Show simple item record

The role of fish life histories in allometrically scaled food‐web dynamics

dc.contributor.authorBland, Stephanie
dc.contributor.authorValdovinos, Fernanda S.
dc.contributor.authorHutchings, Jeffrey A.
dc.contributor.authorKuparinen, Anna
dc.date.accessioned2019-04-02T18:10:23Z
dc.date.available2020-05-01T18:03:26Zen
dc.date.issued2019-03
dc.identifier.citationBland, Stephanie; Valdovinos, Fernanda S.; Hutchings, Jeffrey A.; Kuparinen, Anna (2019). "The role of fish life histories in allometrically scaled food‐web dynamics." Ecology and Evolution 9(6): 3651-3660.
dc.identifier.issn2045-7758
dc.identifier.issn2045-7758
dc.identifier.urihttps://hdl.handle.net/2027.42/148351
dc.description.abstractBody size determines key ecological and evolutionary processes of organisms. Therefore, organisms undergo extensive shifts in resources, competitors, and predators as they grow in body size. While empirical and theoretical evidence show that these size‐dependent ontogenetic shifts vastly influence the structure and dynamics of populations, theory on how those ontogenetic shifts affect the structure and dynamics of ecological networks is still virtually absent.Here, we expand the Allometric Trophic Network (ATN) theory in the context of aquatic food webs to incorporate size‐structure in the population dynamics of fish species. We do this by modifying a food web generating algorithm, the niche model, to produce food webs where different fish life‐history stages are described as separate nodes which are connected through growth and reproduction. Then, we apply a bioenergetic model that uses the food webs and the body sizes generated by our niche model to evaluate the effect of incorporating life‐history structure into food web dynamics.We show that the larger the body size of a fish species respective to the body size of its preys, the higher the biomass attained by the fish species and the greater the ecosystem stability. We also find that the larger the asymptotic body size attained by fish species the larger the total ecosystem biomass, a result that holds true for both the largest fish in the ecosystem and each fish species in the ecosystem.This work provides an expanded ATN theory that generates food webs with life‐history structure for chosen species. Our work offers a systematic approach for disentangling the effects of increasing life‐history complexity in food‐web models.Here, we expand the Allometric Trophic Network (ATN) theory in the context of aquatic food webs to incorporate size‐structure in the population dynamics of fish species. We do this by modifying a food web generating algorithm, the niche model, to produce food webs where different fish life‐history stages are described as separate nodes which are connected through growth and reproduction.
dc.publisherWiley Periodicals, Inc.
dc.publisherR Foundation for Statistical Computing
dc.subject.otheraquatic ecosystems
dc.subject.otherbioenergetics model
dc.subject.otherlife histories
dc.subject.otherbody size
dc.subject.otherniche model
dc.titleThe role of fish life histories in allometrically scaled food‐web dynamics
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148351/1/ece34996_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148351/2/ece34996.pdf
dc.identifier.doi10.1002/ece3.4996
dc.identifier.sourceEcology and Evolution
dc.identifier.citedreferenceSmil, V. ( 2000 ). Laying down the law. Nature, 403, 597 – 597. https://doi.org/10.1038/35001159
dc.identifier.citedreferenceHolling, C. S. ( 1959 ). The components of predation as revealed by a study of small‐mammal predation of the European pine sawfly. The Canadian Entomologist, 91, 293 – 320. https://doi.org/10.4039/Ent91293-5
dc.identifier.citedreferenceHutchings, J. A., & Baum, J. K. ( 2005 ). Measuring marine fish biodiversity: Temporal changes in abundance, life history and demography. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 315 – 338. https://doi.org/10.1098/rstb.2004.1586
dc.identifier.citedreferenceHutchings, J. A., & Rangeley, R. W. ( 2011 ). Correlates of recovery for Canadian Atlantic cod (Gadus morhua). Canadian Journal of Zoology, 89, 386 – 400.
dc.identifier.citedreferenceKleiber, M. ( 1975 ) The fire of life: an introduction to animal energetics. New York, NY: Robert E Krieger Pub. Co.
dc.identifier.citedreferenceKuparinen, A., Boit, A., Valdovinos, F. S., Lassaux, H., & Martinez, N. D. ( 2016 ). Fishing‐induced life‐history changes degrade and destabilize harvested ecosystems. Scientific Reports, 6, 22245. https://doi.org/10.1038/srep22245
dc.identifier.citedreferenceMartinez, N. D., Tonin, P., Bauer, B., Rael, R. C., Singh, R., Yoon, S., … Dunne, J. A. ( 2012 ). Sustaining economic exploitation of complex ecosystems in computational models of coupled human‐natural networks. AAAI, 326 – 334.
dc.identifier.citedreferenceMATLAB and Statistics Toolbox Release ( 2016 ). The MathWorks Inc. Natick, Massachusetts, United States.
dc.identifier.citedreferenceMougi, A. ( 2017 ). Persistence of a stage‐structured food‐web. Scientific Reports, 7, 11055. https://doi.org/10.1038/s41598-017-11686-z
dc.identifier.citedreferenceOtto, S. B., Rall, B. C., & Brose, U. ( 2007 ). Allometric degree distributions facilitate food‐web stability. Nature, 450, 1226 – 1229. https://doi.org/10.1038/nature06359
dc.identifier.citedreferencePauly, D. ( 1980 ). On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. ICES Journal of Marine Sciences, 39, 175 – 192. https://doi.org/10.1093/icesjms/39.2.175
dc.identifier.citedreferencePersson, L. ( 1988 ). Asymmetries in competitive and predatory interactions in fish populations. In B. Ebenman, & L. Persson (Ed.), Size‐Structured Populations (pp. 203 – 218 ). Berlin, Heidelberg: Springer.
dc.identifier.citedreferenceRamos‐Jiliberto, R., Valdovinos, F. S., Arias, J., Alcaraz, C., & Garcia‐Berthou, E. ( 2011 ). A network‐based approach to the analysis of ontogenetic diet shifts: An example with an endangered, small‐sized. Ecological Complexity, 8, 123 – 129. https://doi.org/10.1016/j.ecocom.2010.11.005
dc.identifier.citedreferenceRomanuk, T. N., Hayward, A., & Hutchings, J. A. ( 2011 ). Trophic level scales positively with body size in fishes: Trophic level and body size in fishes. Global Ecology and Biogeography, 20, 231 – 240. https://doi.org/10.1111/j.1466-8238.2010.00579.x
dc.identifier.citedreferenceTonin, P. ( 2011 ). Economic Exploitation and Dynamics of Marine Food Webs (Ecole Polytechnique).
dc.identifier.citedreferencevan den Bosch, F., de Roos, A. M., & Gabriel, W. ( 1988 ). Cannibalism as a life boat mechanism. Journal of Mathematical Biology, 26, 619 – 633. https://doi.org/10.1007/BF00276144
dc.identifier.citedreferenceWerner, E., & Gilliam, J. ( 1984 ). The Ontogenetic Niche and species interactions in size structured populations. Annual Reviews of Ecology, Evolution and Systematics, 15, 393 – 425. https://doi.org/10.1146/annurev.es.15.110184.002141
dc.identifier.citedreferenceWest, G. B. ( 1999 ). The origin of universal scaling laws in biology. Physica A: Statistical Mechanics and Its Applications, 263, 104 – 113. https://doi.org/10.1016/S0378-4371(98)00639-6
dc.identifier.citedreferenceWickham, H. ( 2017 ). tidyverse: Easily Install and Load ’Tidyverse’ Packages. R package version 1.1.1. https://CRAN.R-project.org/package=tidyverse.
dc.identifier.citedreferenceWilliams, R. J., Brose, U., & Martinez, N. D. ( 2007 ). Homage to Yodzis and Innes 1992: Scaling up feeding‐based population dynamics to complex ecological networks. In N. Rooney, K. S. McCann, & D. L. G. Noakes (Eds.), From Energetics to Ecosystems: The Dynamics and Structure of Ecological Systems (pp. 37 – 51 ). Dordrecht: Springer.
dc.identifier.citedreferenceWilliams, R. J., & Martinez, N. D. ( 2000 ). Simple rules yield complex food webs. Nature, 404, 180 – 183. https://doi.org/10.1038/35004572
dc.identifier.citedreferenceWilliams, R. J., & Martinez, N. D. ( 2004a ). Limits to trophic levels and omnivory in complex food webs: Theory and data. The American Naturalist, 163, 458 – 468.
dc.identifier.citedreferenceWilliams, R. J., & Martinez, N. D. ( 2004b ). Stabilization of chaotic and non‐permanent food‐web dynamics. The European Physical Journal B, 38, 297 – 303.
dc.identifier.citedreferenceWootton, R. J. ( 1999 ). Ecology of Teleost Fishes. Netherlands: Springer.
dc.identifier.citedreferenceYodzis, P., & Innes, S. ( 1992 ). Body size and consumer‐resource dynamics. American Naturalist, 139, 1151 – 1175. https://doi.org/10.1086/285380
dc.identifier.citedreferenceAudzijonyte, A., Kuparinen, A., Gorton, R., & Fulton, E. A. ( 2013 ). Ecological consequences of body size decline in harvested fish species: Positive feedback loops in trophic interactions amplify human impact. Biology Letters, 9, 20121103 – 20121103. https://doi.org/10.1098/rsbl.2012.1103
dc.identifier.citedreferenceBallesteros, F. J., Martínez, V. J., Luque, B., Lacasa, L., & Moya, A. ( 2014 ). Energy balance and the origin of Kleiber’s law. ArXiv Preprint ArXiv.1407.3659.
dc.identifier.citedreferenceBlondel, J. ( 2003 ). Guilds or functional groups: Does it matter? Oikos, 100, 223 – 231. https://doi.org/10.1034/j.1600-0706.2003.12152.x
dc.identifier.citedreferenceBoit, A., Martinez, N. D., Williams, R. J., & Gaedke, U. ( 2012 ). Mechanistic theory and modelling of complex food‐web dynamics in Lake Constance. Ecology Letters, 15, 594 – 602. https://doi.org/10.1111/j.1461-0248.2012.01777.x
dc.identifier.citedreferenceBrander, K. ( 1994 ) Patterns of Distribution, Spawning, and Growth in North Atlantic Cod ‐ the Utility of Inter‐Regional Comparisons. In J. Jakobsson, O.S. Atthorsson, R. J. H. Beverton, B. Bjornsson, N. Daan, K. T. Frank, J. Meincke, B. Rothschild, S. Sundby, & S. Tilseth, (Eds.), Cod and Climate Change ‐ Proceedings of a Symposium. (Copenhagen K: Int Council Exploration Sea), pp. 406 – 413.
dc.identifier.citedreferenceBrose, U. ( 2008 ) Complex food webs prevent competitive exclusion among producer species. Proceedings of the Royal Society of London B: Biological Sciences 275, 2507 – 2514. https://doi.org/10.1098/rspb.2008.0718
dc.identifier.citedreferenceBrose, U., Williams, R. J., & Martinez, N. D. ( 2006 ). Allometric scaling enhances stability in complex food webs. Ecology Letters, 9, 1228 – 1236. https://doi.org/10.1111/j.1461-0248.2006.00978.x
dc.identifier.citedreferenceBrose, U., Jonsson, T., Berlow, E. L., Warren, P., Banasek‐Richter, C., Bersier, L.‐F., Blanchard, J. L., Brey, T., Carpenter, S. R., Blandenier, M.‐F.‐C., … Cohen, J. E. ( 2006 ). Consumer‐resource body‐size relationships in natural food webs. Ecology, 87, 2411 – 2417.
dc.identifier.citedreferenceBrown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. ( 2004 ). Toward a metabolic theory of ecology. Ecology, 85, 1771 – 1789. https://doi.org/10.1890/03-9000
dc.identifier.citedreferenceByström, P., Persson, L., & Wahlstrom, E. ( 1998 ). Competing predators and prey: Juvenile bottlenecks in whole‐lake experiments. Ecology, 79, 2153 – 2167. https://doi.org/10.2307/176718
dc.identifier.citedreferenceCarscallen, W. M. A., Vandenberg, K., Lawson, J. M., Martinez, N. D., & Romanuk, T. N. ( 2012 ). Estimating trophic position in marine and estuarine food webs. Ecosphere, 3, art25. https://doi.org/10.1890/ES11-00224.1
dc.identifier.citedreferenceCore Team, R. ( 2016 ). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
dc.identifier.citedreferenceDe Roos, A. M., Persson, L., & McCauley, E. ( 2003 ). The influence of size‐dependent life‐history traits on the structure and dynamics of populations and communities. Ecology Letters, 6, 473 – 487. https://doi.org/10.1046/j.1461-0248.2003.00458.x
dc.identifier.citedreferenceDunne, J. A. ( 2006 ). The network structure of food webs. In Pascual, M., & Dunne, J. A. (Eds.), Ecological Networks: Linking Structure to Dynamics in Food Webs (pp. 27 – 86 ).
dc.identifier.citedreferenceEnquist, B. J., West, G. B., Charnov, E. L., & Brown, J. H. ( 1999 ). Allometric scaling of production and life‐history variation in vascular plants. Nature, 401, 907 – 911.
dc.identifier.citedreferenceFroese, R., & Binohlan, C. ( 2000 ). Empirical relationships to estimate asymptotic length, length at first maturity and length at maximum yield per recruit in fishes, with a simple method to evaluate length frequency data. Journal of Fish Biology, 56, 758 – 773. https://doi.org/10.1111/j.1095-8649.2000.tb00870.x
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.