Show simple item record

Loss of fibrinogen in zebrafish results in an asymptomatic embryonic hemostatic defect and synthetic lethality with thrombocytopenia

dc.contributor.authorHu, Zhilian
dc.contributor.authorLavik, Kari I.
dc.contributor.authorLiu, Yang
dc.contributor.authorVo, Andy H.
dc.contributor.authorRichter, Catherine E.
dc.contributor.authorDi Paola, Jorge
dc.contributor.authorShavit, Jordan A.
dc.date.accessioned2019-04-02T18:10:48Z
dc.date.available2020-06-01T14:50:01Zen
dc.date.issued2019-04
dc.identifier.citationHu, Zhilian; Lavik, Kari I.; Liu, Yang; Vo, Andy H.; Richter, Catherine E.; Di Paola, Jorge; Shavit, Jordan A. (2019). "Loss of fibrinogen in zebrafish results in an asymptomatic embryonic hemostatic defect and synthetic lethality with thrombocytopenia." Journal of Thrombosis and Haemostasis 17(4): 607-617.
dc.identifier.issn1538-7933
dc.identifier.issn1538-7836
dc.identifier.urihttps://hdl.handle.net/2027.42/148369
dc.publisherWiley Periodicals, Inc.
dc.publisherElsevier Science
dc.subject.otherfibrinogen
dc.subject.othergenome editing
dc.subject.otherhemostasis
dc.subject.otherthrombocytopenia
dc.subject.otherzebrafish
dc.titleLoss of fibrinogen in zebrafish results in an asymptomatic embryonic hemostatic defect and synthetic lethality with thrombocytopenia
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialties
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148369/1/jth14391.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148369/2/jth14391-sup-0001-Supinfo.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148369/3/jth14391_am.pdf
dc.identifier.doi10.1111/jth.14391
dc.identifier.sourceJournal of Thrombosis and Haemostasis
dc.identifier.citedreferencePaffett‐Lugassy NN, Zon L. Analysis of hematopoietic development in the Zebrafish. Methods Mol Med 2005; 105: 171 – 98.
dc.identifier.citedreferenceRost MS, Grzegorski SJ, Shavit JA. Quantitative methods for studying hemostasis in zebrafish larvae. Methods Cell Biol 2016; 134: 377 – 89.
dc.identifier.citedreferenceGregory M, Hanumanthaiah R, Jagadeeswaran P. Genetic analysis of hemostasis and thrombosis using vascular occlusion. Blood Cells Mol Dis 2002; 29: 286 – 95.
dc.identifier.citedreferenceJagadeeswaran P, Carrillo M, Radhakrishnan UP, Rajpurohit SK, Kim S. Laser‐induced thrombosis in zebrafish. Methods Cell Biol 2011; 101: 197 – 203.
dc.identifier.citedreferenceMosimann C, Kaufman CK, Li P, Pugach EK, Tamplin OJ, Zon LI. Ubiquitous transgene expression and Cre‐based recombination driven by the ubiquitin promoter in zebrafish. Development 2011; 138: 169 – 77.
dc.identifier.citedreferenceZheng L, Baumann U, Reymond JL. An efficient one‐step site‐directed and site‐saturation mutagenesis protocol. Nucleic Acids Res 2004; 32: e115.
dc.identifier.citedreferenceLivak KJ, Schmittgen TD. Analysis of relative gene expression data using real‐time quantitative PCR and the 2(‐Delta Delta C(T)) Method. Methods 2001; 25: 402 – 8.
dc.identifier.citedreferenceJagadeeswaran P, Sheehan J. Analysis of blood coagulation in the Zebrafish. Blood Cells Mol Dis 1999; 25: 239 – 49.
dc.identifier.citedreferencePedroso GL, Hammes TO, Escobar TD, Fracasso LB, Forgiarini LF, da Silveira TR. Blood collection for biochemical analysis in adult zebrafish. J Vis Exp 2012; 63: e3865.
dc.identifier.citedreferenceIuchi I, Yamamoto M. Erythropoiesis in the developing rainbow trout, Salmo gairdneri irideus: histochemical and immunochemical detection of erythropoietic organs. J Exp Zool 1983; 226: 409 – 17.
dc.identifier.citedreferenceHanss M, Biot F. A database for human fibrinogen variants. Ann N Y Acad Sci 2001; 936: 89 – 90.
dc.identifier.citedreferenceSmith N, Bornikova L, Noetzli L, Guglielmone H, Minoldo S, Backos DS, Jacobson L, Thornburg CD, Escobar M, White‐Adams TC, Wolberg AS, Manco‐Johnson M, Di Paola J. Identification and characterization of novel mutations implicated in congenital fibrinogen disorders. Res Pract Thromb Haemost 2018; 2: 800 – 11.
dc.identifier.citedreferenceSuh TT, Holmback K, Jensen NJ, Daugherty CC, Small K, Simon DI, Potter S, Degen JL. Resolution of spontaneous bleeding events but failure of pregnancy in fibrinogen‐deficient mice. Genes Dev 1995; 9: 2020 – 33.
dc.identifier.citedreferencePalumbo JS, Zogg M, Talmage KE, Degen JL, Weiler H, Isermann BH. Role of fibrinogen‐ and platelet‐mediated hemostasis in mouse embryogenesis and reproduction. J Thromb Haemost 2004; 2: 1368 – 79.
dc.identifier.citedreferenceHanss M, Pouymayou C, Blouch M‐T, Lellouche F, Ffrench P, Rousson R, Abgrall J‐F, Morange P‐E, Quelin F, de Mazancourt P. The natural occurrence of human fibrinogen variants disrupting inter‐chain disulfide bonds (AaCys36Gly, AaCys36Arg and AaCys45Tyr) confirms the role of N‐terminal Aa disulfide bonds in protein assembly and secretion. Haematologica 2011; 96: 1226 – 30.
dc.identifier.citedreferenceSheen CR, Brennan SO, Jabado N, George PM. Fibrinogen Montreal: a novel missense mutation (A α D496N) associated with hypofibrinogenaemia. Thromb Haemost 2006; 96: 231 – 2.
dc.identifier.citedreferenceCui J, O’Shea KS, Purkayastha A, Saunders TL, Ginsburg D. Fatal haemorrhage and incomplete block to embryogenesis in mice lacking coagulation factor V. Nature 1996; 384: 66 – 8.
dc.identifier.citedreferenceSun WY, Witte DP, Degen JL, Colbert MC, Burkart MC, Holmback K, Xiao Q, Bugge TH, Degen SJF. Prothrombin deficiency results in embryonic and neonatal lethality in mice. Proc Natl Acad Sci USA 1998; 95: 7597 – 602.
dc.identifier.citedreferenceXue J, Wu Q, Westfield LA, Tuley EA, Lu D, Zhang Q, Shim K, Zheng X, Sadler JE. Incomplete embryonic lethality and fatal neonatal hemorrhage caused by prothrombin deficiency in mice. Proc Natl Acad Sci USA 1998; 95: 7603 – 7.
dc.identifier.citedreferenceRosen ED. Gene targeting in hemostasis. Factor X. Front Biosci 2002; 7: d1915 – 25.
dc.identifier.citedreferenceGuryev V, Koudijs MJ, Berezikov E, Johnson SL, Plasterk RH, van Eeden FJ, Cuppen E. Genetic variation in the zebrafish. Genome Res 2006; 16: 491 – 7.
dc.identifier.citedreferenceRossi A, Kontarakis Z, Gerri C, Nolte H, Holper S, Kruger M, Stainier DY. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 2015; 524: 230 – 3.
dc.identifier.citedreferenceZhang JZ, Redman CM. Role of interchain disulfide bonds on the assembly and secretion of human fibrinogen. J Biol Chem 1994; 269: 652 – 8.
dc.identifier.citedreferenceFu Y, Grieninger G. Fib420: a normal human variant of fibrinogen with two extended alpha chains. Proc Natl Acad Sci USA 1994; 91: 2625 – 8.
dc.identifier.citedreferenceGrieninger G, Lu X, Cao Y, Fu Y, Kudryk BJ, Galanakis DK, Hertzberg KM. Fib420, the novel fibrinogen subclass: newborn levels are higher than adult. Blood 1997; 90: 2609 – 14.
dc.identifier.citedreferenceJagadeeswaran P, Kulkarni V, Carrillo M, Kim S. Zebrafish: from hematology to hydrology. J Thromb Haemost 2007; 5 ( Suppl. 1 ): 300 – 4.
dc.identifier.citedreferenceJagadeeswaran P, Cooley BC, Gross PL, Mackman N. Animal models of thrombosis from Zebrafish to Nonhuman primates: use in the elucidation of new pathologic pathways and the development of antithrombotic drugs. Circ Res 2016; 118: 1363 – 79.
dc.identifier.citedreferenceShavit JA, Ginsburg D. Hemophilias and other disorders of hemostasis. In: Rimoin DL, Pyeritz RE, Korf BR, eds. Emery and Rimoin’s Principles and Practice of Medical Genetics, 6th edn. Amsterdam: Elsevier Science, 2013: 1 – 33.
dc.identifier.citedreferenceBlomback B. Studies on fibrinogen: its purification and conversion into fibrin. Acta Physiol Scand Suppl 1958; 43: 1 – 51.
dc.identifier.citedreferenceWeisel JW, Litvinov RI. Fibrin formation, structure and properties. Subcell Biochem 2017; 82: 405 – 56.
dc.identifier.citedreferenceAcharya SS, Dimichele DM. Rare inherited disorders of fibrinogen. Haemophilia 2008; 14: 1151 – 8.
dc.identifier.citedreferenceEhrenpreis S, Scheraga H. Observations on the analysis for thrombin and the inactivation of fibrin monomer. J Biol Chem 1957; 227: 1043 – 61.
dc.identifier.citedreferenceMcKee PA, Schwartz ML, Pizzo SV, Hill RL. Cross‐linking of fibrin by fibrin‐stabilizing factor. Ann N Y Acad Sci 1972; 202: 127 – 48.
dc.identifier.citedreferenceBailey K, Bettelheim FR, Lorand L, Middlebrook WR. Action of thrombin in the clotting of fibrinogen. Nature 1951; 167: 233 – 4.
dc.identifier.citedreferenceWeisel JW. Fibrinogen and fibrin. Adv Protein Chem 2005; 70: 247 – 98.
dc.identifier.citedreferenceCasini A, Blondon M, Lebreton A, Koegel J, Tintillier V, de Maistre E, Gautier P, Biron C, Neerman‐Arbez M, de Moerloose P. Natural history of patients with congenital dysfibrinogenemia. Blood 2015; 125: 553 – 61.
dc.identifier.citedreferencede Moerloose P, Neerman‐Arbez M. Treatment of congenital fibrinogen disorders. Expert Opin Biol Ther 2008; 8: 979 – 92.
dc.identifier.citedreferencede Moerloose P, Schved JF, Nugent D. Rare coagulation disorders: fibrinogen, factor VII and factor XIII. Haemophilia 2016; 22 ( Suppl. 5 ): 61 – 5.
dc.identifier.citedreferencede Moerloose P, Neerman‐Arbez M. Congenital fibrinogen disorders. Semin Thromb Hemost 2009; 35: 356 – 66.
dc.identifier.citedreferenceMartinez J. Congenital dysfibrinogenemia. Curr Opin Hematol 1997; 4: 357 – 65.
dc.identifier.citedreferencePalla R, Peyvandi F, Shapiro AD. Rare bleeding disorders: diagnosis and treatment. Blood 2015; 125: 2052 – 61.
dc.identifier.citedreferenceNeerman‐Arbez M. Molecular basis of fibrinogen deficiency. J Pathophysiol Haemost Thromb 2006; 35: 187 – 98.
dc.identifier.citedreferenceKeeling D, Tait C, Makris M. Guideline on the selection and use of therapeutic products to treat haemophilia and other hereditary bleeding disorders. A United Kingdom Haemophilia Center Doctors’ Organisation (UKHCDO) guideline approved by the British Committee for Standards in Haematology. Haemophilia 2008; 14: 671 – 84.
dc.identifier.citedreferenceKey NS, Negrier C. Coagulation factor concentrates: past, present, and future. Lancet 2007; 370: 439 – 48.
dc.identifier.citedreferenceChandra S, Feldman GF. Effectiveness of alternative treatments for reducing potential viral contaminants from plasma‐derived products. Thromb Res 2002; 1015: 391 – 400.
dc.identifier.citedreferenceBornikova L, Peyvandi F, Allen G, Bernstein J, Manco‐Johnson MJ. Fibrinogen replacement therapy for congenital fibrinogen deficiency. J Thromb Haemost 2011; 9: 1687 – 704.
dc.identifier.citedreferenceDavidson CJ, Hirt RP, Lal K, Snell P, Elgar G, Tuddenham EGD, Mcvey JH. Molecular evolution of the vertebrate blood coagulation network. Thromb Haemost 2003; 89: 420 – 8.
dc.identifier.citedreferenceJiang Y, Doolittle RF. The evolution of vertebrate blood coagulation as viewed from a comparison of puffer fish and sea squirt genomes. Proc Natl Acad Sci USA 2003; 100: 7527 – 32.
dc.identifier.citedreferenceHanumanthaiah R, Day K, Jagadeeswaran P. Comprehensive analysis of blood coagulation pathways in teleostei: evolution of coagulation factor genes and identification of Zebrafish factor VIIi. Blood Cells Mol Dis 2002; 29: 57 – 68.
dc.identifier.citedreferenceJagadeeswaran P. Zebrafish: a tool to study hemostasis and thrombosis. Curr Opin Hematol 2005; 12: 149 – 52.
dc.identifier.citedreferenceKretz CA, Weyand AC, Shavit JA. Modeling disorders of blood coagulation in the Zebrafish. Curr Pathobiol Rep 2015; 3: 155 – 61.
dc.identifier.citedreferenceWeyand AC, Shavit JA. Zebrafish as a model system for the study of hemostasis and thrombosis. Curr Opin Hematol 2014; 21: 418 – 22.
dc.identifier.citedreferenceKhandekar G, Kim S, Jagadeeswaran P. Zebrafish thrombocytes: functions and origins. Adv Hematol 2012; 2012: 857058.
dc.identifier.citedreferenceJagadeeswaran P, Sheehan JP, Craig FE, Troyer D. Identification and characterization of zebrafish thrombocytes. Br J Haematol 1999; 107: 731 – 8.
dc.identifier.citedreferenceFish RJ, Di Sanza C, Neerman‐Arbez M. Targeted mutation of zebrafish fga models human congenital afibrinogenemia. Blood 2014; 123: 2278 – 81.
dc.identifier.citedreferenceLiu Y, Kretz CA, Maeder ML, Richter CE, Tsao P, Vo AH, Huarng MC, Rode T, Hu Z, Mehra R, Olson ST, Joung JK, Shavit JA. Targeted mutagenesis of zebrafish antithrombin III triggers disseminated intravascular coagulation and thrombosis, revealing insight into function. Blood 2014; 124: 142 – 50.
dc.identifier.citedreferenceHu Z, Liu Y, Huarng MC, Menegatti M, Reyon D, Rost MS, Norris ZG, Richter CE, Stapleton AN, Chi NC, Peyvandi F, Joung JK, Shavit JA. Genome editing of factor X in zebrafish reveals unexpected tolerance of severe defects in the common pathway. Blood 2017; 130: 666 – 76.
dc.identifier.citedreferenceVo AH, Swaroop A, Liu Y, Norris ZG, Shavit JA. Loss of fibrinogen in zebrafish results in symptoms consistent with human hypofibrinogenemia. PLoS ONE 2013; 8: e74682.
dc.identifier.citedreferenceRost MS, Shestopalov I, Liu Y, Vo AH, Richter CE, Emly SM, Barrett FG, Stachura DL, Holinstat M, Zon LI, Shavit JA. Nfe2 is dispensable for early but required for adult thrombocyte formation and function in zebrafish. Blood Adv 2018; 2: 3418 – 27.
dc.identifier.citedreferenceLecine P, Italiano JE, Kim S, Villeval J, Shivdasani RA. Hematopoietic‐specific beta 1 tubulin participates in a pathway of platelet biogenesis dependent on the transcription factor NF‐E2. Blood 2000; 96: 1366 – 73.
dc.identifier.citedreferenceLevin J, Peng J, Baker GR, Villeval J, Lecine P, Burstein SA, Shivdasani RA. Pathophysiology of thrombocytopenia and anemia in mice lacking trasncription factor NF‐E2. Blood 1999; 94: 3037 – 47.
dc.identifier.citedreferenceShivdasani RA, Rosenblatt MF, Zucker‐Franklin D, Jackson CW, Hunt P, Saris CJM, Orkin SH. Transcription factor NF‐E2 is required for platlet formation independent of the actions of thrombopoietin/MGDF in Megakaryocyte Development. Cell 1995; 81: 695 – 704.
dc.identifier.citedreferenceKimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn 1995; 203: 253 – 310.
dc.identifier.citedreferenceSander JD, Cade L, Khayter C, Reyon D, Peterson RT, Joung JK, Yeh JR. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 2011; 29: 697 – 8.
dc.identifier.citedreferenceHu Z, Liu Y, Huarng M, Reyon D, Richter C, Stapleton A, Joung JK, Shavit JA. Factor X mutant zebrafish tolerate a severe hemostatic defect in early development yet develop lethal hemorrhage in adulthood. Blood 2015; 126: 426.
dc.identifier.citedreferenceWilkinson RN, Elworthy S, Ingham PW, van Eeden FJ. A method for high‐throughput PCR‐based genotyping of larval zebrafish tail biopsies. Biotechniques 2013; 55: 314 – 6.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.