Show simple item record

17‐Beta Hydroxysteroid Dehydrogenase 13 Is a Hepatic Retinol Dehydrogenase Associated With Histological Features of Nonalcoholic Fatty Liver Disease

dc.contributor.authorMa, Yanling
dc.contributor.authorBelyaeva, Olga V.
dc.contributor.authorBrown, Philip M.
dc.contributor.authorFujita, Koji
dc.contributor.authorValles, Katherine
dc.contributor.authorKarki, Suman
dc.contributor.authorde Boer, Ynto S.
dc.contributor.authorKoh, Christopher
dc.contributor.authorChen, Yanhua
dc.contributor.authorDu, Xiaomeng
dc.contributor.authorHandelman, Samuel K.
dc.contributor.authorChen, Vincent
dc.contributor.authorSpeliotes, Elizabeth K.
dc.contributor.authorNestlerode, Cara
dc.contributor.authorThomas, Emmanuel
dc.contributor.authorKleiner, David E.
dc.contributor.authorZmuda, Joseph M.
dc.contributor.authorSanyal, Arun J.
dc.contributor.authorKedishvili, Natalia Y.
dc.contributor.authorLiang, T. Jake
dc.contributor.authorRotman, Yaron
dc.date.accessioned2019-04-02T18:10:51Z
dc.date.available2020-06-01T14:50:01Zen
dc.date.issued2019-04
dc.identifier.citationMa, Yanling; Belyaeva, Olga V.; Brown, Philip M.; Fujita, Koji; Valles, Katherine; Karki, Suman; de Boer, Ynto S.; Koh, Christopher; Chen, Yanhua; Du, Xiaomeng; Handelman, Samuel K.; Chen, Vincent; Speliotes, Elizabeth K.; Nestlerode, Cara; Thomas, Emmanuel; Kleiner, David E.; Zmuda, Joseph M.; Sanyal, Arun J.; Kedishvili, Natalia Y.; Liang, T. Jake; Rotman, Yaron (2019). "17‐Beta Hydroxysteroid Dehydrogenase 13 Is a Hepatic Retinol Dehydrogenase Associated With Histological Features of Nonalcoholic Fatty Liver Disease." Hepatology (4): 1504-1519.
dc.identifier.issn0270-9139
dc.identifier.issn1527-3350
dc.identifier.urihttps://hdl.handle.net/2027.42/148371
dc.publisherWiley Periodicals, Inc.
dc.title17‐Beta Hydroxysteroid Dehydrogenase 13 Is a Hepatic Retinol Dehydrogenase Associated With Histological Features of Nonalcoholic Fatty Liver Disease
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialties
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148371/1/hep30350.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148371/2/hep30350_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148371/3/hep30350-sup-0001-Supinfo.pdf
dc.identifier.doi10.1002/hep.30350
dc.identifier.sourceHepatology
dc.identifier.citedreferenceChen G. The link between hepatic vitamin A metabolism and nonalcoholic fatty liver disease. Curr Drug Targets 2015; 16: 1281 ‐ 1292.
dc.identifier.citedreferenceMancina RM, Dongiovanni P, Petta S, Pingitore P, Meroni M, Rametta R, et al. The MBOAT7‐TMC4 variant rs641738 increases risk of nonalcoholic fatty liver disease in individuals of European descent. Gastroenterology 2016; 150: 1219 ‐ 1230.
dc.identifier.citedreferenceChambers JC, Zhang W, Sehmi J, Li X, Wass MN, Van der Harst P, et al. Genome‐wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat Genet 2011; 43: 1131 ‐ 1138.
dc.identifier.citedreferenceClark JM, Brancati FL, Diehl AM. The prevalence and etiology of elevated aminotransferase levels in the United States. Am J Gastroenterol 2003; 98: 960 ‐ 967.
dc.identifier.citedreferenceIoannou GN, Boyko EJ, Lee SP. The prevalence and predictors of elevated serum aminotransferase activity in the United States in 1999–2002. Am J Gastroenterol 2006; 101: 76 ‐ 82.
dc.identifier.citedreferenceNeuschwander‐Tetri BA, Clark JM, Bass NM, Van Natta ML, Unalp‐Arida A, Tonascia J, et al. Clinical, laboratory and histological associations in adults with nonalcoholic fatty liver disease. Hepatology 2010; 52: 913 ‐ 924.
dc.identifier.citedreferenceSanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM, Bass NM, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 2010; 362: 1675 ‐ 1685.
dc.identifier.citedreferenceKleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005; 41: 1313 ‐ 1321.
dc.identifier.citedreferenceBelyaeva OV, Korkina OV, Stetsenko AV, Kim T, Nelson PS, Kedishvili NY. Biochemical properties of purified human retinol dehydrogenase 12 (RDH12): catalytic efficiency toward retinoids and C9 aldehydes and effects of cellular retinol‐binding protein type I (CRBPI) and cellular retinaldehyde‐binding protein (CRALBP) on the oxidation and reduction of retinoids. Biochemistry 2005; 44: 7035 ‐ 7047.
dc.identifier.citedreferenceBenjamini Y, Hochberg Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B Methodological 1995; 57: 289 ‐ 300.
dc.identifier.citedreferencePike N. Using false discovery rates for multiple comparisons in ecology and evolution. Methods Ecol Evol 2011; 2: 278 ‐ 282.
dc.identifier.citedreferenceHoriguchi Y, Araki M, Motojima K. Identification and characterization of the ER/lipid droplet‐targeting sequence in 17beta‐hydroxysteroid dehydrogenase type 11. Arch Biochem Biophys 2008; 479: 121 ‐ 130.
dc.identifier.citedreferenceMarchais‐Oberwinkler S, Henn C, Moller G, Klein T, Negri M, Oster A, et al. 17Beta‐hydroxysteroid dehydrogenases (17beta‐HSDs) as therapeutic targets: protein structures, functions, and recent progress in inhibitor development. J Steroid Biochem Mol Biol 2011; 125: 66 ‐ 82.
dc.identifier.citedreferenceBelyaeva OV, Chang C, Berlett MC, Kedishvili NY. Evolutionary origins of retinoid active short‐chain dehydrogenases/reductases of SDR16C family. Chem Biol Interact 2015; 234: 135 ‐ 143.
dc.identifier.citedreferenceBelyaeva OV, Johnson MP, Kedishvili NY. Kinetic analysis of human enzyme RDH10 defines the characteristics of a physiologically relevant retinol dehydrogenase. J Biol Chem 2008; 283: 20299 ‐ 20308.
dc.identifier.citedreferenceLiu S, Huang C, Li D, Ren W, Zhang H, Qi M, et al. Molecular cloning and expression analysis of a new gene for short‐chain dehydrogenase/reductase 9. Acta Biochim Pol 2007; 54: 213 ‐ 218.
dc.identifier.citedreferenceDuax WL, Pletnev V, Addlagatta A, Bruenn J, Weeks CM. Rational proteomics I. Fingerprint identification and cofactor specificity in the short‐chain oxidoreductase (SCOR) enzyme family. Proteins 2003; 53: 931 ‐ 943.
dc.identifier.citedreferenceShafqat N, Marschall HU, Filling C, Nordling E, Wu XQ, Bjork L, et al. Expanded substrate screenings of human and Drosophila type 10 17beta‐hydroxysteroid dehydrogenases (HSDs) reveal multiple specificities in bile acid and steroid hormone metabolism: characterization of multifunctional 3alpha/7alpha/7beta/17beta/20beta/21‐HSD. Biochem J 2003; 376: 49 ‐ 60.
dc.identifier.citedreferenceSu W, Wang Y, Jia X, Wu W, Li L, Tian X, et al. Comparative proteomic study reveals 17beta‐HSD13 as a pathogenic protein in nonalcoholic fatty liver disease. Proc Natl Acad Sci USA 2014; 111: 11437 ‐ 11442.
dc.identifier.citedreferenceTsuchiya H, Ikeda Y, Ebata Y, Kojima C, Katsuma R, Tsuruyama T, et al. Retinoids ameliorate insulin resistance in a leptin‐dependent manner in mice. Hepatology 2012; 56: 1319 ‐ 1330.
dc.identifier.citedreferenceZiouzenkova O, Orasanu G, Sharlach M, Akiyama TE, Berger JP, Viereck J, et al. Retinaldehyde represses adipogenesis and diet‐induced obesity. Nat Med 2007; 13: 695 ‐ 702.
dc.identifier.citedreferenceKim SC, Kim CK, Axe D, Cook A, Lee M, Li T, et al. All‐trans‐retinoic acid ameliorates hepatic steatosis in mice by a novel transcriptional cascade. Hepatology 2014; 59: 1750 ‐ 1760.
dc.identifier.citedreferenceYang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM, et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 2005; 436: 356 ‐ 362.
dc.identifier.citedreferenceGraham TE, Yang Q, Bluher M, Hammarstedt A, Ciaraldi TP, Henry RR, et al. Retinol‐binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Engl J Med 2006; 354: 2552 ‐ 2563.
dc.identifier.citedreferenceMondul A, Mancina RM, Merlo A, Dongiovanni P, Rametta R, Montalcini T, et al. PNPLA3 I148M variant influences circulating retinol in adults with nonalcoholic fatty liver disease or obesity. J Nutr 2015; 145: 1687 ‐ 1691.
dc.identifier.citedreferenceBruschi FV, Claudel T, Tardelli M, Caligiuri A, Stulnig TM, Marra F, et al. The PNPLA3 I148M variant modulates the fibrogenic phenotype of human hepatic stellate cells. Hepatology 2017; 65: 1875 ‐ 1890.
dc.identifier.citedreferencePirazzi C, Valenti L, Motta BM, Pingitore P, Hedfalk K, Mancina RM, et al. PNPLA3 has retinyl‐palmitate lipase activity in human hepatic stellate cells. Hum Mol Genet 2014; 23: 4077 ‐ 4085.
dc.identifier.citedreferenceValenti L, Romeo S. Destined to develop NAFLD? The predictors of fatty liver from birth to adulthood. J Hepatol 2016; 65: 668 ‐ 670.
dc.identifier.citedreferenceYang D, Vuckovic MG, Smullin CP, Kim M, Lo CP, Devericks E, et al. Modest decreases in endogenous all‐trans‐retinoic acid produced by a mouse Rdh10 heterozygote provoke major abnormalities in adipogenesis and lipid metabolism. Diabetes 2018; 67: 662 ‐ 673.
dc.identifier.citedreferenceXu L, Jiang CQ, Lam TH, Zhang WS, Zhu F, Jin YL, et al. Mendelian randomization estimates of alanine aminotransferase with cardiovascular disease: Guangzhou Biobank Cohort study. Hum Mol Genet 2017; 26: 430 ‐ 437.
dc.identifier.citedreferenceAbul‐Husn NS, Cheng X, Li AH, Xin Y, Schurmann C, Stevis P, et al. A protein‐truncating HSD17B13 variant and protection from chronic liver disease. N Engl J Med 2018; 378: 1096 ‐ 1106.
dc.identifier.citedreferenceAdam M, Heikela H, Sobolewski C, Portius D, Maki‐Jouppila J, Mehmood A, et al. Hydroxysteroid (17) dehydrogenase 13 deficiency triggers hepatic steatosis and inflammation in mice. FASEB J 2018; 32: 3434 ‐ 3447.
dc.identifier.citedreferenceSu W, Peng J, Li S, Dai YB, Wang CJ, Xu H, et al. Liver X receptor alpha induces 17beta‐hydroxysteroid dehydrogenase‐13 expression through SREBP‐1c. Am J Physiol Endocrinol Metab 2017; 312: E357 ‐ E367.
dc.identifier.citedreferenceRotroff DM, Pijut SS, Marvel SW, Jack JR, Havener TM, Pujol A, et al. Genetic variants in HSD17B3, SMAD3, and IPO11 impact circulating lipids in response to fenofibrate in individuals with type 2 diabetes. Clin Pharmacol Ther 2018; 103: 712 ‐ 721.
dc.identifier.citedreferenceSchwimmer JB, Celedon MA, Lavine JE, Salem R, Campbell N, Schork NJ, et al. Heritability of nonalcoholic fatty liver disease. Gastroenterology 2009; 136: 1585 ‐ 1592.
dc.identifier.citedreferenceBrowning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, Cohen JC, et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 2004; 40: 1387 ‐ 1395.
dc.identifier.citedreferenceRomeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2008; 40: 1461 ‐ 1465.
dc.identifier.citedreferenceSpeliotes EK, Yerges‐Armstrong LM, Wu J, Hernaez R, Kim LJ, Palmer CD, et al. Genome‐wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet 2011; 7: e1001324.
dc.identifier.citedreferenceYuan X, Waterworth D, Perry JR, Lim N, Song K, Chambers JC, et al. Population‐based genome‐wide association studies reveal six loci influencing plasma levels of liver enzymes. Am J Hum Genet 2008; 83: 520 ‐ 528.
dc.identifier.citedreferenceRotman Y, Koh C, Zmuda JM, Kleiner DE, Liang TJ. The association of genetic variability in patatin‐like phospholipase domain‐containing protein 3 (PNPLA3) with histological severity of nonalcoholic fatty liver disease. Hepatology 2010; 52: 894 ‐ 903.
dc.identifier.citedreferenceSookoian S, Castano GO, Burgueno AL, Gianotti TF, Rosselli MS, Pirola CJ. A nonsynonymous gene variant in the adiponutrin gene is associated with nonalcoholic fatty liver disease severity. J Lipid Res 2009; 50: 2111 ‐ 2116.
dc.identifier.citedreferenceSpeliotes EK, Butler JL, Palmer CD, Voight BF, Hirschhorn JN. PNPLA3 variants specifically confer increased risk for histologic nonalcoholic fatty liver disease but not metabolic disease. Hepatology 2010; 52: 904 ‐ 912.
dc.identifier.citedreferenceKotronen A, Peltonen M, Hakkarainen A, Sevastianova K, Bergholm R, Johansson LM, et al. Prediction of non‐alcoholic fatty liver disease and liver fat using metabolic and genetic factors. Gastroenterology 2009; 137: 865 ‐ 872.
dc.identifier.citedreferenceKozlitina J, Smagris E, Stender S, Nordestgaard BG, Zhou HH, Tybjaerg‐Hansen A, et al. Exome‐wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2014; 46: 352 ‐ 356.
dc.identifier.citedreferenceHolmen OL, Zhang H, Fan Y, Hovelson DH, Schmidt EM, Zhou W, et al. Systematic evaluation of coding variation identifies a candidate causal variant in TM6SF2 influencing total cholesterol and myocardial infarction risk. Nat Genet 2014; 46: 345 ‐ 351.
dc.identifier.citedreferenceMahdessian H, Taxiarchis A, Popov S, Silveira A, Franco‐Cereceda A, Hamsten A, et al. TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content. Proc Natl Acad Sci USA 2014; 111: 8913 ‐ 8918.
dc.identifier.citedreferenceAnstee QM, Day CP. The genetics of nonalcoholic fatty liver disease: spotlight on PNPLA3 and TM6SF2. Semin Liver Dis 2015; 35: 270 ‐ 290.
dc.identifier.citedreferenceKahali B, Liu YL, Daly AK, Day CP, Anstee QM, Speliotes EK. TM6SF2: catch‐22 in the fight against nonalcoholic fatty liver disease and cardiovascular disease? Gastroenterology 2015; 148: 679 ‐ 684.
dc.identifier.citedreferenceBuch S, Stickel F, Trepo E, Way M, Herrmann A, Nischalke HD, et al. A genome‐wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol‐related cirrhosis. Nat Genet 2015; 47: 1443 ‐ 1448.
dc.identifier.citedreferenceSimons N, Isaacs A, Koek GH, Kuc S, Schaper NC, Brouwers M. PNPLA3, TM6SF2, and MBOAT7 genotypes and coronary artery disease. Gastroenterology 2017; 152: 912 ‐ 913.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.