s disease is not simply a prion disorder. The Journal of Neuroscience, 37, 9799 – 9807.
dc.identifier.citedreferenceReiner, A., Wang, H. B., Del Mar, N., Sakata, K., Yoo, W., & Deng, Y. P. ( 2012 ). BDNF may play a differential role in the protective effect of the mGluR2/3 agonist LY379268 on striatal projection neurons in R6/2 Huntington’s disease mice. Brain Research, 1473, 161 – 172.
dc.identifier.citedreferenceRichfield, E. K., & Herkenham, M. ( 1994 ). Selective vulnerability in Huntington’s disease: Preferential loss of cannabinoid receptors in lateral globus pallidus. Annals of Neurology, 36, 577 – 584.
dc.identifier.citedreferenceRosenblatt, A., Liang, K., Zhou, H., Abbott, M. H., Gourley, L. M., Margolis, R. L., … Ross, C. A. ( 2006 ). The association of CAG repeat length with clinical progression in Huntington disease. Neurology, 66, 1016 – 1020.
dc.identifier.citedreferenceRoss, C. A., Aylward, E. H., Wild, E. J., Langbehn, D. R., Long, J. D., Warner, J. H., … Tabrizi, S. J. ( 2014 ). Huntington disease: Natural history, biomarkers and prospects for therapeutics. Nature Reviews Neurology, 10, 204 – 216.
dc.identifier.citedreferenceRub, U., Seidel, K., Heinsen, H., Vonsattel, J. P., den Dunnen, W. F., & Korf, H. W. ( 2016 ). Huntington’s disease (HD): The neuropathology of a multisystem neurodegenerative disorder of the human brain. Brain Pathology, 26, 726 – 740.
dc.identifier.citedreferenceSapp, E., Ge, P., Aizawa, H., Bird, E., Penney, J., Young, A. B., … DiFiglia, M. ( 1995 ). Evidence for a preferential loss of enkephalin immunoreactivity in the external globus pallidus in low grade Huntington’s disease using high resolution image analysis. Neuroscience, 64, 397 – 404.
dc.identifier.citedreferenceSelemon, L. D., & Goldman‐Rakic, P. S. ( 1985 ). Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. The Journal of Neuroscience, 5, 776 – 794.
dc.identifier.citedreferenceSmall, S. A., Nava, A. S., Perera, G. M., Delapaz, R., & Stern, Y. ( 2000 ). Evaluating the function of hippocampal subregions with high‐resolution MRI in Alzheimer’s disease and aging. Microscopy Research and Technique, 51, 101 – 108.
dc.identifier.citedreferenceTabrizi, S. J., Langbehn, D. R., Leavitt, B. R., Roos, R. A., Durr, A., Craufurd, D., … TRACK‐HD Investigators. ( 2009 ). Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK‐HD study: Cross‐sectional analysis of baseline data. Lancet Neurology, 8, 791 – 801.
dc.identifier.citedreferenceTabrizi, S. J., Scahill, R. I., Owen, G., Durr, A., Leavitt, B. R., Roos, R. A., … TRACK‐HD Investigators. ( 2013 ). Predictors of phenotypic progression and disease onset in premanifest and early‐stage Huntington’s disease in the TRACK‐HD study: Analysis of 36‐month observational data. Lancet Neurology, 12, 637 – 649.
dc.identifier.citedreferenceTang, X., Crocetti, D., Kutten, K., Ceritoglu, C., Albert, M. S., Mori, S., … Miller, M. I. ( 2015 ). Segmentation of brain magnetic resonance images based on multi‐atlas likelihood fusion: Testing using data with a broad range of anatomical and photometric profiles. Frontiers in Neuroscience, 9, 61.
dc.identifier.citedreferenceTang, X., Holland, D., Dale, A. M., Younes, L., & Miller, M. I. ( 2015 ). Baseline shape diffeomorphometry patterns of subcortical and ventricular structures in predicting conversion of mild cognitive impairment to Alzheimer’s disease. Journal of Alzheimer’s Disease, 44, 599 – 611.
dc.identifier.citedreferenceTang, X., Holland, D., Dale, A. M., Younes, L., Miller, M. I., & Alzheimer’s Disease Neuroimaging Initiative. ( 2014 ). Shape abnormalities of subcortical and ventricular structures in mild cognitive impairment and Alzheimer’s disease: Detecting, quantifying, and predicting. Human Brain Mapping, 35, 3701 – 3725.
dc.identifier.citedreferenceTang, X., Holland, D., Dale, A. M., Younes, L., Miller, M. I., & Alzheimer’s Disease Neuroimaging Initiative. ( 2015 ). The diffeomorphometry of regional shape change rates and its relevance to cognitive deterioration in mild cognitive impairment and Alzheimer’s disease. Human Brain Mapping, 36, 2093 – 2117.
dc.identifier.citedreferenceTang, X., Luo, Y., Chen, Z., Huang, N., Johnson, H. J., Paulsen, J. S., & Miller, M. I. ( 2018 ). A fully‐automated subcortical and ventricular shape generation pipeline preserving smoothness and anatomical topology. Frontiers in Neuroscience, 12, 321. https://doi.org/10.3389/fnins.2018.00321
dc.identifier.citedreferenceThe Huntington’s Disease Collaborative Research Group. ( 1993 ). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell, 72, 971 – 983.
dc.identifier.citedreferenceTziortzi, A. C., Haber, S. N., Searle, G. E., Tsoumpas, C., Long, C. J., Shotbolt, P., … Gunn, R. N. ( 2014 ). Connectivity‐based functional analysis of dopamine release in the striatum using diffusion‐weighted MRI and positron emission tomography. Cerebral Cortex, 24, 1165 – 1177.
dc.identifier.citedreferenceVaillant, M., & Glaunes, J. ( 2005 ). Surface matching via currents. Information Processing in Medical Imaging, 19, 381 – 392.
dc.identifier.citedreferenceVan den Bogaard, S. J., Dumas, E. M., Acharya, T. P., Johnson, H., Langbehn, D. R., Scahill, R. I., … TRACK‐HD Investigator Group. ( 2011 ). Early atrophy of pallidum and accumbens nucleus in Huntington’s disease. Journal of Neurology, 258, 412 – 420.
dc.identifier.citedreferenceVan den Stock, J., De Winter, F. L., Ahmad, R., Sunaert, S., Van Laere, K., Vandenberghe, W., & Vandenbulcke, M. ( 2015 ). Functional brain changes underlying irritability in premanifest Huntington’s disease. Human Brain Mapping, 36, 2681 – 2690.
dc.identifier.citedreferenceVonsattel, J. P., Myers, R. H., Stevens, T. J., Ferrante, R. J., Bird, E. D., & Richardson, E. P., Jr. ( 1985 ). Neuropathological classification of Huntington’s disease. Journal of Neuropathology and Experimental Neurology, 44, 559 – 577.
dc.identifier.citedreferenceWest, M. J., Kawas, C. H., Martin, L. J., & Troncoso, J. C. ( 2000 ). The CA1 region of the human hippocampus is a hot spot in Alzheimer’s disease. Annals of the New York Academy of Sciences, 908, 255 – 259.
dc.identifier.citedreferenceWest, M. J., Kawas, C. H., Stewart, W. F., Rudow, G. L., & Troncoso, J. C. ( 2004 ). Hippocampal neurons in pre‐clinical Alzheimer’s disease. Neurobiology of Aging, 25, 1205 – 1212.
dc.identifier.citedreferenceWolf, R. C., Vasic, N., Schonfeldt‐Lecuona, C., Landwehrmeyer, G. B., & Ecker, D. ( 2007 ). Dorsolateral prefrontal cortex dysfunction in presymptomatic Huntington’s disease: Evidence from event‐related fMRI. Brain, 130, 2845 – 2857.
dc.identifier.citedreferenceYeterian, E. H., & Pandya, D. N. ( 1993 ). Striatal connections of the parietal association cortices in rhesus monkeys. The Journal of Comparative Neurology, 332, 175 – 197.
dc.identifier.citedreferenceYounes, L., Albert, M., Miller, M. I., & BIOCARD Research Team. ( 2014a ). Inferring changepoint times of medial temporal lobe morphometric change in preclinical Alzheimer’s disease. Neuroimage Clinical, 5, 178 – 187.
dc.identifier.citedreferenceYounes, L., Ratnanather, J. T., Brown, T., Aylward, E., Nopoulos, P., Johnson, H., … PREDICT‐HD Investigators and Coordinators of the Huntington Study Group. ( 2014b ). Regionally selective atrophy of subcortical structures in prodromal HD as revealed by statistical shape analysis. Human Brain Mapping, 35, 792 – 809.
dc.identifier.citedreferenceZhang, Y., Long, J. D., Mills, J. A., Warner, J. H., Lu, W., Paulsen, J. S., & PREDICT‐HD Investigators and Coordinators of the Huntington Study Group. ( 2011 ). Indexing disease progression at study entry with individuals at‐risk for Huntington disease. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 156B, 751 – 763.
dc.identifier.citedreferenceAlbin, R. L., Reiner, A., Anderson, K. D., Dure, L. S., Handelin, B., Balfour, R., … Young, A. B. ( 1992 ). Preferential loss of striato‐external pallidal projection neurons in presymptomatic Huntington’s disease. Annals of Neurology, 31, 425 – 430.
dc.identifier.citedreferenceAlbin, R. L. ( 2017 ). Tourette syndrome: A disorder of the social decision‐making network. Brain, 14, 332 – 347.
dc.identifier.citedreferenceAlexander, G. E., DeLong, M. R., & Strick, P. L. ( 1986 ). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357 – 381.
dc.identifier.citedreferenceAndrew, S. E., Paul Goldberg, Y., Kremer, B., Telenius, H., Theilmann, J., Adam, S., … Hayden, M. R. ( 1993 ). The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nature Genetics, 4, 398.
dc.identifier.citedreferenceApostolova, L. G., Mosconi, L., Thompson, P. M., Green, A. E., Hwang, K. S., Ramirez, A., … de Leon, M. J. ( 2010 ). Subregional hippocampal atrophy predicts Alzheimer’s dementia in the cognitively normal. Neurobiology of Aging, 31, 1077 – 1088.
dc.identifier.citedreferenceAylward, E. H. ( 2007 ). Change in MRI striatal volumes as a biomarker in preclinical Huntington’s disease. Brain Research Bulletin, 72, 152 – 158.
dc.identifier.citedreferenceAylward, E. H., Sparks, B. F., Field, K. M., Yallapragada, V., Shpritz, B. D., Rosenblatt, A., … Ross, C. A. ( 2004 ). Onset and rate of striatal atrophy in preclinical Huntington disease. Neurology, 63, 66 – 72.
dc.identifier.citedreferenceBall, T., Rahm, B., Eickhoff, S. B., Schulze‐Bonhage, A., Speck, O., & Mutschler, I. ( 2007 ). Response properties of human amygdala subregions: Evidence based on functional MRI combined with probabilistic anatomical maps. PLoS One, 2, e307.
dc.identifier.citedreferenceBehrens, T. E., Johansen‐Berg, H., Woolrich, M. W., Smith, S. M., Wheeler‐Kingshott, C. A., Boulby, P. A., … Matthews, P. M. ( 2003 ). Noninvasive mapping of connections between human thalamus and cortex using diffusion imaging. Nature Neuroscience, 6, 750 – 757.
dc.identifier.citedreferenceBenarroch, E. E. ( 2015 ). The amygdala: Functional organization and involvement in neurologic disorders. Neurology, 84, 313 – 324.
dc.identifier.citedreferenceBohanna, I., Georgiou‐Karistianis, N., Hannan, A. J., & Egan, G. F. ( 2008 ). Magnetic resonance imaging as an approach towards identifying neuropathological biomarkers for Huntington’s disease. Brain Research Reviews, 58, 209 – 225.
dc.identifier.citedreferenceBrandt, J., Bylsma, F. W., Gross, R., Stine, O. C., Ranen, N., & Ross, C. A. ( 1996 ). Trinucleotide repeat length and clinical progression in Huntington’s disease. Neurology, 46, 527 – 531.
dc.identifier.citedreferenceDe la Monte, S. M., Vonsattel, J. P., & Richardson, E. P., Jr. ( 1988 ). Morphometric demonstration of atrophic changes in the cerebral cortex, white matter, and neostriatum in Huntington’s disease. Journal of Neuropathology and Experimental Neurology, 47, 516 – 525.
dc.identifier.citedreferenceDeng, Y. P., Albin, R. L., Penney, J. B., Young, A. B., Anderson, K. D., & Reiner, A. ( 2004 ). Differential loss of striatal projection systems in Huntington’s disease: A quantitative immunohistochemical study. Journal of Chemical Neuroanatomy, 27, 143 – 164.
dc.identifier.citedreferenceDouaud, G., Gaura, V., Ribeiro, M. J., Lethimonnier, F., Maroy, R., Verny, C., … Remy, P. ( 2006 ). Distribution of grey matter atrophy in Huntington’s disease patients: A combined ROI‐based and voxel‐based morphometric study. NeuroImage, 32, 1562 – 1575.
dc.identifier.citedreferenceEpping, E. A., Kim, J.‐I., Craufurd, D., Brashers‐Krug, T. M., Anderson, K. E., McCusker, E., … Paulsen, J. S. ( 2016 ). Longitudinal psychiatric symptoms in prodromal Huntington’s disease: A decade of data. The American Journal of Psychiatry, 173, 184 – 192.
dc.identifier.citedreferenceFaria, A. V., Ratnanather, J. T., Tward, D. J., Lee, D. S., van den Noort, F., Wu, D., … PREDICT‐HD Investigators and Coordinators of the Huntington Study Group. ( 2016 ). Linking white matter and deep gray matter alterations in premanifest Huntington disease. Neuroimage: Clinical, 11, 450 – 460.
dc.identifier.citedreferenceFolstein, S. E. ( 1991 ). The psychopathology of Huntington’s disease. Research Publications ‐ Association for Research in Nervous and Mental Disease, 69, 181 – 191.
dc.identifier.citedreferenceFukutani, Y., Kobayashi, K., Nakamura, I., Watanabe, K., Isaki, K., & Cairns, N. J. ( 1995 ). Neurons, intracellular and extracellular neurofibrillary tangles in subdivisions of the hippocampal cortex in normal ageing and Alzheimer’s disease. Neuroscience Letters, 200, 57 – 60.
dc.identifier.citedreferenceGamer, M., Zurowski, B., & Buchel, C. ( 2010 ). Different amygdala subregions mediate valence‐related and attentional effects of oxytocin in humans. Proceedings of the National Academy of Sciences of the United States of America, 107, 9400 – 9405.
dc.identifier.citedreferenceHaber, S. N. ( 2016 ). Corticostriatal circuitry. Dialogues in Clinical Neuroscience, 18, 7 – 21.
dc.identifier.citedreferenceHaber, S. N., & Knutson, B. ( 2010 ). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35, 4 – 26.
dc.identifier.citedreferenceTang, X., Oishi, K., Faria, A. V., Hillis, A. E., Albert, M. S., Mori, S., & Miller, M. I. ( 2013 ). Bayesian parameter estimation and segmentation in the multi‐atlas random orbit model. PLoS One, 8, e65591.
dc.identifier.citedreferenceHarrington, D. L., Long, J. D., Durgerian, S., Mourany, L., Koenig, K., Bonner‐Jackson, A., … Rao, S. M. ( 2016 ). Cross‐sectional and longitudinal multimodal structural imaging in prodromal Huntington’s disease. Movement Disorders, 31, 1664 – 1675.
dc.identifier.citedreferenceIlle, R., Schäfer, A., Scharmüller, W., Enzinger, C., Schöggl, H., Kapfhammer, H., & Schienle, A. ( 2011 ). Emotion recognition and experience in Huntington disease: A voxel‐based morphometry study. Journal of Psychiatry & Neuroscience, 36, 383 – 390.
dc.identifier.citedreferenceInvestigators of the Huntington Study Group PHAROS. ( 2016 ). Clinical‐genetic associations in the prospective Huntington at risk observational study (pharos): Implications for clinical trials. JAMA Neurology, 73, 102 – 110.
dc.identifier.citedreferenceInvestigators of the Huntington Study Group PHAROS. ( 2006 ). At risk for Huntington disease: The pharos (prospective Huntington at risk observational study) cohort enrolled. Archives of Neurology, 63, 991 – 996.
dc.identifier.citedreferenceKemp, J. M., & Powell, T. P. ( 1970 ). The cortico‐striate projection in the monkey. Brain, 93, 525 – 546.
dc.identifier.citedreferenceKirkwood, S. C., Su, J. L., Conneally, P., & Foroud, T. ( 2001 ). Progression of symptoms in the early and middle stages of Huntington disease. Archives of Neurology, 58, 273 – 278.
dc.identifier.citedreferenceKloppel, S., Stonnington, C. M., Petrovic, P., Mobbs, D., Tuscher, O., Craufurd, D., … Frackowiak, R. S. ( 2010 ). Irritability in pre‐clinical Huntington’s disease. Neuropsychologia, 48, 549 – 557.
dc.identifier.citedreferenceLange, H., Thorner, G., Hopf, A., & Schroder, K. F. ( 1976 ). Morphometric studies of the neuropathological changes in choreatic diseases. Journal of the Neurological Sciences, 28, 401 – 425.
dc.identifier.citedreferenceLawrence, A. D., Sahakian, B. J., Hodges, J. R., Rosser, A. E., Lange, K. W., & Robbins, T. W. ( 1996 ). Executive and mnemonic functions in early Huntington’s disease. Brain, 119 ( Pt 5 ), 1633 – 1645.
dc.identifier.citedreferenceLemiere, J., Decruyenaere, M., Evers‐Kiebooms, G., Vandenbussche, E., & Dom, R. ( 2004 ). Cognitive changes in patients with Huntington’s disease (HD) andasymptomatic carriers of the HD mutation. Journal of Neurology, 251, 935 – 942.
dc.identifier.citedreferenceLiang, Z., He, X., Ceritoglu, C., Tang, X., Li, Y., Kutten, K. S., … Faria, A. V. ( 2015 ). Evaluation of cross‐protocol stability of a fully automated brain multi‐atlas Parcellation tool. PLoS One, 10, e0133533.
dc.identifier.citedreferenceLiu, D., Long, J. D., Zhang, Y., Raymond, L. A., Marder, K., Rosser, A., … PREDICT‐HD Investigators and Coordinators of the Huntington Study Group. ( 2015 ). Motor onset and diagnosis in Huntington disease using the diagnostic confidence level. Journal of Neurology, 262, 2691 – 2698.
dc.identifier.citedreferenceLong, J. D., Paulsen, J. S., Marder, K., Zhang, Y., Kim, J. I., Mills, J. A., & Researchers of the PREDICT‐HD Huntington’s Study Group. ( 2014 ). Tracking motor impairments in the progression of Huntington’s disease. Movement Disorders, 29, 311 – 319.
dc.identifier.citedreferenceMa, J., Miller, M. I., & Younes, L. ( 2010 ). A bayesian generative model for surface template estimation. International Journal of Biomedical Imaging, 2010, 974957.
dc.identifier.citedreferenceMason, S. L., Zhang, J., Begeti, F., Guzman, N. V., Lazar, A. S., Rowe, J. B., … Hampshire, A. ( 2015 ). The role of the amygdala during emotional processing in Huntington’s disease: From pre‐manifest to late stage disease. Neuropsychologia, 70, 80 – 89.
dc.identifier.citedreferenceMiller, M. I., Younes, L., Ratnanather, J. T., Brown, T., Trinh, H., Postell, E., … BIOCARD Research Team. ( 2013 ). The diffeomorphometry of temporal lobe structures in preclinical Alzheimer’s disease. Neuroimage: Clinical, 3, 352 – 360.
dc.identifier.citedreferenceMisiura, M. B., Lourens, S., Calhoun, V. D., Long, J., Bockholt, J., Johnson, H., … PREDICT‐HD Investigators & Working Group. ( 2017 ). Cognitive control, learning, and clinical motor ratings are Most highly associated with basal ganglia brain volumes in the Premanifest Huntington’s disease phenotype. Journal of the International Neuropsychological Society, 23, 159 – 170.
dc.identifier.citedreferenceMorris, J. S., Buchel, C., & Dolan, R. J. ( 2001 ). Parallel neural responses in amygdala subregions and sensory cortex during implicit fear conditioning. NeuroImage, 13, 1044 – 1052.
dc.identifier.citedreferencePaulsen, J. S., Hayden, M., Stout, J. C., Langbehn, D. R., Aylward, E., Ross, C. A., … Predict‐HD Investigators of the Huntington Study Group. ( 2006 ). Preparing for preventive clinical trials: The predict‐HD study. Archives of Neurology, 63, 883 – 890.
dc.identifier.citedreferencePaulsen, J. S., Langbehn, D. R., Stout, J. C., Aylward, E., Ross, C. A., Nance, M., … Predict‐HD Investigators and Coordinators of the Huntington Study Group. ( 2008 ). Detection of Huntington’s disease decades before diagnosis: The predict‐HD study. Journal of Neurology, Neurosurgery, and Psychiatry, 79, 874 – 880.
dc.identifier.citedreferencePaulsen, J. S., Long, J. D., Johnson, H. J., Aylward, E. H., Ross, C. A., Williams, J. K., … PREDICT‐HD Investigators and Coordinators of the Huntington Study Group. ( 2014 ). Clinical and biomarker changes in premanifest Huntington disease show trial feasibility: A decade of the PREDICT‐HD study. Frontiers in Aging Neuroscience, 6, 78.
dc.identifier.citedreferencePaulsen, J. S., Zhao, H., Stout, J. C., Brinkman, R. R., Guttman, M., Ross, C. A., … Huntington Study Group. ( 2001 ). Clinical markers of early disease in persons near onset of Huntington’s disease. Neurology, 57, 658 – 662.
dc.identifier.citedreferencePecho‐Vrieseling, E., Rieker, C., Fuchs, S., Bleckmann, D., Esposito, M. S., Botta, P., … Di Giorgio, F. P. ( 2014 ). Transneuronal propagation of mutant huntingtin contributes to noncell autonomous pathology in neurons. Nature Neuroscience, 17, 1064 – 1072.
dc.identifier.citedreferencePenney, J. B., Jr., Vonsattel, J. P., MacDonald, M. E., Gusella, J. F., & Myers, R. H. ( 1997 ). CAG repeat number governs the development rate of pathology in Huntington’s disease. Annals of Neurology, 41, 689 – 692.
dc.identifier.citedreferencePetersen, A., & Gabery, S. ( 2012 ). Hypothalamic and limbic system changes in Huntington’s disease. The Journal of Huntington’s Disease, 1, 5 – 16.
dc.identifier.citedreferenceRatnanather, J. T., Lal, R. M., An, M., Poynton, C. B., Li, M., Jiang, H., … Miller, M. I. ( 2013 ). Cortico‐cortical, cortico‐striatal, and cortico‐thalamic white matter fiber tracts generated in the macaque brain via dynamic programming. Brain Connectivity, 3, 475 – 490.
dc.identifier.citedreferenceReilmann, R., Leavitt, B. R., & Ross, C. A. ( 2014 ). Diagnostic criteria for Huntington’s disease based on natural history. Movement Disorders, 29, 1335 – 1341.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.