Show simple item record

Evolution of the latitudinal diversity gradient in the hyperdiverse ant genus Pheidole

dc.contributor.authorEconomo, Evan P.
dc.contributor.authorHuang, Jen‐pan
dc.contributor.authorFischer, Georg
dc.contributor.authorSarnat, Eli M.
dc.contributor.authorNarula, Nitish
dc.contributor.authorJanda, Milan
dc.contributor.authorGuénard, Benoit
dc.contributor.authorLongino, John T.
dc.contributor.authorKnowles, L. Lacey
dc.date.accessioned2019-03-11T15:35:44Z
dc.date.available2020-06-01T14:50:01Zen
dc.date.issued2019-04
dc.identifier.citationEconomo, Evan P.; Huang, Jen‐pan ; Fischer, Georg; Sarnat, Eli M.; Narula, Nitish; Janda, Milan; Guénard, Benoit ; Longino, John T.; Knowles, L. Lacey (2019). "Evolution of the latitudinal diversity gradient in the hyperdiverse ant genus Pheidole." Global Ecology and Biogeography 28(4): 456-470.
dc.identifier.issn1466-822X
dc.identifier.issn1466-8238
dc.identifier.urihttps://hdl.handle.net/2027.42/148253
dc.description.abstractAimThe latitudinal diversity gradient is the dominant geographic pattern of life on Earth, but a consensus understanding of its origins has remained elusive. The analysis of recently diverged, hyperâ rich invertebrate groups provides an opportunity to investigate latitudinal patterns with the statistical power of large trees while minimizing potentially confounding variation in ecology and history. Here, we synthesize global phylogenetic and macroecological data on a hyperdiverse (> 1,100 species) ant radiation, Pheidole and test predictions of three general explanations for the latitudinal gradient: variation in diversification rates, tropical conservatism and ecological regulation.LocationGlobal.Time periodThe past 35 million years.Major taxa studiedThe hyperdiverse ant genus Pheidole Westwood.MethodsWe assembled geographic data for 1,499 species and morphospecies, and inferred a dated phylogeny for 449 species of Pheidole, including 167 species newly sequenced for this study. We tested for correlations between diversification rate and latitude with Bayesian analysis of macroevolutionary mixtures (BAMM), hidden state speciation and extinction (HiSSE), geographic state speciation and extinction (GeoSSE), and a nonâ parametric method (FiSSE), evaluated evidence for richness steady state, and examined patterns of diversification as Pheidole spread around the globe.ResultsThere was no evidence of systematic variation of net diversification rates with latitude across any of the methods. We found that Pheidole diversification occurred in bursts when new continents were colonized, followed by a slowdown in each region, but there is no evidence richness has saturated at an equilibrium in any region. Additionally, we found latitudinal affinity is moderately conserved with a Neotropical ancestor and simulations show that phylogenetic inertia alone is sufficient to produce the gradient pattern.Main conclusionsOur results provide no evidence that diversification rates vary systematically with latitude. Richness is far from steady state in each region, contrary to the ecological regulation hypothesis, although there is evidence that ecological opportunity promotes diversification after colonization of new areas. The fact that niche conservatism is strong enough to produce the gradient pattern is in accord with the tropical conservatism hypothesis. Overall, these results shed light on the mechanisms underlying the emergence of the diversity gradient within the past 34 million years, complementing recent work on deeper timeâ scales, and more generally contribute toward muchâ needed invertebrate perspective on global biodiversity dynamics.
dc.publisherWiley Periodicals, Inc.
dc.subject.othermacroevolution
dc.subject.otherlatitudinal diversity gradient
dc.subject.otherdiversity regulation
dc.subject.otherdiversification rate
dc.subject.otherants
dc.subject.othertropical conservatism
dc.titleEvolution of the latitudinal diversity gradient in the hyperdiverse ant genus Pheidole
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbsecondlevelGeology and Earth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148253/1/geb12867-sup-0001-AppendixS1-S2.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148253/2/geb12867-sup-0005-TableS3.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148253/3/geb12867-sup-0006-Supinfo.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148253/4/geb12867-sup-0002-FigS1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148253/5/geb12867.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148253/6/geb12867_am.pdf
dc.identifier.doi10.1111/geb.12867
dc.identifier.sourceGlobal Ecology and Biogeography
dc.identifier.citedreferenceRabosky, D. L., Chang, J., Title, P. O., Cowman, P. F., Sallan, L., Friedman, M., â ¦ Alfaro, M. E. ( 2018 ). An inverse latitudinal gradient in speciation rate for marine fish. Nature, 559, 392 â 395.
dc.identifier.citedreferenceParadis, E., Claude, J., & Strimmer, K. ( 2004 ). APE: Analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289 â 290. https://doi.org/10.1093/bioinformatics/btg412
dc.identifier.citedreferencePennell, M. W., Eastman, J. M., Slater, G. J., Brown, J. W., Uyeda, J. C., FitzJohn, R. G., â ¦ Harmon, L. J. ( 2014 ). geiger v2.0: An expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics, 30, 2216 â 2218. https://doi.org/10.1093/bioinformatics/btu181
dc.identifier.citedreferencePianka, E. R. ( 1966 ). Latitudinal gradients in species diversity â A review of concepts. The American Naturalist, 100, 33 â 000. https://doi.org/10.1086/282398
dc.identifier.citedreferencePie, M. R. ( 2016 ). The macroevolution of climatic niches and its role in ant diversification. Ecological Entomology, 41, 301 â 307. https://doi.org/10.1111/een.12306
dc.identifier.citedreferencePie, M. R., & Tschá, M. K. ( 2009 ). The macroevolutionary dynamics of ant diversification. Evolution, 63, 3023 â 3030. https://doi.org/10.1111/j.1558-5646.2009.00768.x
dc.identifier.citedreferencePigot, A. L., Tobias, J. A., & Jetz, W. ( 2016 ). Energetic constraints on species coexistence in birds. PLoS Biology, 14, e1002407. https://doi.org/10.1371/journal.pbio.1002407
dc.identifier.citedreferencePyron, R. A., & Wiens, J. J. ( 2013 ). Largeâ scale phylogenetic analyses reveal the causes of high tropical amphibian diversity. Proceedings of the Royal Society B: Biological Sciences, 280, 20131622. https://doi.org/10.1098/rspb.2013.1622.
dc.identifier.citedreferenceR Core Team ( 2018 ). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
dc.identifier.citedreferenceRabosky, D. L. ( 2014 ). Automatic detection of key innovations, rate shifts, and diversityâ dependence on phylogenetic trees. PLoS ONE, 9, e89543. https://doi.org/10.1371/journal.pone.0089543
dc.identifier.citedreferenceRabosky, D. L., & Goldberg, E. E. ( 2015 ). Model inadequacy and mistaken inferences of traitâ dependent speciation. Systematic Biology, 64, 340 â 355. https://doi.org/10.1093/sysbio/syu131
dc.identifier.citedreferenceRabosky, D. L., & Goldberg, E. E. ( 2017 ). FiSSE: A simple nonparametric test for the effects of a binary character on lineage diversification rates. Evolution, 71, 1432 â 1442. https://doi.org/10.1111/evo.13227
dc.identifier.citedreferenceRabosky, D. L., Grundler, M., Anderson, C., Shi, J. J., Brown, J. W., Huang, H., & Larson, J. G. ( 2014 ). BAMMtools: An R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods in Ecology and Evolution, 5, 701 â 707. https://doi.org/10.1111/2041-210X.12199
dc.identifier.citedreferenceRabosky, D. L., & Huang, H. ( 2015 ). A robust semiâ parametric test for detecting traitâ dependent diversification. Systematic Biology, 65, 181 â 193. https://doi.org/10.1093/sysbio/syv066
dc.identifier.citedreferenceRabosky, D. L., & Hurlbert, A. H. ( 2015 ). Species richness at continental scales is dominated by ecological limits. The American Naturalist, 185, 572 â 583. https://doi.org/10.1086/680850
dc.identifier.citedreferenceRabosky, D. L., Title, P. O., & Huang, H. ( 2015 ). Minimal effects of latitude on presentâ day speciation rates in New World birds. Proceedings of the Royal Society B: Biological Sciences, 282, 20142889. https://doi.org/10.1098/rspb.2014.2889
dc.identifier.citedreferenceRanwez, V., Harispe, S., Delsuc, F., & Douzery, E. J. P. ( 2011 ). MACSE: Multiple Alignment of Coding SEquences accounting for frameshifts and stop codons. PLoS ONE, 6 ( 9 ), e22594. https://doi.org/10.1371/journal.pone.0022594
dc.identifier.citedreferenceRevell, L. J. ( 2012 ). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217 â 223. https://doi.org/10.1111/j.2041-210X.2011.00169.x
dc.identifier.citedreferenceRicklefs, R. E. ( 2014 ). Reconciling diversification: Random pulse models of speciation and extinction. The American Naturalist, 184, 268 â 276. https://doi.org/10.1086/676642
dc.identifier.citedreferenceRohde, K. ( 1992 ). Latitudinal gradients in species diversity: The search for the primary cause. Oikos, 514 â 527. https://doi.org/10.2307/3545569
dc.identifier.citedreferenceRolland, J., Condamine, F. L., Jiguet, F., & Morlon, H. ( 2014 ). Faster speciation and reduced extinction in the tropics contribute to the mammalian latitudinal diversity gradient. PLoS Biology, 12, e1001775. https://doi.org/10.1371/journal.pbio.1001775
dc.identifier.citedreferenceSarnat, E. M., & Moreau, C. S. ( 2011 ). Biogeography and morphological evolution in a Pacific island ant radiation. Molecular Ecology, 20, 114 â 130. https://doi.org/10.1111/j.1365-294X.2010.04916.x
dc.identifier.citedreferenceSiqueira, A. C., Oliveiraâ Santos, L. G. R., Cowman, P. F., Floeter, S. R., & Algar, A. ( 2016 ). Evolutionary processes underlying latitudinal differences in reef fish diversity. Global Ecology and Biogeography, 25, 1466 â 1476.
dc.identifier.citedreferenceStamatakis, A. ( 2014 ). RAxML version 8: A tool for phylogenetic analysis and postâ analysis of large phylogenies. Bioinformatics, 30, 1312 â 1313. https://doi.org/10.1093/bioinformatics/btu033
dc.identifier.citedreferenceStephens, P. R., & Wiens, J. J. ( 2003 ). Explaining species richness from continents to communities: The timeâ forâ speciation effect in emydid turtles. The American Naturalist, 161, 112 â 128.
dc.identifier.citedreferenceWard, P. S., Brady, S. G., Fisher, B. L., & Schultz, T. R. ( 2015 ). The evolution of myrmicine ants: Phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae). Systematic Entomology, 40, 61 â 81. https://doi.org/10.1111/syen.12090
dc.identifier.citedreferenceWeir, J. T., & Schluter, D. ( 2007 ). The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science, 315, 1574 â 1576. https://doi.org/10.1126/science.1135590
dc.identifier.citedreferenceWiens, J. J., & Donoghue, M. J. ( 2004 ). Historical biogeography, ecology and species richness. Trends in Ecology and Evolution, 19, 639 â 644. https://doi.org/10.1016/j.tree.2004.09.011
dc.identifier.citedreferenceWiens, J. J., & Graham, C. H. ( 2005 ). Niche conservatism: Integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics, 36, 519 â 539. https://doi.org/10.1146/annurev.ecolsys.36.102803.095431
dc.identifier.citedreferenceWillig, M. R., Kaufman, D. M., & Stevens, R. D. ( 2003 ). Latitudinal gradients of biodiversity: Pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution, and Systematics, 34, 273 â 309. https://doi.org/10.1146/annurev.ecolsys.34.012103.144032
dc.identifier.citedreferenceBeaulieu, J. M., & Oâ Meara, B. C. ( 2016 ). Detecting hidden diversification shifts in models of traitâ dependent speciation and extinction. Systematic Biology, 65, 583 â 601. https://doi.org/10.1093/sysbio/syw022
dc.identifier.citedreferenceBlanchard, B. D., & Moreau, C. S. ( 2017 ). Defensive traits exhibit an evolutionary tradeâ off and drive diversification in ants. Evolution, 71, 315 â 328. https://doi.org/10.1111/evo.13117
dc.identifier.citedreferenceBlomberg, S. P., Garland, T., & Ives, A. R. ( 2003 ). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57, 717 â 745. https://doi.org/10.1111/j.0014-3820.2003.tb00285.x
dc.identifier.citedreferenceBouckaert, R., Heled, J., Kuhnert, D., Vaughan, T., Wu, C. H., Xie, D., â ¦ Drummond, A. J. ( 2014 ). BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10, e1003537. https://doi.org/10.1371/journal.pcbi.1003537
dc.identifier.citedreferenceBrady, S. G., Schultz, T. R., Fisher, B. L., & Ward, P. S. ( 2006 ). Evaluating alternative hypotheses for the early evolution and diversification of ants. Proceedings of the National Academy of Sciences USA, 103, 18172 â 18177. https://doi.org/10.1073/pnas.0605858103
dc.identifier.citedreferenceBuckley, L. B., & Jetz, W. ( 2007 ). Environmental and historical constraints on global patterns of amphibian richness. Proceedings of the Royal Society B: Biological Sciences, 274 ( 1614 ), 1167 â 1173. https://doi.org/10.1098/rspb.2006.0436
dc.identifier.citedreferenceBuckley, L. B., Davies, T. J., Ackerly, D. D., Kraft, N. J. B., Harrison, S. P., Anacker, B. L., â ¦ Wiens, J. J. ( 2010 ). Phylogeny, niche conservatism and the latitudinal diversity gradient in mammals. Proceedings of the Royal Society B: Biological Sciences, 277, 2131 â 2138. https://doi.org/10.1098/rspb.2010.0179
dc.identifier.citedreferenceCardillo, M., Orme, C. D. L., & Owens, I. P. ( 2005 ). Testing for latitudinal bias in diversification rates: An example using New World birds. Ecology, 86, 2278 â 2287. https://doi.org/10.1890/05-0112
dc.identifier.citedreferenceClark, K., Karschâ Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. ( 2016 ). GenBank. Nucleic Acids Research, 44, D67 â D72. https://doi.org/10.1093/nar/gkv1276
dc.identifier.citedreferenceCondamine, F. L., Sperling, F. A. H., Wahlberg, N., Rasplus, J. Y., & Kergoat, G. J. ( 2012 ). What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail biodiversity. Ecology Letters, 15, 267 â 277. https://doi.org/10.1111/j.1461-0248.2011.01737.x
dc.identifier.citedreferenceDuchêne, D. A., & Cardillo, M. ( 2015 ). Phylogenetic patterns in the geographic distributions of birds support the tropical conservatism hypothesis. Global Ecology and Biogeography, 24, 1261 â 1268. https://doi.org/10.1111/geb.12370
dc.identifier.citedreferenceDuchêne, S., Molak, M., & Ho, S. Y. W. ( 2014 ). ClockstaR: Choosing the number of relaxedâ clock models in molecular phylogenetic analysis. Bioinformatics, 30, 1017 â 1019. https://doi.org/10.1093/bioinformatics/btt665
dc.identifier.citedreferenceDunn, R. R., Agosti, D., Andersen, A. N., Arnan, X., Bruhl, C. A., Cerdá, X., â ¦ Gibb, H. ( 2009 ). Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecology Letters, 12, 324 â 333. https://doi.org/10.1111/j.1461-0248.2009.01291.x
dc.identifier.citedreferenceEconomo, E. P., Klimov, P., Sarnat, E. M., Guenard, B., Weiser, M. D., Lecroq, B., & Knowles, L. L. ( 2015 ). Global phylogenetic structure of the hyperdiverse ant genus Pheidole reveals the repeated evolution of macroecological patterns. Proceedings of the Royal Society B: Biological Sciences, 282, 20141416. https://doi.org/10.1098/rspb.2014.1416
dc.identifier.citedreferenceEconomo, E. P., Narula, N., Friedman, N. R., Weiser, M. D., & Guénard, B. ( 2018 ). Macroecology and macroevolution of the latitudinal diversity gradient in ants. Nature Communications, 9, 1778. https://doi.org/10.1038/s41467-018-04218-4
dc.identifier.citedreferenceEconomo, E. P., Sarnat, E. M., Janda, M., Clouse, R., Klimov, P. B., Fischer, G., â ¦ Knowles, L. L. ( 2015 ). Breaking out of biogeographical modules: Range expansion and taxon cycles in the hyperdiverse ant genus Pheidole. Journal of Biogeography, 42, 2289 â 2301. https://doi.org/10.1111/jbi.12592
dc.identifier.citedreferenceFine, P. V. A. ( 2015 ). Ecological and evolutionary drivers of geographic variation in species diversity. Annual Review of Ecology, Evolution, and Systematics, 46, 369 â 392. https://doi.org/10.1146/annurev-ecolsys-112414-054102
dc.identifier.citedreferenceFitzJohn, R. G. ( 2010 ). Quantitative traits and diversification. Systematic Biology, 59, 619 â 633. https://doi.org/10.1093/sysbio/syq053
dc.identifier.citedreferenceFolmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. ( 1994 ). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294 â 299.
dc.identifier.citedreferenceGamisch, A. ( 2016 ). Notes on the statistical power of the Binary State Speciation and Extinction (BiSSE) Model. Evolutionary Bioinformatics Online, 12, 165 â 174. https://doi.org/10.4137/EBO.S39732
dc.identifier.citedreferenceGoldberg, E. E., Lancaster, L. T., & Ree, R. H. ( 2011 ). Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. Systematic Biology, 60, 451 â 465. https://doi.org/10.1093/sysbio/syr046
dc.identifier.citedreferenceGraham, C. H., Storch, D., & Machac, A. ( 2018 ). Phylogenetic scale in ecology and evolution. Global Ecology and Biogeography, 27, 175 â 187. https://doi.org/10.1111/geb.12686
dc.identifier.citedreferenceGuénard, B., Perrichot, V., & Economo, E. P. ( 2015 ). Integration of global fossil and modern biodiversity data reveals dynamism and stasis in ant macroecological patterns. Journal of Biogeography, 42, 2302 â 2312. https://doi.org/10.1111/jbi.12614
dc.identifier.citedreferenceGuénard, B., Weiser, M. D., Gomez, K., Narula, N., & Economo, E. P. ( 2017 ). The Global Ant Biodiversity Informatics (GABI) database: Synthesizing data on the geographic distribution of ant species (Hymenoptera: Formicidae). Myrmecological News, 24, 83 â 89.
dc.identifier.citedreferenceHarmon, L., & Harrison, S. ( 2015 ). Species diversity is dynamic and unbounded at local and continental scales. The American Naturalist, 185, 584 â 593. https://doi.org/10.1086/680859
dc.identifier.citedreferenceHawkins, B. A., & DeVries, P. J. ( 2009 ). Tropical niche conservatism and the species richness gradient of North American butterflies. Journal of Biogeography, 36, 1698 â 1711. https://doi.org/10.1111/j.1365-2699.2009.02119.x
dc.identifier.citedreferenceHurlbert, A. H., & Stegen, J. C. ( 2014a ). On the processes generating latitudinal richness gradients: Identifying diagnostic patterns and predictions. Frontiers in Genetics, 5, 420. https://doi.org/10.3389/fgene.2014.00420
dc.identifier.citedreferenceHurlbert, A. H., & Stegen, J. C. ( 2014b ). When should species richness be energy limited, and how would we know? Ecology Letters, 17, 401 â 413.
dc.identifier.citedreferenceJablonski, D., Roy, K., & Valentine, J. W. ( 2006 ). Out of the tropics: Evolutionary dynamics of the latitudinal diversity gradient. Science, 314, 102 â 106. https://doi.org/10.1126/science.1130880
dc.identifier.citedreferenceJanicki, J., Narula, N., Ziegler, M., Guenard, B., & Economo, E. P. ( 2016 ). Visualizing and interacting with largeâ volume biodiversity data using clientâ server webâ mapping applications: The design and implementation of antmaps.org. Ecological Informatics, 32, 185 â 193. https://doi.org/10.1016/j.ecoinf.2016.02.006
dc.identifier.citedreferenceJetz, W., Thomas, G. H., Joy, J. B., Hartmann, K., & Mooers, A. O. ( 2012 ). The global diversity of birds in space and time. Nature, 491, 444 â 448. https://doi.org/10.1038/nature11631
dc.identifier.citedreferenceKaspari, M., Ward, P. S., & Yuan, M. ( 2004 ). Energy gradients and the geographic distribution of local ant diversity. Oecologia, 140, 407 â 413. https://doi.org/10.1007/s00442-004-1607-2
dc.identifier.citedreferenceKatoh, K., & Standley, D. M. ( 2013 ). MAFFT Multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772 â 780. https://doi.org/10.1093/molbev/mst010
dc.identifier.citedreferenceKearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., â ¦ Drummond, A. ( 2012 ). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28 ( 12 ), 1647 â 1649.
dc.identifier.citedreferenceKerkhoff, A. J., Moriarty, P. E., & Weiser, M. D. ( 2014 ). The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis. Proceedings of the National Academy of Sciences USA, 111, 8125 â 8130. https://doi.org/10.1073/pnas.1308932111
dc.identifier.citedreferenceLanfear, R., Calcott, B., Ho, S. Y. W., & Guindon, S. ( 2012 ). PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29, 1695 â 1701. https://doi.org/10.1093/molbev/mss020
dc.identifier.citedreferenceLosos, J. B. ( 2008 ). Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters, 11, 995 â 1003. https://doi.org/10.1111/j.1461-0248.2008.01229.x
dc.identifier.citedreferenceMaddison, W. P., Midford, P. E., & Otto, S. P. ( 2007 ). Estimating a binary characterâ s effect on speciation and extinction. Systematic Biology, 56, 701 â 710. https://doi.org/10.1080/10635150701607033
dc.identifier.citedreferenceMcKenna, D. D., & Farrell, B. D. ( 2006 ). Tropical forests are both evolutionary cradles and museums of leaf beetle diversity. Proceedings of the National Academy of Sciences USA, 103, 10947 â 10951. https://doi.org/10.1073/pnas.0602712103
dc.identifier.citedreferenceMittelbach, G. G., Schemske, D. W., Cornell, H. V., Allen, A. P., Brown, J. M., Bush, M. B., â ¦ Lessios, H. A. ( 2007 ). Evolution and the latitudinal diversity gradient: Speciation, extinction and biogeography. Ecology Letters, 10, 315 â 331. https://doi.org/10.1111/j.1461-0248.2007.01020.x
dc.identifier.citedreferenceMoen, D., & Morlon, H. ( 2014 ). Why does diversification slow down? Trends in Ecology and Evolution, 29, 190 â 197. https://doi.org/10.1016/j.tree.2014.01.010
dc.identifier.citedreferenceMoreau, C. S. ( 2008 ). Unraveling the evolutionary history of the hyperdiverse ant genus Pheidole (Hymenoptera: Formicidae). Molecular Phylogenetics and Evolution, 48, 224 â 239. https://doi.org/10.1016/j.ympev.2008.02.020
dc.identifier.citedreferenceMoreau, C. S., & Bell, C. D. ( 2013 ). Testing the museum versus cradle tropical biological diversity hypothesis: Phylogeny, diversification, and ancestral biogeographic range evolution of the ants. Evolution, 67, 2240 â 2257. https://doi.org/10.1111/evo.12105
dc.identifier.citedreferenceMoreau, C. S., Bell, C. D., Vila, R., Archibald, S. B., & Pierce, N. E. ( 2006 ). Phylogeny of the ants: Diversification in the age of angiosperms. Science, 312, 101 â 104. https://doi.org/10.1126/science.1124891
dc.identifier.citedreferenceOwens, H. L., Lewis, D. S., Dupuis, J. R., Clamens, A. L., Sperling, F. A. H., Kawahara, A. Y., â ¦ Condamine, F. L. ( 2017 ). The latitudinal diversity gradient in New World swallowtail butterflies is caused by contrasting patterns of outâ ofâ and intoâ theâ tropics dispersal. Global Ecology and Biogeography, 26, 1447 â 1458. https://doi.org/10.1111/geb.12672
dc.identifier.citedreferencePagel, M. ( 1999 ). Inferring the historical patterns of biological evolution. Nature, 401, 877 â 884. https://doi.org/10.1038/44766
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.