Show simple item record

A unique anisotropic R2 of collagen degeneration (ARCADE) mapping as an efficient alternative to composite relaxation metric (R2â R1Ï ) in human knee cartilage study

dc.contributor.authorPang, Yuxi
dc.contributor.authorPalmieri‐smith, Riann M.
dc.contributor.authorMalyarenko, Dariya I.
dc.contributor.authorSwanson, Scott D.
dc.contributor.authorChenevert, Thomas L.
dc.date.accessioned2019-04-02T18:10:54Z
dc.date.availableWITHHELD_15_MONTHS
dc.date.available2019-04-02T18:10:54Z
dc.date.issued2019-06
dc.identifier.citationPang, Yuxi; Palmieri‐smith, Riann M. ; Malyarenko, Dariya I.; Swanson, Scott D.; Chenevert, Thomas L. (2019). "A unique anisotropic R2 of collagen degeneration (ARCADE) mapping as an efficient alternative to composite relaxation metric (R2â R1Ï ) in human knee cartilage study." Magnetic Resonance in Medicine (6): 3763-3774.
dc.identifier.issn0740-3194
dc.identifier.issn1522-2594
dc.identifier.urihttps://hdl.handle.net/2027.42/148373
dc.publisherWiley Periodicals, Inc.
dc.subject.otherhuman knee cartilage
dc.subject.otherchemical exchange effect
dc.subject.otheranisotropic R2
dc.subject.othermagic angle effect
dc.subject.othercomposite relaxation metric R2 â R1Ï
dc.titleA unique anisotropic R2 of collagen degeneration (ARCADE) mapping as an efficient alternative to composite relaxation metric (R2â R1Ï ) in human knee cartilage study
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148373/1/mrm27621.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148373/2/mrm27621_am.pdf
dc.identifier.doi10.1002/mrm.27621
dc.identifier.sourceMagnetic Resonance in Medicine
dc.identifier.citedreferenceBerberat JE, Nissi MJ, Jurvelin JS, Nieminen MT. Assessment of interstitial water content of articular cartilage with T1 relaxation. Magn Reson Imaging. 2009; 27: 727 â 732.
dc.identifier.citedreferenceGrunder W. MRI assessment of cartilage ultrastructure. NMR Biomed. 2006; 19: 855 â 876.
dc.identifier.citedreferenceWoessner DE, Snowden Jr BS. Magnetic relaxation under hindered rotation in fluids. Advan Mol Relaxation Processes. 1972; 3: 181 â 197.
dc.identifier.citedreferenceTourell MC, Momot KI. Molecular dynamics of a hydrated collagen peptide: Insights into rotational motion and residence times of singleâ water bridges in collagen. J Phys Chem B. 2016; 120: 12432 â 12443.
dc.identifier.citedreferenceWoessner DE. Nuclear magnetic relaxation and structure in aqueous heterogenous systems. Mol Phys. 1977; 34: 899 â 920.
dc.identifier.citedreferenceXia Y. Magicâ angle effect in magnetic resonance imaging of articular cartilage: a review. Invest Radiol. 2000; 35: 602 â 621.
dc.identifier.citedreferenceJordan CD, Saranathan M, Bangerter NK, Hargreaves BA, Gold GE. Musculoskeletal MRI at 3.0 T and 7.0 T: a comparison of relaxation times and image contrast. Eur J Radiol. 2013; 82: 734 â 739.
dc.identifier.citedreferenceJones GP. Spinâ lattice relaxation in the rotating frame: weakâ collision case. Phys Rev. 1966; 148: 332 â 335.
dc.identifier.citedreferenceWang L, Schweitzer ME, Padua A, Regatte RR. Rapid 3Dâ T1 mapping of cartilage with variable flip angle and parallel imaging at 3.0T. J Magn Reson Imaging. 2008; 27: 154 â 161.
dc.identifier.citedreferenceXia Y. Relaxation anisotropy in cartilage by NMR microscopy (muMRI) at 14â microm resolution. Magn Reson Med. 1998; 39: 941 â 949.
dc.identifier.citedreferenceWang L, Regatte RR. T 1 Ï MRI of human musculoskeletal system. J Magn Reson Imaging. 2015; 41: 586 â 600.
dc.identifier.citedreferenceLi X, Han ET, Busse RF, Majumdar S. In vivo T 1 Ï mapping in cartilage using 3D magnetizationâ prepared angleâ modulated partitioned kâ space spoiled gradient echo snapshots (3D MAPSS). Magn Reson Med. 2008; 59: 298 â 307.
dc.identifier.citedreferenceKlein S, Staring M, Murphy K, Viergever MA, Pluim JPW. elastix: A Toolbox for Intensityâ Based Medical Image Registration. IEEE Trans Med Imaging. 2010; 29: 196 â 205.
dc.identifier.citedreferenceBron EE, van Tiel J, Smit H, et al. Image registration improves human knee cartilage T1 mapping with delayed gadoliniumâ enhanced MRI of cartilage (dGEMRIC). Eur Radiol. 2013; 23: 246 â 252.
dc.identifier.citedreferenceYushkevich PA, Piven J, Hazlett HC, et al. Userâ guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage. 2006; 31: 1116 â 1128.
dc.identifier.citedreferenceKaneko Y, Nozaki T, Yu H, et al. Normal T2 map profile of the entire femoral cartilage using an angle/layerâ dependent approach. J Magn Reson Imaging. 2015; 42: 1507 â 1516.
dc.identifier.citedreferenceMonk AP, Choji K, O’Connor JJ, Goodfellow JW, Murray DW. The shape of the distal femur: a geometrical study using MRI. Bone Joint J. 2014; 96â B: 1623 â 1630.
dc.identifier.citedreferenceMarkwardt CB. Nonâ linear leastâ squares fitting in IDL with MPFIT. In Astronomical Data Analysis Software and Systems XVIII ASP Conference Series. 2009: 411: 251.
dc.identifier.citedreferenceFriendly M, Monette G, Fox J. Elliptical insights: understanding statistical methods through elliptical geometry. Stat Sci. 2013; 28: 1 â 39.
dc.identifier.citedreferenceGoodwin DW, Wadghiri YZ, Dunn JF. Microâ imaging of articular cartilage: T2, proton density, and the magic angle effect. Acad Radiol. 1998; 5: 790 â 798.
dc.identifier.citedreferenceMatzat SJ, McWalter EJ, Kogan F, Chen W, Gold GE. T2 Relaxation time quantitation differs between pulse sequences in articular cartilage. J Magn Reson Imaging. 2015; 42: 105 â 113.
dc.identifier.citedreferenceHeule R, Ganter C, Bieri O. Rapid estimation of cartilage T2 with reduced T1 sensitivity using double echo steady state imaging. Magn Reson Med. 2014; 71: 1137 â 1143.
dc.identifier.citedreferenceColotti R, Omoumi P, Bonanno G, Ledoux JB, van Heeswijk RB. Isotropic threeâ dimensional T2 mapping of knee cartilage: Development and validation. J Magn Reson Imaging. 2018; 47: 362 â 371.
dc.identifier.citedreferenceRaya JG. Techniques and applications of in vivo diffusion imaging of articular cartilage. J Magn Reson Imaging. 2015; 41: 1487 â 1504.
dc.identifier.citedreferenceBerendsen HJC. Nuclear magnetic resonance study of collagen hydration. J Chem Phys. 1962; 36: 3297 â 3305.
dc.identifier.citedreferenceFung BM. Orientation of water in striated frog muscle. Science. 1975; 190: 800 â 802.
dc.identifier.citedreferenceHenkelman RM, Stanisz GJ, Kim JK, Bronskill MJ. Anisotropy of NMR properties of tissues. Magn Reson Med. 1994; 32: 592 â 601.
dc.identifier.citedreferenceSophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health. 2009; 1: 461 â 468.
dc.identifier.citedreferencePeto S, Gillis P. Fiberâ toâ field angle dependence of proton nuclear magnetic relaxation in collagen. Magn Reson Imaging. 1990; 8: 705 â 712.
dc.identifier.citedreferenceErickson SJ, Prost RW, Timins ME. The â magic angleâ effect â background physics and clinical relevance. Radiology. 1993; 188: 23 â 25.
dc.identifier.citedreferenceHanninen N, Rautiainen J, Rieppo L, Saarakkala S, Nissi MJ. Orientation anisotropy of quantitative MRI relaxation parameters in ordered tissue. Sci Rep. 2017; 7: 9606.
dc.identifier.citedreferencePalmieriâ Smith RM, Wojtys EM, Potter HG. Early Cartilage changes after anterior cruciate ligament injury: evaluation with imaging and serum biomarkers â a pilot study. Arthroscopy. 2016; 32: 1309 â 1318.
dc.identifier.citedreferenceLink TM, Neumann J, Li X. Prestructural cartilage assessment using MRI. J Magn Reson Imaging. 2017; 45: 949 â 965.
dc.identifier.citedreferenceRoemer FW, Kijowski R, Guermazi A. Editorial: from theory to practice â the challenges of compositional MRI in osteoarthritis research. Osteoarthritis Cartilage. 2017; 25: 1923 â 1925.
dc.identifier.citedreferenceLink TM, Li X. Establishing compositional MRI of cartilage as a biomarker for clinical practice. Osteoarthritis Cartilage. 2018; 26: 1137 â 1139.
dc.identifier.citedreferencevan Tiel J, Kotek G, Reijman M, et al. Is T1rho mapping an alternative to delayed gadoliniumâ enhanced MR imaging of cartilage in the assessment of sulphated glycosaminoglycan content in human osteoarthritic knees? An in vivo validation study. Radiology. 2016; 279: 523 â 531.
dc.identifier.citedreferenceShao H, Pauli C, Li S, et al. Magic angle effect plays a major role in both T1rho and T2 relaxation in articular cartilage. Osteoarthritis Cartilage. 2017; 25: 2022 â 2030.
dc.identifier.citedreferencePedoia V, Haefeli J, Morioka K, et al. MRI and biomechanics multidimensional data analysis reveals R2â R1rho as an early predictor of cartilage lesion progression in knee osteoarthritis. J Magn Reson Imaging. 2018; 47: 78 â 90.
dc.identifier.citedreferenceRussell C, Pedoia V, Majumdar S, Consortium Aâ A. Composite metric R2â R1rho (1/T2 â 1/T1rho ) as a potential MR imaging biomarker associated with changes in pain after ACL reconstruction: a sixâ month followâ up. J Orthop Res. 2017; 35: 718 â 729.
dc.identifier.citedreferenceWang P, Block J, Gore JC. Chemical exchange in knee cartilage assessed by R1rho (1/T1rho) dispersion at 3T. Magn Reson Imaging. 2015; 33: 38 â 42.
dc.identifier.citedreferenceAkella SV, Regatte RR, Wheaton AJ, Borthakur A, Reddy R. Reduction of residual dipolar interaction in cartilage by spinâ lock technique. Magn Reson Med. 2004; 52: 1103 â 1109.
dc.identifier.citedreferenceGold GE, Han E, Stainsby J, Wright G, Brittain J, Beaulieu C. Musculoskeletal MRI at 3.0 T: relaxation times and image contrast. AJR Am J Roentgenol. 2004; 183: 343 â 351.
dc.identifier.citedreferenceMlynarik V, Szomolanyi P, Toffanin R, Vittur F, Trattnig S. Transverse relaxation mechanisms in articular cartilage. J Magn Reson. 2004; 169: 300 â 307.
dc.identifier.citedreferenceSingh A, Haris M, Cai K, Kogan F, Hariharan H, Reddy R. High resolution T1rho mapping of in vivo human knee cartilage at 7T. PLoS ONE. 2014; 9: e97486.
dc.identifier.citedreferenceWyatt C, Guha A, Venkatachari A, et al. Improved differentiation between knees with cartilage lesions and controls using 7T relaxation time mapping. J Orthop Transl. 2015; 3: 197 â 204.
dc.identifier.citedreferenceMomot KI, Pope JM, Wellard RM. Anisotropy of spin relaxation of water protons in cartilage and tendon. NMR Biomed. 2010; 23: 313 â 324.
dc.identifier.citedreferenceSingh A, Haris M, Cai K, et al. Chemical exchange saturation transfer magnetic resonance imaging of human knee cartilage at 3 T and 7 T. Magn Reson Med. 2012; 68: 588 â 594.
dc.identifier.citedreferencePang Y, Palmieriâ Smith RM, Chenevert TL. A composite metric R2â R1Â Ï measures an incomplete anisotropic R2 of human femoral cartilage at 3T. In Proceedings of the 26th Annual Meeting of ISMRM, Paris, France, 2018. (abstract 3104).
dc.identifier.citedreferenceMononen ME, Tanska P, Isaksson H, Korhonen RK. A novel method to simulate the progression of collagen degeneration of cartilage in the knee: data from the Osteoarthritis Initiative. Sci Rep. 2016; 6: 21415.
dc.identifier.citedreferenceEliav U, Navon G. A study of dipolar interactions and dynamic processes of water molecules in tendon by 1H and 2H homonuclear and heteronuclear multipleâ quantumâ filtered NMR spectroscopy. J Magn Reson. 1999; 137: 295 â 310.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.