Show simple item record

Kinetic Control on the Depth Distribution of Superdeep Diamonds

dc.contributor.authorZhu, Feng
dc.contributor.authorLi, Jie
dc.contributor.authorLiu, Jiachao
dc.contributor.authorLai, Xiaojing
dc.contributor.authorChen, Bin
dc.contributor.authorMeng, Yue
dc.date.accessioned2019-04-02T18:10:38Z
dc.date.available2020-03-03T21:29:35Zen
dc.date.issued2019-02-28
dc.identifier.citationZhu, Feng; Li, Jie; Liu, Jiachao; Lai, Xiaojing; Chen, Bin; Meng, Yue (2019). "Kinetic Control on the Depth Distribution of Superdeep Diamonds." Geophysical Research Letters 46(4): 1984-1992.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/148362
dc.description.abstractSuperdeep diamonds contain unique information from the sublithospheric regions of Earth’s interior. Recent studies suggest that reaction between subducted carbonate and iron metal in the mantle plays an important role in the production of superdeep diamonds. It is unknown if this reaction is kinetically feasible in cold slabs subducted into the deep mantle. Here we present experimental data on real‐time tracking of the magnesite‐iron reaction at high pressures and high temperatures to demonstrate the production of diamond at the surface conditions of cold slabs in the transition zone and lower mantle. Our data reveal that the diamond production rate has a positive temperature dependence and a negative pressure dependence, and along a slab geotherm it decreases by a factor of three at pressures from 14.4 to 18.4 GPa. This rate reduction provides an explanation for the rarity of superdeep diamonds from the interior of the mantle transition zone.Plain Language SummarySuperdeep diamonds originate from great depths inside Earth, carrying samples from inaccessible mantle to the surface. The reaction between carbonate and iron may be an important mechanism to form diamond through interactions between subducting slabs and surrounding mantle. Interestingly, most superdeep diamonds formed in two narrow zones, at 250–450 and 600–800 km depths within the ~2,700‐km‐deep mantle. No satisfactory hypothesis explains these preferred depths of diamond formation. We measured the rate of a diamond forming reaction between magnesite and iron. Our data show that high temperature promotes the reaction, while high pressure does the opposite. Particularly, the reaction slows down drastically at about 475(±55) km depth, which may explain the rarity of diamond formation below 450 km depth. The only exception is the second zone at 600–800 km, where carbonate accumulates and warms up due to the stagnation of subducting slabs at the top of lower mantle, providing more reactants and higher temperature for diamond formation. Our study demonstrates that the depth distribution of superdeep diamonds may be controlled by reaction rates.Key PointsReal‐time tracking of diamond production from iron‐magnesite reaction at high pressures and high temperaturesThreefold reduction in the rate of iron‐magnesite reaction from 14.4 to 18.4 GPaDepth distribution of superdeep diamonds may be explained by reaction kinetics
dc.publisherThe Geochemical Society
dc.publisherWiley Periodicals, Inc.
dc.subject.othersuperdeep diamond
dc.subject.otherslab‐mantle interaction
dc.subject.otherredox reaction
dc.subject.otherreaction kinetics
dc.titleKinetic Control on the Depth Distribution of Superdeep Diamonds
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148362/1/grl58460_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148362/2/grl58460.pdf
dc.identifier.doi10.1029/2018GL080740
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceRohrbach, A., Ballhaus, C., Golla‐Schindler, U., Ulmer, P., Kamenetsky, V. S., & Kuzmin, D. V. ( 2007 ). Metal saturation in the upper mantle. Nature, 449 ( 7161 ), 456 – 458. https://doi.org/10.1038/nature06183
dc.identifier.citedreferenceLeinenweber, K. D., Tyburczy, J. A., Sharp, T. G., Soignard, E., Diedrich, T., Petuskey, W. B., Wang, Y., & Mosenfelder, J. L. ( 2012 ). Cell assemblies for reproducible multi‐anvil experiments (the COMPRES assemblies). American Mineralogist, 97 ( 2–3 ), 353 – 368. https://doi.org/10.2138/am.2012.3844
dc.identifier.citedreferenceLi, Z., & Li, J. ( 2015 ). Melting curve of NaCl to 20 GPa from electrical measurements of capacitive current. American Mineralogist, 100 ( 8–9 ), 1892 – 1898. https://doi.org/10.2138/am‐2015‐5248
dc.identifier.citedreferenceLiu, L.‐g. ( 2002 ). An alternative interpretation of lower mantle mineral associations in diamonds. Contributions to Mineralogy and Petrology, 144 ( 1 ), 16 – 21. https://doi.org/10.1007/s00410‐002‐0389‐y
dc.identifier.citedreferenceMao, H., Xu, J.‐A., & Bell, P. ( 1986 ). Calibration of the ruby pressure gauge to 800 kbar under quasi‐hydrostatic conditions. Journal of Geophysical Research, 91 ( B5 ), 4673 – 4676. https://doi.org/10.1029/JB091iB05p04673
dc.identifier.citedreferenceMao, H. K., Bassett, W. A., & Takahashi, T. ( 1967 ). Effect of pressure on crystal structure and lattice parameters of iron up to 300 kbar. Journal of Applied Physics, 38 ( 1 ), 272 – 276. https://doi.org/10.1063/1.1708965
dc.identifier.citedreferenceMartirosyan, N. S., Litasov, K. D., Shatskiy, A., & Ohtani, E. ( 2015 ). The reactions between iron and magnesite at 6 GPa and 1273–1873 K: Implication to reduction of subducted carbonate in the deep mantle. Journal of Mineralogical and Petrological Sciences, 110 ( 2 ), 49 – 59. https://doi.org/10.2465/jmps.141003a
dc.identifier.citedreferenceMeng, Y., Hrubiak, R., Rod, E., Boehler, R., & Shen, G. ( 2015 ). New developments in laser‐heated diamond anvil cell with in situ synchrotron x‐ray diffraction at High Pressure Collaborative Access Team. Review of Scientific Instruments, 86 ( 7 ), 072201. https://doi.org/10.1063/1.4926895
dc.identifier.citedreferenceMoore, R. O., & Gurney, J. J. ( 1985 ). Pyroxene solid solution in garnets included in diamond. Nature, 318 ( 6046 ), 553 – 555. https://doi.org/10.1038/318553a0
dc.identifier.citedreferencePalyanov, Y. N., Bataleva, Y. V., Sokol, A. G., Borzdov, Y. M., Kupriyanov, I. N., Reutsky, V. N., & Sobolev, N. V. ( 2013 ). Mantle–slab interaction and redox mechanism of diamond formation. Proceedings of the National Academy of Sciences, 110 ( 51 ), 20,408 – 20,413. https://doi.org/10.1073/pnas.1313340110
dc.identifier.citedreferencePearson, D., Brenker, F., Nestola, F., McNeill, J., Nasdala, L., Hutchison, M., Matveev, S., Mather, K., Silversmit, G., Schmitz, S., Vekemans, B., & Vincze, L. ( 2014 ). Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature, 507 ( 7491 ), 221 – 224. https://doi.org/10.1038/nature13080
dc.identifier.citedreferencePrescher, C., & Prakapenka, V. B. ( 2015 ). DIOPTAS: A program for reduction of two‐dimensional X‐ray diffraction data and data exploration. High Pressure Research, 35 ( 3 ), 223 – 230. https://doi.org/10.1080/08957959.2015.1059835
dc.identifier.citedreferenceRichter, F. M. ( 1985 ). Models for the Archean thermal regime. Earth and Planetary Science Letters, 73 ( 2‐4 ), 350 – 360. https://doi.org/10.1016/0012‐821X(85)90083‐4
dc.identifier.citedreferenceRingwood, A. E. ( 1982 ). Phase transformations and differentiation in subducted lithosphere: Implications for mantle dynamics, basalt petrogenesis, and crustal evolution. The Journal of Geology, 90 ( 6 ), 611 – 643. https://doi.org/10.1086/628721
dc.identifier.citedreferenceRohrbach, A., & Schmidt, M. W. ( 2011 ). Redox freezing and melting in the Earth’s deep mantle resulting from carbon‐iron redox coupling. Nature, 472 ( 7342 ), 209 – 212. https://doi.org/10.1038/nature09899
dc.identifier.citedreferenceScott, H. P., Williams, Q., & Knittle, E. ( 2001 ). Stability and equation of state of Fe 3 C to 73 GPa: Implications for carbon in the Earth’s core. Geophysical Research Letters, 28 ( 9 ), 1875 – 1878. https://doi.org/10.1029/2000GL012606
dc.identifier.citedreferenceSeto, Y., Nishio‐Hamane, D., Nagai, T., & Sata, N. ( 2010 ). Development of a software suite on X‐ray diffraction experiments. Review of High Pressure Science and Technology, 20 ( 3 ), 269 – 276. https://doi.org/10.4131/jshpreview.20.269
dc.identifier.citedreferenceSmith, E. M., Shirey, S. B., Nestola, F., Bullock, E. S., Wang, J., Richardson, S. H., & Wang, W. ( 2016 ). Large gem diamonds from metallic liquid in Earth’s deep mantle. Science, 354 ( 6318 ), 1403 – 1405. https://doi.org/10.1126/science.aal1303
dc.identifier.citedreferenceStachel, T., Brey, G. P., & Harris, J. W. ( 2000 ). Kankan diamonds (Guinea) I: From the lithosphere down to the transition zone. Contributions to Mineralogy and Petrology, 140 ( 1 ), 1 – 15. https://doi.org/10.1007/s004100000173
dc.identifier.citedreferenceStachel, T., Brey, G. P., & Harris, J. W. ( 2005 ). Inclusions in sublithospheric diamonds: Glimpses of deep Earth. Elements, 1 ( 2 ), 73 – 78. https://doi.org/10.2113/gselements.1.2.73
dc.identifier.citedreferenceStachel, T., Harris, J. W., Brey, G. P., & Joswig, W. ( 2000 ). Kankan diamonds (Guinea) II: Lower mantle inclusion parageneses. Contributions to Mineralogy and Petrology, 140 ( 1 ), 16 – 27. https://doi.org/10.1007/s004100000174
dc.identifier.citedreferenceSyracuse, E. M., van Keken, P. E., & Abers, G. A. ( 2010 ). The global range of subduction zone thermal models. Physics of the Earth and Planetary Interiors, 183 ( 1‐2 ), 73 – 90. https://doi.org/10.1016/j.pepi.2010.02.004
dc.identifier.citedreferenceTappert, R., Stachel, T., Harris, J. W., Muehlenbachs, K., Ludwig, T., & Brey, G. P. ( 2005 ). Diamonds from Jagersfontein (South Africa): Messengers from the sublithospheric mantle. Contributions to Mineralogy and Petrology, 150 ( 5 ), 505 – 522. https://doi.org/10.1007/s00410‐005‐0035‐6
dc.identifier.citedreferenceTsujino, N., Nishihara, Y., Nakajima, Y., Takahashi, E., Funakoshi, K.‐i., & Higo, Y. ( 2013 ). Equation of state of γ‐Fe: Reference density for planetary cores. Earth and Planetary Science Letters, 375, 244 – 253. https://doi.org/10.1016/j.epsl.2013.05.040
dc.identifier.citedreferenceWalter, M., Bulanova, G., Armstrong, L., Keshav, S., Blundy, J., Gudfinnsson, G., Lord, O. T., Lennie, A. R., Clark, S. M., Smith, C. B., & Gobbo, L. ( 2008 ). Primary carbonatite melt from deeply subducted oceanic crust. Nature, 454 ( 7204 ), 622 – 625. https://doi.org/10.1038/nature07132
dc.identifier.citedreferenceBataleva, Y. V., Palyanov, Y. N., Sokol, A., Borzdov, Y. M., & Bayukov, O. ( 2015 ). The role of rocks saturated with metallic iron in the formation of ferric carbonate‐silicate melts: Experimental modeling under PT‐conditions of lithospheric mantle. Russian Geology and Geophysics, 56 ( 1‐2 ), 143 – 154. https://doi.org/10.1016/j.rgg.2015.01.008
dc.identifier.citedreferenceBeyer, C., & Frost, D. J. ( 2017 ). The depth of sub‐lithospheric diamond formation and the redistribution of carbon in the deep mantle. Earth and Planetary Science Letters, 461, 30 – 39. https://doi.org/10.1016/j.epsl.2016.12.017
dc.identifier.citedreferenceBrown, J., & Shankland, T. ( 1981 ). Thermodynamic parameters in the Earth as determined from seismic profiles. Geophysical Journal International, 66 ( 3 ), 579 – 596. https://doi.org/10.1111/j.1365‐246X.1981.tb04891.x
dc.identifier.citedreferenceCarlson, W. D., & Rosenfeld, J. L. ( 1981 ). Optical determination of topotactic aragonite‐calcite growth kinetics: Metamorphic implications. The Journal of Geology, 89 ( 5 ), 615 – 638. https://doi.org/10.1086/628626
dc.identifier.citedreferenceDasgupta, R., & Hirschmann, M. M. ( 2010 ). The deep carbon cycle and melting in Earth’s interior. Earth and Planetary Science Letters, 298 ( 1‐2 ), 1 – 13. https://doi.org/10.1016/j.epsl.2010.06.039
dc.identifier.citedreferenceDewaele, A., Datchi, F., Loubeyre, P., & Mezouar, M. ( 2008 ). High pressure–high temperature equations of state of neon and diamond. Physical Review B, 77 ( 9 ), 094106. https://doi.org/10.1103/PhysRevB.77.094106
dc.identifier.citedreferenceDorfman, S. M., Badro, J., Nabiei, F., Prakapenka, V. B., Cantoni, M., & Gillet, P. ( 2018 ). Carbonate stability in the reduced lower mantle. Earth and Planetary Science Letters, 489, 84 – 91. https://doi.org/10.1016/j.epsl.2018.02.035
dc.identifier.citedreferenceFei, Y., Zhang, L., Corgne, A., Watson, H., Ricolleau, A., Meng, Y., & Prakapenka, V. ( 2007 ). Spin transition and equations of state of (Mg, Fe) O solid solutions. Geophysical Research Letters, 34, L17307. https://doi.org/10.1029/2007GL030712
dc.identifier.citedreferenceFiquet, G., Guyot, F., Kunz, M., Matas, J., Andrault, D., & Hanfland, M. ( 2002 ). Structural refinements of magnesite at very high pressure. American Mineralogist, 87 ( 8–9 ), 1261 – 1265. https://doi.org/10.2138/am‐2002‐8‐927
dc.identifier.citedreferenceFrost, D. J., Liebske, C., Langenhorst, F., McCammon, C. A., Trønnes, R. G., & Rubie, D. C. ( 2004 ). Experimental evidence for the existence of iron‐rich metal in the Earth’s lower mantle. Nature, 428 ( 6981 ), 409 – 412. https://doi.org/10.1038/nature02413
dc.identifier.citedreferenceFukao, Y., Obayashi, M., & Nakakuki, T. ( 2009 ). Stagnant slab: A review. Annual Review of Earth and Planetary Sciences, 37, 19 – 46. https://doi.org/10.1146/annurev.earth.36.031207.124224
dc.identifier.citedreferenceGao, J., Niu, J., Qin, S., & Wu, X. ( 2017 ). Ultradeep diamonds originate from deep subducted sedimentary carbonates. Science China Earth Sciences, 60 ( 2 ), 207 – 217. https://doi.org/10.1007/s11430‐016‐5151‐4
dc.identifier.citedreferenceHarte, B. ( 2010 ). Diamond formation in the deep mantle: The record of mineral inclusions and their distribution in relation to mantle dehydration zones. Mineralogical Magazine, 74 ( 02 ), 189 – 215. https://doi.org/10.1180/minmag.2010.074.2.189
dc.identifier.citedreferenceHarte, B., Harris, J., Hutchison, M., Watt, G., & Wilding, M. ( 1999 ). Lower mantle mineral associations in diamonds from Sao Luiz, Brazil. In Mantle petrology: Field observations and high pressure experimentation: A tribute to Francis R. (Joe) Boyd (Vol. 6, pp. 125 – 153 ). Houston, TX: The Geochemical Society.
dc.identifier.citedreferenceHayden, L. A., & Watson, E. B. ( 2007 ). A diffusion mechanism for core–mantle interaction. Nature, 450 ( 7170 ), 709 – 711. https://doi.org/10.1038/nature06380
dc.identifier.citedreferenceJephcoat, A. P., Mao, H., & Bell, P. M. ( 1986 ). Static compression of iron to 78 GPa with rare gas solids as pressure‐transmitting media. Journal of Geophysical Research, 91 ( B5 ), 4677 – 4684. https://doi.org/10.1029/JB091iB05p04677
dc.identifier.citedreferenceKirby, S. H., Stein, S., Okal, E. A., & Rubie, D. C. ( 1996 ). Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere. Reviews of Geophysics, 34 ( 2 ), 261 – 306. https://doi.org/10.1029/96RG01050
dc.identifier.citedreferenceLai, X., Zhu, F., Liu, J., Zhang, D., Hu, Y., Finkelstein, G. J., Dera, P., & Chen, B. ( 2018 ). The high‐pressure anisotropic thermoelastic properties of a potential inner core carbon‐bearing phase, Fe 7 C 3, by single‐crystal X‐ray diffraction. American Mineralogist: Journal of Earth and Planetary Materials, 103 ( 10 ), 1568 – 1574. https://doi.org/10.2138/am‐2018‐6527
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.