Show simple item record

LQ control of unknown discrete‐time linear systems—A novel approach and a comparison study

dc.contributor.authorLi, Nan
dc.contributor.authorKolmanovsky, Ilya
dc.contributor.authorGirard, Anouck
dc.date.accessioned2019-03-11T15:35:47Z
dc.date.available2020-05-01T18:03:26Zen
dc.date.issued2019-03
dc.identifier.citationLi, Nan; Kolmanovsky, Ilya; Girard, Anouck (2019). "LQ control of unknown discrete‐time linear systems—A novel approach and a comparison study." Optimal Control Applications and Methods 40(2): 265-291.
dc.identifier.issn0143-2087
dc.identifier.issn1099-1514
dc.identifier.urihttps://hdl.handle.net/2027.42/148255
dc.publisherRoutledge
dc.publisherWiley Periodicals, Inc.
dc.subject.otherunknown system
dc.subject.otheroptimal control
dc.subject.otherLQ control
dc.titleLQ control of unknown discrete‐time linear systems—A novel approach and a comparison study
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelIndustrial and Operations Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148255/1/oca2477.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148255/2/oca2477_am.pdf
dc.identifier.doi10.1002/oca.2477
dc.identifier.sourceOptimal Control Applications and Methods
dc.identifier.citedreferenceRosenbrock HH. An automatic method for finding the greatest or least value of a function. Comput J. 1960; 3 ( 3 ): 175 ‐ 184.
dc.identifier.citedreferenceLiu S‐J, Krstić M, Başar T. Batch‐to‐batch finite‐horizon LQ control for unknown discrete‐time linear systems via stochastic extremum seeking. IEEE Trans Autom Control. 2017; 62 ( 8 ): 4116 ‐ 4123.
dc.identifier.citedreferenceDean S, Mania H, Matni N, Recht B, Tu S. On the sample complexity of the linear quadratic regulator. arXiv preprint arXiv:1710.01688. 2017.
dc.identifier.citedreferenceDean S, Mania H, Matni N, Recht B, Tu S. Regret bounds for robust adaptive control of the linear quadratic regulator. arXiv preprint arXiv:1805.09388. 2018.
dc.identifier.citedreferenceBernstein DS. Matrix Mathematics: Theory, Facts, and Formulas with Application to Linear Systems Theory. Princeton, NJ: Princeton University Press; 2005.
dc.identifier.citedreferenceBoyd S, El Ghaoui L, Feron E, Balakrishnan V. Linear Matrix Inequalities in System and Control Theory. Philadelphia, PA: Society for Industrial and Applied Mathematics; 1994.
dc.identifier.citedreferenceAnderson BDO, Johnson CR. Exponential convergence of adaptive identification and control algorithms. Automatica. 1982; 18 ( 1 ): 1 ‐ 13.
dc.identifier.citedreferenceDrygas H. Weak and strong consistency of the least squares estimators in regression models. Zeitschrift Wahrscheinlichkeitstheorie Verwandte Gebiete. 1976; 34 ( 2 ): 119 ‐ 127.
dc.identifier.citedreferenceAnderson B. Exponential stability of linear equations arising in adaptive identification. IEEE Trans Autom Control. 1977; 22 ( 1 ): 83 ‐ 88.
dc.identifier.citedreferenceBonvin D, Srinivasan B, Hunkeler D. Control and optimization of batch processes. IEEE Control Syst Mag. 2006; 26 ( 6 ): 34 ‐ 45.
dc.identifier.citedreferenceHawkins WM, Fisher TG. Batch Control Systems: Design, Application, and Implementation. Research Triangle Park, NC: ISA; 2006.
dc.identifier.citedreferenceSobel KM, Shapiro EY. A design methodology for pitch pointing flight control systems. J Guid Control Dyn. 1985; 8 ( 2 ): 181 ‐ 187.
dc.identifier.citedreferenceMcDonough K, Kolmanovsky I. Fast computable recoverable sets their use for aircraft loss‐of‐control handling. J Guid Control Dyn. 2017; 40 ( 4 ): 934 ‐ 947.
dc.identifier.citedreferenceAndrade JPP, Campos VAF. Robust control of a dynamic model of an F‐16 aircraft with improved damping through linear matrix inequalities. Int J Comput Electr Autom Control Inf Eng. 2017; 11 ( 2 ): 230 ‐ 236.
dc.identifier.citedreferenceRussell RS. Non‐linear F‐16 Simulation Using Simulink and Matlab. Technical Paper. Minneapolis, MN: University of Minnesota; 2003.
dc.identifier.citedreferenceGarza FR, Morelli EA. A Collection of Nonlinear Aircraft Simulations in Matlab. Technical Report. Hampton, VA: NASA Langley Research Center; 2003.
dc.identifier.citedreferenceHueschen RM. Development of the Transport Class Model (TCM) Aircraft Simulation From a Sub‐Scale Generic Transport Model (GTM) Simulation. Technical Report. Hampton, VA: NASA Langley Research Center; 2011.
dc.identifier.citedreferenceGrauer JA, Morelli EA. Generic global aerodynamic model for aircraft. J Aircr. 2015; 52 ( 1 ): 13 ‐ 20.
dc.identifier.citedreferenceDussart G, Portapas V, Pontillo A, Lone M. Flight dynamic modelling and simulation of large flexible aircraft. In: Flight Physics: Models, Techniques and Technologies. London, UK: IntechOpen Limited; 2018: 247.
dc.identifier.citedreferenceMathWorks Inc. c2d: convert model from continuous to discrete time. https://www.mathworks.com/help/control/ref/c2d.html. Accessed July 25, 2018.
dc.identifier.citedreferenceBryson AE, Ho Y‐C. Applied Optimal Control: Optimization, Estimation and Control. New York, NY: Routledge; 2018.
dc.identifier.citedreferenceLjung L. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice‐hall; 1987.
dc.identifier.citedreferenceIoannou PA, Sun J. Robust Adaptive Control. Upper Saddle River, NJ: Prentice‐Hall; 1996.
dc.identifier.citedreferenceBoltyansky VG. Robust maximum principle in minimax control. Int J Control. 1999; 72 ( 4 ): 305 ‐ 314.
dc.identifier.citedreferencePoznyak AS, Duncan TE, Pasik‐Duncan B, Boltyanski VG. Robust maximum principle for multi‐model LQ‐problem. Int J Control. 2002; 75 ( 15 ): 1170 ‐ 1177.
dc.identifier.citedreferenceBemporad A, Borrelli F, Morari M. Min‐max control of constrained uncertain discrete‐time linear systems. IEEE Trans Autom Control. 2003; 48 ( 9 ): 1600 ‐ 1606.
dc.identifier.citedreferenceWalton C, Phelps C, Gong Q, Kaminer I. A numerical algorithm for optimal control of systems with parameter uncertainty. IFAC‐Pap. 2016; 49 ( 18 ): 468 ‐ 475.
dc.identifier.citedreferenceDierks T, Thumati BT, Jagannathan TS. Optimal control of unknown affine nonlinear discrete‐time systems using offline‐trained neural networks with proof of convergence. Neural Netw. 2009; 22 ( 5‐6 ): 851 ‐ 860.
dc.identifier.citedreferenceLewis FL, Vamvoudakis KG. Reinforcement learning for partially observable dynamic processes: adaptive dynamic programming using measured output data. IEEE Trans Syst Man Cybern B Cybern. 2011; 41 ( 1 ): 14 ‐ 25.
dc.identifier.citedreferenceWang D, Liu D, Wei Q, Zhao D, Jin N. Optimal control of unknown nonaffine nonlinear discrete‐time systems based on adaptive dynamic programming. Automatica. 2012; 48 ( 8 ): 1825 ‐ 1832.
dc.identifier.citedreferenceLewis FL, Vrabie D. Reinforcement learning and adaptive dynamic programming for feedback control. IEEE Circuits Syst Mag. 2009; 9 ( 3 ): 32 ‐ 50.
dc.identifier.citedreferenceRecht B. A tour of reinforcement learning: the view from continuous control. arXiv preprint arXiv:1806.09460. 2018.
dc.identifier.citedreferenceBellman R. Dynamic Programming. Chelmsford, MA: Courier Corporation; 2013.
dc.identifier.citedreferenceHudson J, Gupta R, Li N, Kolmanovsky I. Iterative model and trajectory refinement for orbital trajectory optimization. Optim Control Appl Methods. 2017; 38 ( 6 ): 1132 ‐ 1147.
dc.identifier.citedreferenceLi N, Kolmanovsky I, Girard A. Model‐free optimal control based automotive control system falsification. Paper presented at: 2017 American Control Conference (ACC); 2017; Seattle, WA.
dc.identifier.citedreferenceLi N, Girard A, Kolmanovsky I. Optimal control based falsification of unknown systems with time delays: a gasoline engine A/F ratio control case study. Paper presented at: 5th IFAC Conference on Engine and Powertrain Control, Simulation and Modeling (E‐CoSM); 2018; Changchun, China.
dc.identifier.citedreferenceAnderson BDO, Moore JB. Optimal Control: Linear Quadratic Methods. Chelmsford, MA: Courier Corporation; 2007.
dc.identifier.citedreferenceBradtke SJ. Reinforcement learning applied to linear quadratic regulation. In: Advances in Neural Information Processing Systems 5. San Francisco, CA: Morgan Kaufmann Publishers; 1993: 295 ‐ 302.
dc.identifier.citedreferenceKawamura Y, Nakano M, Yamamoto H. Model‐free recursive LQ controller design (learning LQ control). Int J Adapt Control Signal Process. 2004; 18 ( 7 ): 551 ‐ 570.
dc.identifier.citedreferenceJiang Y, Jiang Z‐P. Computational adaptive optimal control for continuous‐time linear systems with completely unknown dynamics. Automatica. 2012; 48 ( 10 ): 2699 ‐ 2704.
dc.identifier.citedreferenceOuyang Y, Gagrani M, Jain R. Learning‐based control of unknown linear systems with Thompson sampling. arXiv preprint arXiv:1709.04047. 2017.
dc.identifier.citedreferenceAbbasi‐Yadkori Y, Lazic N, Szepesvari C. The return of ε ‐greedy: sublinear regret for model‐free linear quadratic control. arXiv preprint arXiv:1804.06021. 2018.
dc.identifier.citedreferenceFazel M, Ge R, Kakade S, Mesbahi M. Global convergence of policy gradient methods for the linear quadratic regulator. In: Proceedings of the 35th International Conference on Machine Learning (ICML); 2018; Stockholm, Sweden.
dc.identifier.citedreferenceZhao Q, Xu H, Sarangapani J. Finite‐horizon near optimal adaptive control of uncertain linear discrete‐time systems. Optim Control Appl Methods. 2015; 36 ( 6 ): 853 ‐ 872.
dc.identifier.citedreferenceFong J, Tan Y, Crocher V, Oetomo D, Mareels I. Dual‐loop iterative optimal control for the finite horizon LQR problem with unknown dynamics. Syst Control Lett. 2018; 111: 49 ‐ 57.
dc.identifier.citedreferenceAriyur KB, Krstić M. Real‐Time Optimization by Extremum‐Seeking Control. Hoboken, NJ: John Wiley & Sons; 2003.
dc.identifier.citedreferenceFrihauf P, Krstić M, Başar T. Finite‐horizon LQ control for unknown discrete‐time linear systems via extremum seeking. Eur J Control. 2013; 19 ( 5 ): 399 ‐ 407.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.