Adhesive Hemostatic Conducting Injectable Composite Hydrogels with Sustained Drug Release and Photothermal Antibacterial Activity to Promote Full‐Thickness Skin Regeneration During Wound Healing
dc.contributor.author | Liang, Yongping | |
dc.contributor.author | Zhao, Xin | |
dc.contributor.author | Hu, Tianli | |
dc.contributor.author | Chen, Baojun | |
dc.contributor.author | Yin, Zhanhai | |
dc.contributor.author | Ma, Peter X. | |
dc.contributor.author | Guo, Baolin | |
dc.date.accessioned | 2019-04-02T18:10:50Z | |
dc.date.available | 2020-05-01T18:03:25Z | en |
dc.date.issued | 2019-03 | |
dc.identifier.citation | Liang, Yongping; Zhao, Xin; Hu, Tianli; Chen, Baojun; Yin, Zhanhai; Ma, Peter X.; Guo, Baolin (2019). "Adhesive Hemostatic Conducting Injectable Composite Hydrogels with Sustained Drug Release and Photothermal Antibacterial Activity to Promote Full‐Thickness Skin Regeneration During Wound Healing." Small 15(12): n/a-n/a. | |
dc.identifier.issn | 1613-6810 | |
dc.identifier.issn | 1613-6829 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/148370 | |
dc.description.abstract | Developing injectable nanocomposite conductive hydrogel dressings with multifunctions including adhesiveness, antibacterial, and radical scavenging ability and good mechanical property to enhance full‐thickness skin wound regeneration is highly desirable in clinical application. Herein, a series of adhesive hemostatic antioxidant conductive photothermal antibacterial hydrogels based on hyaluronic acid‐graft‐dopamine and reduced graphene oxide (rGO) using a H2O2/HPR (horseradish peroxidase) system are prepared for wound dressing. These hydrogels exhibit high swelling, degradability, tunable rheological property, and similar or superior mechanical properties to human skin. The polydopamine endowed antioxidant activity, tissue adhesiveness and hemostatic ability, self‐healing ability, conductivity, and NIR irradiation enhanced in vivo antibacterial behavior of the hydrogels are investigated. Moreover, drug release and zone of inhibition tests confirm sustained drug release capacity of the hydrogels. Furthermore, the hydrogel dressings significantly enhance vascularization by upregulating growth factor expression of CD31 and improve the granulation tissue thickness and collagen deposition, all of which promote wound closure and contribute to a better therapeutic effect than the commercial Tegaderm films group in a mouse full‐thickness wounds model. In summary, these adhesive hemostatic antioxidative conductive hydrogels with sustained drug release property to promote complete skin regeneration are an excellent wound dressing for full‐thickness skin repair.A series of hydrogel dressings with multifunctions including adhesive hemostatic antioxidative conductive photothermal antibacterial property based on hyaluronic acid‐graft‐dopamine and reduced graphene oxide (rGO) with a H2O2/HPR (horseradish peroxidase) system is prepared and the high promotion repair effect for full‐thickness skin wound regeneration confirms their great potential for clinical application. | |
dc.publisher | Springer | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | adhesive conductive hydrogels | |
dc.subject.other | drug release | |
dc.subject.other | hemostat | |
dc.subject.other | wound healing | |
dc.subject.other | antioxidant | |
dc.title | Adhesive Hemostatic Conducting Injectable Composite Hydrogels with Sustained Drug Release and Photothermal Antibacterial Activity to Promote Full‐Thickness Skin Regeneration During Wound Healing | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Materials Science and Engineering | |
dc.subject.hlbsecondlevel | Physics | |
dc.subject.hlbtoplevel | Science | |
dc.subject.hlbtoplevel | Engineering | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/148370/1/smll201900046.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/148370/2/smll201900046-sup-0001-S1.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/148370/3/smll201900046_am.pdf | |
dc.identifier.doi | 10.1002/smll.201900046 | |
dc.identifier.source | Small | |
dc.identifier.citedreference | H. H. Kim, J. B. Park, M. J. Kang, Y. H. Park, Int. J. Biol. Macromol. 2014, 70, 516. | |
dc.identifier.citedreference | L. Rittié, J. Cell Commun. Signaling 2016, 10, 103. | |
dc.identifier.citedreference | L. Li, J. Ge, B. Guo, P. X. Ma, Polym. Chem. 2014, 5, 2880. | |
dc.identifier.citedreference | M. B. Dreifke, A. A. Jayasuriya, A. C. Jayasuriya, Mater. Sci. Eng., C 2015, 48, 651. | |
dc.identifier.citedreference | C. G. Decker, Y. Wang, S. J. Paluck, L. Shen, J. A. Loo, A. J. Levine, L. S. Miller, H. D. Maynard, Biomaterials 2016, 81, 157. | |
dc.identifier.citedreference | C. L. Baum, C. J. Arpey, Dermatol. Surg. 2005, 31, 674. | |
dc.identifier.citedreference | R. L. Bronaugh, R. F. Stewart, E. R. Congdon, Toxicol. Appl. Pharmacol. 1982, 62, 481. | |
dc.identifier.citedreference | B. Lu, T. Li, H. Zhao, X. Li, C. Gao, S. Zhang, E. Xie, Nanoscale 2012, 4, 2978. | |
dc.identifier.citedreference | S. Barrientos, O. Stojadinovic, M. S. Golinko, H. Brem, M. Tomic‐Canic, Wound Repair Regener. 2008, 16, 585. | |
dc.identifier.citedreference | S. Barrientos, H. Brem, O. Stojadinovic, M. Tomic‐Canic, Wound Repair Regener. 2014, 22, 569. | |
dc.identifier.citedreference | S. Corcione, F. G. De Rosa, Curr. Opin. Infect. Dis. 2018, 31, 155. | |
dc.identifier.citedreference | S. R. Shin, C. Zihlmann, M. Akbari, P. Assawes, L. Cheung, K. Zhang, V. Manoharan, Y. S. Zhang, M. Yuksekkaya, K. T. Wan, M. Nikkhah, M. R. Dokmeci, X. S. Tang, A. Khademhosseini, Small 2016, 12, 3677. | |
dc.identifier.citedreference | L. Q. Xu, W. J. Yang, K.‐G. Neoh, E.‐T. Kang, G. D. Fu, Macromolecules 2010, 43, 8336. | |
dc.identifier.citedreference | J. Jiang, L. Zhu, L. Zhu, B. Zhu, Y. Xu, Langmuir 2011, 27, 14180. | |
dc.identifier.citedreference | Y. Wu, L. Wang, B. Guo, Y. Shao, P. X. Ma, Biomaterials 2016, 87, 18. | |
dc.identifier.citedreference | Z. Deng, Y. Guo, X. Zhao, P. X. Ma, B. Guo, Chem. Mater. 2018, 30, 1729. | |
dc.identifier.citedreference | X. Zhao, R. Dong, B. Guo, P. X. Ma, ACS Appl. Mater. Interfaces 2017, 9, 29595. | |
dc.identifier.citedreference | J. Qu, X. Zhao, P. X. Ma, B. Guo, Acta Biomater. 2017, 58, 168. | |
dc.identifier.citedreference | J. Qu, X. Zhao, P. X. Ma, B. Guo, Acta Biomater. 2018, 72, 55. | |
dc.identifier.citedreference | X. Zhao, B. Guo, H. Wu, Y. Liang, P. X. Ma, Nat. Commun. 2018, 9, 2784. | |
dc.identifier.citedreference | R. Gharibi, H. Yeganeh, A. Rezapour‐Lactoee, Z. M. Hassan, ACS Appl. Mater. Interfaces 2015, 7, 24296. | |
dc.identifier.citedreference | R. Dong, X. Zhao, B. Guo, P. X. Ma, ACS Appl. Mater. Interfaces 2016, 8, 17138. | |
dc.identifier.citedreference | J. J. Bae, J. H. Yoon, S. Jeong, B. H. Moon, J. T. Han, H. J. Jeong, G.‐W. Lee, H. R. Hwang, Y. H. Lee, S. Y. Jeong, Nanoscale 2015, 7, 15695. | |
dc.identifier.citedreference | M.‐C. Wu, A. R. Deokar, J.‐H. Liao, P.‐Y. Shih, Y.‐C. Ling, ACS Nano 2013, 7, 1281. | |
dc.identifier.citedreference | H. Xu, Z. Fang, W. Tian, Y. Wang, Q. Ye, L. Zhang, J. Cai, Adv. Mater. 2018, 30, 1801100. | |
dc.identifier.citedreference | C. J. Tormos, C. Abraham, S. V. Madihally, Drug Delivery Transl. Res. 2015, 5, 575. | |
dc.identifier.citedreference | J. Zhao, X. Zhao, B. Guo, P. X. Ma, Biomacromolecules 2014, 15, 3246. | |
dc.identifier.citedreference | S. J. Ryu, H. Jung, J. M. Oh, J. K. Lee, J. H. Choy, J. Phys. Chem. Solids 2010, 71, 685. | |
dc.identifier.citedreference | C. Wiegand, M. Abel, P. Ruth, P. Elsner, U.‐C. Hipler, J. Mate. Sci: Mater. Med. 2015, 26, 18. | |
dc.identifier.citedreference | A. Sasidharan, L. S. Panchakarla, A. R. Sadanandan, A. Ashokan, P. Chandran, C. M. Girish, D. Menon, S. V. Nair, C. Rao, M. Koyakutty, Small 2012, 8, 1251. | |
dc.identifier.citedreference | X. Zhao, P. Li, B. Guo, P. X. Ma, Acta Biomater. 2015, 26, 236. | |
dc.identifier.citedreference | Z. Fan, B. Liu, J. Wang, S. Zhang, Q. Lin, P. Gong, L. Ma, S. Yang, Adv. Funct. Mater. 2014, 24, 3933. | |
dc.identifier.citedreference | S. Bale, J. Cameron, S. Meaume, A. Ingegneri, in Science and Practice of Pressure Ulcer Management, Springer, London 2018, p. 111. | |
dc.identifier.citedreference | N. Pazyar, R. Yaghoobi, E. Rafiee, A. Mehrabian, A. Feily, Skin Pharmacol. Physiol. 2014, 27, 303. | |
dc.identifier.citedreference | R. G. Rosique, M. J. Rosique, F. Junior, A. Jayme, Int. J. Inflammation 2015, 2015, 1. | |
dc.identifier.citedreference | M.‐M. Yolanda, A.‐V. Maria, F. Amaia, P. Marcos, P. Silvia, E. Dolores, O. Jesús, J. Stem Cell Res. Ther. 2014, 04, 2. | |
dc.identifier.citedreference | H. Sorg, D. J. Tilkorn, S. Hager, J. Hauser, U. Mirastschijski, Eur. Surg. Res. 2017, 58, 81. | |
dc.identifier.citedreference | R. F. Pereira, P. J. Bartolo, Adv. Wound Care 2016, 5, 208. | |
dc.identifier.citedreference | X. Zhao, H. Wu, B. Guo, R. Dong, Y. Qiu, P. X. Ma, Biomaterials 2017, 122, 34. | |
dc.identifier.citedreference | E. A. Kamoun, E.‐R. S. Kenawy, X. Chen, J. Adv. Res. 2017, 8, 217. | |
dc.identifier.citedreference | H. Kim, J. Wound Manage. Res. 2018, 14, 141. | |
dc.identifier.citedreference | J. Qu, X. Zhao, Y. Liang, T. Zhang, P. X. Ma, B. Guo, Biomaterials 2018, 183, 185. | |
dc.identifier.citedreference | C. Ghobril, M. Grinstaff, Chem. Soc. Rev. 2015, 44, 1820. | |
dc.identifier.citedreference | A. K. Gaharwar, N. A. Peppas, A. Khademhosseini, Biotechnol. Bioeng. 2014, 111, 441. | |
dc.identifier.citedreference | P. J. Bouten, M. Zonjee, J. Bender, S. T. Yauw, H. van Goor, J. C. van Hest, R. Hoogenboom, Prog. Polym. Sci. 2014, 39, 1375. | |
dc.identifier.citedreference | D. Naor, Front. Immunol. 2016, 7, 39. | |
dc.identifier.citedreference | W. Shigeeda, M. Shibazaki, S. Yasuhira, T. Masuda, T. Tanita, Y. Kaneko, T. Sato, Y. Sekido, C. Maesawa, Oncotarget 2017, 8, 93729. | |
dc.identifier.citedreference | D. Jiang, J. Liang, P. W. Noble, Annu. Rev. Cell Dev. Biol. 2007, 23, 435. | |
dc.identifier.citedreference | W. J. Chen, G. Abatangelo, Wound Repair Regen. 1999, 7, 79. | |
dc.identifier.citedreference | M. G. Neuman, R. M. Nanau, L. Oruña‐Sanchez, G. Coto, J. Pharm. Pharm. Sci. 2015, 18, 53. | |
dc.identifier.citedreference | T. Führmann, J. Obermeyer, C. Tator, M. Shoichet, Methods 2015, 84, 60. | |
dc.identifier.citedreference | L. Li, N. Wang, X. Jin, R. Deng, S. Nie, L. Sun, Q. Wu, Y. Wei, C. Gong, Biomaterials 2014, 35, 3903. | |
dc.identifier.citedreference | J. E. Greenwood, in Skin Tissue Engineering and Regenerative Medicine, (Eds: M. Z. Albanna, J. H. Holmes IV ), Academic Press, Boston 2016, p. 185. | |
dc.identifier.citedreference | K. L. Aya, R. Stern, Wound Repair Regener. 2014, 22, 579. | |
dc.identifier.citedreference | J. H. Ryu, S. Hong, H. Lee, Acta Biomater. 2015, 27, 101. | |
dc.identifier.citedreference | A. I. Neto, A. C. Cibrao, C. R. Correia, R. R. Carvalho, G. M. Luz, G. G. Ferrer, G. Botelho, C. Picart, N. M. Alves, J. F. Mano, Small 2014, 10, 2459. | |
dc.identifier.citedreference | S. Hong, K. Yang, B. Kang, C. Lee, I. T. Song, E. Byun, K. I. Park, S. W. Cho, H. Lee, Adv. Funct. Mater. 2013, 23, 1774. | |
dc.identifier.citedreference | P. Martin, Science 1997, 276, 75. | |
dc.identifier.citedreference | S. A. Eming, P. Martin, M. Tomic‐Canic, Sci. Transl. Med. 2014, 6, 265sr6. | |
dc.identifier.citedreference | B. Guo, A. Finne‐Wistrand, A.‐C. Albertsson, Biomacromolecules 2011, 12, 2601. | |
dc.identifier.citedreference | B. Guo, L. Glavas, A.‐C. Albertsson, Prog. Polym. Sci. 2013, 38, 1263. | |
dc.identifier.citedreference | B. Guo, P. X. Ma, Biomacromolecules 2018, 19, 1764. | |
dc.identifier.citedreference | L. Wang, Y. Wu, B. Guo, P. X. Ma, ACS Nano 2015, 9, 9167. | |
dc.identifier.citedreference | Y. Wu, L. Wang, B. Guo, P. X. Ma, ACS Nano 2017, 11, 5646. | |
dc.identifier.citedreference | M. Xie, L. Wang, J. Ge, B. Guo, P. X. Ma, ACS Appl. Mater. Interfaces 2015, 7, 6772. | |
dc.identifier.citedreference | S. R. Shin, Y.‐C. Li, H. L. Jang, P. Khoshakhlagh, M. Akbari, A. Nasajpour, Y. S. Zhang, A. Tamayol, A. Khademhosseini, Adv. Drug Delivery Rev. 2016, 105, 255. | |
dc.identifier.citedreference | S. Goenka, V. Sant, S. Sant, J. Controlled Release 2014, 173, 75. | |
dc.identifier.citedreference | O. C. Compton, S. T. Nguyen, Small 2010, 6, 711. | |
dc.identifier.citedreference | M. Liu, J. Ji, X. Zhang, X. Zhang, B. Yang, F. Deng, Z. Li, K. Wang, Y. Yang, Y. Wei, J. Mater. Chem. B 2015, 3, 3476. | |
dc.identifier.citedreference | N. Huang, S. Zhang, L. Yang, M. Liu, H. Li, Y. Zhang, S. Yao, ACS Appl. Mater. Interfaces 2015, 7, 17935. | |
dc.identifier.citedreference | L. S. Nair, C. T. Laurencin, Prog. Polym. Sci. 2007, 32, 762. | |
dc.identifier.citedreference | B. Guo, A. Finne‐Wistrand, A.‐C. Albertsson, Chem. Mater. 2011, 23, 1254. | |
dc.identifier.citedreference | B. Guo, P. X. Ma, Sci. China: Chem. 2014, 57, 490. | |
dc.identifier.citedreference | X. Zhao, M. Zhang, B. Guo, P. X. Ma, J. Mater. Chem. B 2016, 4, 6644. | |
dc.identifier.citedreference | S. Zhong, Y. Zhang, C. Lim, Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2010, 2, 510. | |
dc.identifier.citedreference | N. Annabi, D. Rana, E. S. Sani, R. Portillo‐Lara, J. L. Gifford, M. M. Fares, S. M. Mithieux, A. S. Weiss, Biomaterials 2017, 139, 229. | |
dc.identifier.citedreference | X. Chen, Small Methods 2017, 1, 1600029. | |
dc.identifier.citedreference | Y. Wu, B. Guo, P. X. Ma, ACS Macro Lett. 2014, 3, 1145. | |
dc.identifier.citedreference | B. Guo, J. Qu, X. Zhao, M. Zhang, Acta Biomater. 2019, 84, 180. | |
dc.identifier.citedreference | Z. Deng, T. Hu, Q. Lei, J. He, P. X. Ma, B. Guo, ACS Appl. Mater. Interfaces 2019, 11, 6796. | |
dc.identifier.citedreference | J. Qu, X. Zhao, Y. Liang, Y. Xu, P. X. Ma, B. Guo, Chem. Eng. J. 2019, 362, 548. | |
dc.identifier.citedreference | D. Gopinath, M. R. Ahmed, K. Gomathi, K. Chitra, P. K. Sehgal, R. Jayakumar, Biomaterials 2004, 25, 1911. | |
dc.identifier.citedreference | V. Kant, A. Gopal, N. N. Pathak, P. Kumar, S. K. Tandan, D. Kumar, Int. Immunopharmacol. 2014, 20, 322. | |
dc.identifier.citedreference | Y. Liang, X. Zhao, P. X. Ma, B. Guo, Y. Du, X. Han, J. Colloid Interface Sci. 2019, 536, 224. | |
dc.identifier.citedreference | E. Lih, J. S. Lee, K. M. Park, K. D. Park, Acta Biomater. 2012, 8, 3261. | |
dc.identifier.citedreference | S. H. Ku, J. Ryu, S. K. Hong, H. Lee, C. B. Park, Biomaterials 2010, 31, 2535. | |
dc.identifier.citedreference | E. Pirila, N. Ramamurthy, P. Maisi, S. McClain, A. Kucine, J. Wahlgren, L. M. Golub, T. Salo, T. Sorsa, Curr. Med. Chem. 2001, 8, 281. | |
dc.identifier.citedreference | D. D. Cissell, J. M. Link, J. C. Hu, K. A. Athanasiou, Tissue Eng., Part C 2017, 23, 243. | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.