Show simple item record

Recent Advancements and Remaining Challenges Associated With Inner Magnetosphere Cross‐Energy/Population Interactions (IMCEPI)

dc.contributor.authorYu, Yiqun
dc.contributor.authorLiemohn, Mike W.
dc.contributor.authorJordanova, Vania K.
dc.contributor.authorLemon, Colby
dc.contributor.authorZhang, Jichun
dc.date.accessioned2019-04-02T18:11:09Z
dc.date.available2020-03-03T21:29:35Zen
dc.date.issued2019-02
dc.identifier.citationYu, Yiqun; Liemohn, Mike W.; Jordanova, Vania K.; Lemon, Colby; Zhang, Jichun (2019). "Recent Advancements and Remaining Challenges Associated With Inner Magnetosphere Cross‐Energy/Population Interactions (IMCEPI)." Journal of Geophysical Research: Space Physics 124(2): 886-897.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/148385
dc.description.abstractThe geospace inner magnetosphere, within about 10 Earth radii, contains various plasma populations with energy from a few electron volts to megaelectron volts and plays important roles in regulating the energy density of the magnetosphere, the magnetic field configuration, and wave dynamics. As an integrated part of the magnetosphere, the inner magnetosphere region also ties to other regions and can change the global geospace circulation. Therefore, understanding both internal and external cross‐energy/population interactions can help further our knowledge of the inner magnetosphere dynamics and nonlinear feedback processes. In view of this, in the past 5 years (2014–2018), the Geospace Environment Modeling (GEM) Focus Group “inner magnetosphere cross‐energy/population interactions (IMCEPI)” has gathered and boosted community‐wide interactions among observation, simulation, and modeling studies. This commentary reports some major accomplishments of the interactive inner magnetosphere community that were advanced by the IMCEPI Focus Group discussions and layouts remaining challenges that need to be carried on.Key PointsAdvancements on first‐principle ring current models, new empirical models on IM fields/waves/plasma and application of innovative techniquesAdvanced knowledge of IM characteristics, e.g., compositions, fields, coupling with ionosphere/tail region, and wave particle interactionsChallenges remain in numerical representation of IM and its linkage with other related areas; validation needed across various IM models
dc.publisherAmerican Geophysical Union
dc.publisherWiley Periodicals, Inc.
dc.subject.otherremaining challenges in the inner magnetosphere modeling
dc.subject.otherinner magnetosphere coupling with other regions
dc.subject.otherrecent advancements on inner magnetosphere community
dc.subject.otherinner magnetosphere GEM/FG IMCEPI
dc.titleRecent Advancements and Remaining Challenges Associated With Inner Magnetosphere Cross‐Energy/Population Interactions (IMCEPI)
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148385/1/jgra54772_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148385/2/jgra54772.pdf
dc.identifier.doi10.1029/2018JA026282
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceShi, R., Li, W., Ma, Q., Claudepierre, S. G., Kletzing, C. A., & William, S. ( 2018 ). Van Allen Probes observation of plasmaspheric hiss modulated by injected energetic electrons, (January), 1–34
dc.identifier.citedreferenceWiltberger, M., Merkin, V., Zhang, B., Toffoletto, F., Oppenheim, M., Wang, W., Lyon, J. G., Liu, J., Dimant, Y., Sitnov, M. I., & Stephens, G. K. ( 2017 ). Effects of electrojet turbulence on a magnetosphere‐ionosphere simulation of a geomagnetic storm. Journal of Geophysical Research: Space Physics, 122, 5008 – 5027. https://doi.org/10.1002/2016JA023700
dc.identifier.citedreferenceXi, S., Lotko, W., Zhang, B., Wiltberger, M., & Lyon, J. ( 2016 ). Effects of auroral potential drops on plasma sheet dynamics. Journal of Geophysical Research: Space Physics, 121, 11,129 – 11,144. https://doi.org/10.1002/2016JA022856
dc.identifier.citedreferenceYang, J., Toffoletto, F. R., & Wolf, R. A. ( 2016 ). Comparison study of ring current simulations with and without bubble injections. Journal of Geophysical Research: Space Physics, 121, 374 – 379. https://doi.org/10.1002/2015JA021901
dc.identifier.citedreferenceYang, J., Toffoletto, F. R., Wolf, R. A., & Sazykin, S. ( 2015 ). On the contribution of plasma sheet bubbles to the storm time ring current. Journal of Geophysical Research: Space Physics, 120, 7416 – 7432. https://doi.org/10.1002/2015JA021398
dc.identifier.citedreferenceYu, J., Li, L. Y., Cao, J. B., Yuan, Z. G., Reeves, G. D., Baker, D. N., Blake, J. B., & Spence, H. ( 2015 ). Multiple loss processes of relativistic electrons outside the heart of outer radiation belt during a storm sudden commencement. Journal of Geophysical Research: Space Physics, 120, 10,275 – 10,288. https://doi.org/10.1002/2015JA021460
dc.identifier.citedreferenceYu, Y., Cao, J., Fu, H., Lu, H., & Yao, Z. ( 2017 ). The effects of bursty bulk flows on global‐scale current systems. Journal of Geophysical Research: Space Physics, 122, 6139 – 6149. https://doi.org/10.1002/2017JA024168
dc.identifier.citedreferenceYu, Y., Jordanova, V., Welling, D., Larsen, B., Claudepierre, S. G., & Kletzing, C. ( 2014 ). The role of ring current particle injections: Global simulations and Van Allen Probes observations during 17March 2013 storm. Geophysical Research Letters, 41, 1126 – 1132. https://doi.org/10.1002/2014GL059322
dc.identifier.citedreferenceYu, Y., Jordanova, V., Zou, S., Heelis, R., Ruohoniemi, M., & Wygant, J. ( 2015 ). Modeling subauroral polarization streams during the 17 March 2013 storm. Journal of Geophysical Research: Space Physics, 120, 1738 – 1750. https://doi.org/10.1002/2014JA020371
dc.identifier.citedreferenceYu, Y., Jordanova, V. K., McGranaghan, R. M., & Solomon, S. C. ( 2018 ). Self‐consistent modeling of electron precipitation and responses in the ionosphere: Application to low‐altitude energization during substorms. Geophysical Research Letters, 45, 6371 – 6381. https://doi.org/10.1029/2018GL078828
dc.identifier.citedreferenceYu, Y., Jordanova, V. K., Ridley, A. J., Albert, J. M., Horne, R. B., & Jeffery, C. A. ( 2016 ). A new ionospheric electron precipitation module coupled with RAM‐SCB within the geospace general circulation model. Journal of Geophysical Research: Space Physics, 121, 8554 – 8575. https://doi.org/10.1002/2016JA022585
dc.identifier.citedreferenceYu, Y., Rastaetter, L., Jordanova, V. K., Zheng, Y., Engel, M., Fok, M.‐C., & Kuznetsova, M. ( 2019 ). Initial results from the GEM challenge on the spacecraft surface charging environment. Space Weather, 17. https://doi.org/10.1029/2018SW002031
dc.identifier.citedreferenceYue, C., Bortnik, J., Li, W., Ma, Q., Gkioulidou, M., Reeves, G. D., Wang, C. P., Thorne, R. M., Lui, A. T. Y., Gerrard, A. J., Spence, H. E., & Mitchell, D. G. ( 2018 ). The composition of plasma inside geostationary orbit based on Van Allen Probes observations. Journal of Geophysical Research: Space Physics, 123, 6478 – 6493. https://doi.org/10.1029/2018JA025344
dc.identifier.citedreferenceYue, C., Chen, L., Bortnik, J., Ma, Q., Thorne, R. M., Angelopoulos, V., Li, J., An, X., Zhou, C., Kletzing, C., Reeves, G. D., & Spence, H. E. ( 2017 ). The characteristic response of whistler mode waves to interplanetary shocks. Journal of Geophysical Research: Space Physics, 122, 10,047 – 10,057. https://doi.org/10.1002/2017JA024574
dc.identifier.citedreferenceZaharia, S., Jordanova, V. K., Thomsen, M. F., & Reeves, G. D. ( 2008 ). Self‐consistent geomagnetic storm simulation: The role of the induced electric fields. Journal of Atmospheric and Solar‐Terrestrial Physics, 70, 511 – 518. https://doi.org/10.1016/j.jastp.2007.08.067
dc.identifier.citedreferenceZhang, B., Brambles, O. J., Lotko, W., Ouellette, J. E., & Lyon, J. G. ( 2016 ). The role of ionospheric O + outflow in the generation of earthward propagating plasmoids. Journal of Geophysical Research: Space Physics, 121, 1425 – 1435. https://doi.org/10.1002/2015JA021667
dc.identifier.citedreferenceZhang, J.‐C., Saikin, A. A., Kistler, L. M., Smith, C. W., Spence, H. E., Mouikis, C. G., Torbert, R. B., Larsen, B. A., Reeves, G. D., Skoug, R. M., Funsten, H. O., Kurth, W. S., Kletzing, C. A., Allen, R. C., & Jordanova, V. K. ( 2014 ). Excitation of EMIC waves detected by the Van Allen Probes on 28 April 2013. Geophysical Research Letters, 41, 4101 – 4108. https://doi.org/10.1002/2014GL060621
dc.identifier.citedreferenceZhang, X.‐J., Angelopoulos, V., Ni, B., & Thorne, R. M. ( 2015 ). Predominance of ECH wave contribution to diffuse aurora in Earth’s outer magnetosphere. Journal of Geophysical Research: Space Physics, 120, 295 – 309. https://doi.org/10.1002/2014JA020455
dc.identifier.citedreferenceZhang, X.‐J., Li, W., Thorne, R. M., Angelopoulos, V., Bortnik, J., Kletzing, C. A., Kurth, W. S., & Hospodarsky, G. B. ( 2016 ). Statistical distribution of EMIC wave spectra: Observations from Van Allen Probes. Geophysical Research Letters, 43, 12,348 – 12,355. https://doi.org/10.1002/2016GL071158
dc.identifier.citedreferenceZhang, X.‐X., He, F., Lin, R.‐L., Fok, M.‐C., Katus, R. M., Liemohn, M. W., Gallagher, D. L., & Nakano, S. ( 2017 ). A new solar wind‐driven global dynamic plasmapause model: 1. Database and statistics. Journal of Geophysical Research: Space Physics, 122, 7153 – 7171. https://doi.org/10.1002/2017JA023912
dc.identifier.citedreferenceZhao, H., Li, X., Blake, J. B., Fennell, J. F., Claudepierre, S. G., Baker, D. N., Jaynes, A. N., Malaspina, D. M., & Kanekal, S. G. ( 2014 ). Peculiar pitch angle distribution of relativistic electrons in the inner radiation belt and slot region. Geophysical Research Letters, 41, 2250 – 2257. https://doi.org/10.1002/2014GL059725
dc.identifier.citedreferenceZhelavskaya, I. S., Shprits, Y. Y., & Spasojevic, M. ( 2017 ). Empirical modeling of the plasmasphere dynamics using neural networks. Journal of Geophysical Research: Space Physics, 122, 11,227 – 11,244. https://doi.org/10.1002/2017JA024406
dc.identifier.citedreferenceZhima, Z., Chen, L., Fu, H., Cao, J., Horne, R. B., & Reeves, G. ( 2015 ). Observations of discrete magnetosonic waves off the magnetic equator. Geophysical Research Letters, 42, 9694 – 9701. https://doi.org/10.1002/2015GL066255
dc.identifier.citedreferenceZhima, Z., Cao, J. B., Liu, W. L., Fu, H. S., Wang, T. Y., Zhang, X. M., & Shen, X. H. ( 2014 ). Storm‐time evolution of ELF/VLF waves observed by DEMETER satellite. Journal of Geophysical Research: Space Physics, 119, 2612 – 2622. https://doi.org/10.1002/2013JA019237
dc.identifier.citedreferenceZhou, X.‐Z., Wang, Z.‐H., Zong, Q.‐G., Claudepierre, S. G., Mann, I. R., Kivelson, M. G., Angelopoulos, V., Hao, Y.‐X., Wang, Y.‐F., & Pu, Z.‐Y. ( 2015 ). Imprints of impulse‐excited hydromagnetic waves on electrons in the Van Allen radiation belts. Geophysical Research Letters, 42, 6199 – 6204. https://doi.org/10.1002/2015GL064988
dc.identifier.citedreferenceAgapitov, O. V., Artemyev, A. V., Mourenas, D., Kasahara, Y., & Krasnoselskikh, V. ( 2014 ). Inner belt and slot region electron lifetimes and energization rates based on AKEBONO statistics of whistler waves. Journal of Geophysical Research: Space Physics, 119, 2876 – 2893. https://doi.org/10.1002/2014JA019886
dc.identifier.citedreferenceAgapitov, O. V., Mourenas, D., Artemyev, A. V., Mozer, F. S., Hospodarsky, G., Bonnell, J., & Krasnoselskikh, V. ( 2018 ). Synthetic empirical chorus wave model from combined Van Allen Probes and Cluster statistics. Journal of Geophysical Research: Space Physics, 123, 297 – 314. https://doi.org/10.1002/2017JA024843
dc.identifier.citedreferenceAlbert, J. M. ( 1999 ). Analysis of quasi‐linear diffusion coefficients. Journal of Geophysical Research, 104 ( A2 ), 2429 – 2441. https://doi.org/10.1029/1998JA900113
dc.identifier.citedreferenceAlbert, J. M. ( 2004 ). Using quasi‐linear diffusion to model acceleration and loss from wave‐particle interactions. Space Weather, 2, S09S03. https://doi.org/10.1029/2004SW000069
dc.identifier.citedreferenceAlbert, J. M., Tao, X., & Bortnik, J. ( 2013 ). Aspects of nonlinear wave‐particle interactions. In D.   Summers, I. R.   Mann, D. N.   Baker, & M.   Schulz (Eds.), Dynamics of the Earth’s radiation belts and inner magnetosphere (pp. 255 – 264 ). Washington, DC: American Geophysical Union. https://doi.org/10.1029/2012GM001324
dc.identifier.citedreferenceAli, A. F., Malaspina, D. M., Elkington, S. R., Jaynes, A. N., Chan, A. A., Wygant, J., & Kletzing, C. A. ( 2016 ). Electric and magnetic radial diffusion coefficients using the Van Allen probes data. Journal of Geophysical Research: Space Physics, 121, 9586 – 9607. https://doi.org/10.1002/2016JA023002
dc.identifier.citedreferenceArtemyev, A., Agapitov, O., Mourenas, D., Krasnoselskikh, V., Shastun, V., & Mozer, F. ( 2016 ). Oblique whistler mode waves in the Earth’s inner magnetosphere: Energy distribution, origins, and role in radiation belt dynamics. Space Science Reviews, 200, 1 – 95. https://doi.org/10.1007/s11214‐016‐0252‐5
dc.identifier.citedreferenceArtemyev, A. V., Zhang, X.‐J., Angelopoulos, V., Runov, A., Spence, H. E., & Larsen, B. A. ( 2018 ). Plasma anisotropies and currents in the near‐Earth plasma sheet and inner magnetosphere. Journal of Geophysical Research: Space Physics, 123, 5625 – 5639. https://doi.org/10.1029/2018JA025232
dc.identifier.citedreferenceAryan, H., Sibeck, D., Balikhin, M., Agapitov, O., & Kletzing, C. ( 2016 ). Observation of chorus waves by the Van Allen Probes: Dependence on solar wind parameters and scale size. Journal of Geophysical Research: Space Physics, 121, 7608 – 7621. https://doi.org/10.1002/2016JA022775
dc.identifier.citedreferenceAryan, H., Sibeck, D. G., Kang, S.‐B., Balikhin, M. A., Fok, M.‐C., Agapitov, O., Komar, C. M., Kanekal, S. G., & Nagai, T. ( 2017 ). CIMI simulations with newly developed multiparameter chorus and plasmaspheric hiss wave models. Journal of Geophysical Research: Space Physics, 122, 9344 – 9357. https://doi.org/10.1002/2017JA024159
dc.identifier.citedreferenceAryan, H., Yearby, K., Balikhin, M., Agapitov, O., Krasnoselskikh, V., & Boynton, R. ( 2014 ). Statistical study of chorus wave distributions in the inner magnetosphere using AE and solar wind parameters. Journal of Geophysical Research: Space Physics, 119, 6131 – 6144. https://doi.org/10.1002/2014JA019939
dc.identifier.citedreferenceBlum, L. W., Agapitov, O., Bonnell, J. W., Kletzing, C., & Wygant, J. ( 2016 ). EMIC wave spatial and coherence scales as determined from multipoint Van Allen Probe measurements. Geophysical Research Letters, 43, 4799 – 4807. https://doi.org/10.1002/2016GL068799
dc.identifier.citedreferenceBlum, L. W., Bonnell, J. W., Agapitov, O., Paulson, K., & Kletzing, C. ( 2017 ). EMICwave scale size in the inner magnetosphere: Observations from the dual Van Allen Probes. Geophysical Research Letters, 44, 1227 – 1233. https://doi.org/10.1002/2016GL072316
dc.identifier.citedreferenceBlum, L. W., Halford, A., Millan, R., Bonnell, J. W., Goldstein, J., Usanova, M., Engebretson, M., Ohnsted, M., Reeves, G., Singer, H., Clilverd, M., & Li, X. ( 2015 ). Observations of coincident EMIC wave activity and duskside energetic electron precipitation on 18–19 January 2013. Geophysical Research Letters, 42, 5727 – 5735. https://doi.org/10.1002/2015GL065245
dc.identifier.citedreferenceBortnik, J., Li, W., Thorne, R. M., & Angelopoulos, V. ( 2016 ). A unified approach to inner magnetospheric state prediction. Journal of Geophysical Research: Space Physics, 121, 2423 – 2430. https://doi.org/10.1002/2015JA021733
dc.identifier.citedreferenceBortnik, J., Omidi, N., Chen, L., Thorne, R. M., & Horne, R. B. ( 2011 ). Saturation characteristics of electromagnetic ion cyclotron waves. Journal of Geophysical Research, 116, A09219. https://doi.org/10.1029/2011JA016638
dc.identifier.citedreferenceBrito, T. V., Woodroffe, J., Jordanova, V. K., Henderson, M., & Birn, J. ( 2017 ). Particle tracing modeling of ion fluxes at geosynchronous orbit. Journal of Atmospheric and Solar‐Terrestrial Physics, 177, 131 – 140. https://doi.org/10.1016/j.jastp.2017.10.008
dc.identifier.citedreferenceCaliff, S., Li, X., Blum, L., Jaynes, A., Schiller, Q., Zhao, H., Malaspina, D., Hartinger, M., Wolf, R. A., Rowland, D. E., Wygant, J. R., & Bonnell, J. W. ( 2014 ). THEMIS measurements of quasi‐static electric fields in the inner magnetosphere. Journal of Geophysical Research: Space Physics, 119, 9939 – 9951. https://doi.org/10.1002/2014JA020360
dc.identifier.citedreferenceSchulz, M. ( 1998 ). Particle drift and loss rates under strong pitch angle diffusion in Dungey’s model magnetosphere. Journal of Geophysical Research, 103 ( A1 ), 61 – 67. https://doi.org/10.1029/97JA02042
dc.identifier.citedreferenceCao, X., Ni, B., Liang, J., Xiang, Z., Wang, Q., Shi, R., Gu, X., Zhou, C., Zhao, Z., Fu, S., & Liu, J. ( 2016 ). Resonant scattering of central plasma sheet protons by multiband EMIC waves and resultant proton loss timescales. Journal of Geophysical Research: Space Physics, 121, 1219 – 1232. https://doi.org/10.1002/2015JA021933
dc.identifier.citedreferenceChaston, C. C., Bonnell, J. W., Halford, A. J., Reeves, G. D., Baker, D. N., Kletzing, C. A., & Wygant, J. R. ( 2018 ). Pitch angle scattering and loss of radiation belt electrons in broadband electromagnetic waves. Geophysical Research Letters, 45, 9344 – 9352. https://doi.org/10.1029/2018GL079527
dc.identifier.citedreferenceChen, M. W., Lemon, C. L., Guild, T. B., Keesee, A. M., Lui, A., Goldstein, J., Rodriguez, J. V., & Anderson, P. C. ( 2015 ). Effects ofmodeled ionospheric conductance and electron loss on self‐consistent ring current simulations during the 5–7 April 2010 storm. Journal of Geophysical Research: Space Physics, 120, 5355 – 5376. https://doi.org/10.1002/2015JA021285
dc.identifier.citedreferenceChen, M. W., Lemon, C. L., Orlova, K., Shprits, Y., Hecht, J., & Walterscheid, R. L. ( 2015 ). Comparison of simulated and observed trapped and precipitating electron fluxes during a magnetic storm. Geophysical Research Letters, 42, 8302 – 8311. https://doi.org/10.1002/2015GL065737
dc.identifier.citedreferenceChu, X., Bortnik, J., Li, W., Ma, Q., Denton, R., Yue, C., Angelopoulos, V., Thorne, R. M., Darrouzet, F., Ozhogin, P., Kletzing, C. A., Wang, Y., & Menietti, J. ( 2017 ). A neural network model of three‐dimensional dynamic electron density in the inner magnetosphere. Journal of Geophysical Research: Space Physics, 122, 9183 – 9197. https://doi.org/10.1002/2017JA024464
dc.identifier.citedreferenceClaudepierre, S. G., Chen, M. W., Roeder, J. L., & Fennell, J. F. ( 2016 ). An empirical model of ion plasma in the inner magnetosphere derived from CRRES/MICS measurements. Journal of Geophysical Research: Space Physics, 121, 11,780 – 11,797. https://doi.org/10.1002/2016JA023468
dc.identifier.citedreferenceCramer, W. D., Raeder, J., Toffoletto, F. R., Gilson, M., & Hu, B. ( 2017 ). Plasma sheet injections into the inner magnetosphere: Two‐way coupled OpenGGCM‐RCM model results. Journal of Geophysical Research: Space Physics, 122, 5077 – 5091. https://doi.org/10.1002/2017JA024104
dc.identifier.citedreferenceDe Zeeuw, D. L., Sazykin, S., Wolf, R. A., Gombosi, T. I., Ridley, A. J., & Toth, G. ( 2004 ). Coupling of a global MHD code and an inner magnetospheric model: Initial results. Journal of Geophysical Research, 109 ( A12 ), A12219. https://doi.org/10.1029/2003JA010366
dc.identifier.citedreferenceDemekhov, A. G., Taubenschuss, U., & Santolík, O. ( 2017 ). Simulation of VLF chorus emissions in the magnetosphere and comparison with THEMIS spacecraft data. Journal of Geophysical Research: Space Physics, 122, 166 – 184. https://doi.org/10.1002/2016JA023057
dc.identifier.citedreferenceDenton, M. H., Reeves, G. D., Larsen, B. A., Friedel, R. H. W., Thomsen, M. F., Fernandes, P. A., Skoug, R. M., Funsten, H. O., & Sarno‐Smith, L. K. ( 2017 ). On the origin of low‐energy electrons in the inner magnetosphere: Fluxes and pitch‐angle distributions. Journal of Geophysical Research: Space Physics, 122, 1789 – 1802. https://doi.org/10.1002/2016JA023648
dc.identifier.citedreferenceDunlop, M. W., Yang, J.‐Y., Yang, Y.‐Y., Xiong, C., Lühr, H., Bogdanova, Y. V., Shen, C., Olsen, N., Zhang, Q.‐H., Cao, J.‐B., Fu, H.‐S., Liu, W.‐L., Carr, C. M., Ritter, P., Masson, A., & Haagmans, R. ( 2015 ). Simultaneous field‐aligned currents at Swarm and Cluster satellites. Geophysical Research Letters, 42, 3683 – 3691. https://doi.org/10.1002/2015GL063738
dc.identifier.citedreferenceEbihara, Y., Fok, M.‐C., Wolf, R. A., Immel, T. J., & Moore, T. E. ( 2004 ). Influence of ionospheric conductivity on the ring current. Journal of Geophysical Research, 109 ( A8 ), A08205. https://doi.org/10.1029/2003JA010351
dc.identifier.citedreferenceEbihara, Y., & Tanaka, T. ( 2013 ). Fundamental properties of substorm time energetic electrons in the inner magnetosphere. Journal of Geophysical Research: Space Physics, 118, 1589 – 1603. https://doi.org/10.1002/jgra.50115
dc.identifier.citedreferenceFernandes, P. A., Larsen, B. A., Thomsen, M. F., Skoug, R. M., Reeves, G. D., Denton, M. H., Friedel, R. H. W., Funsten, H. O., Goldstein, J., Henderson, M. G., Jahn, J. M., MacDonald, E. A., & Olson, D. K. ( 2017 ). The plasma environment inside geostationary orbit: A Van Allen Probes HOPE survey. Journal of Geophysical Research: Space Physics, 122, 9207 – 9227. https://doi.org/10.1002/2017JA024160
dc.identifier.citedreferenceFok, M.‐C., Buzulukova, N. Y., Chen, S.‐H., Glocer, A., Nagai, T., Valek, P., & Perez, J. D. ( 2014 ). The comprehensive inner magnetosphere‐ionosphere model. Journal of Geophysical Research: Space Physics, 119, 7522 – 7540. https://doi.org/10.1002/2014JA020239
dc.identifier.citedreferenceFok, M.‐C., Kozyra, J. U., Nagy, A. F., Rasmussen, C. E., & Khazanov, G. V. ( 1993 ). A decay model of equatorial ring current and the associated aeronomical consequences. Journal of Geophysical Research, 98 ( A11 ), 19,381 – 19,393. https://doi.org/10.1029/93JA01848
dc.identifier.citedreferenceFok, M.‐C., Wolf, R. A., Spiro, R. W., & Moore, T. E. ( 2001 ). Comprehensive computational model of Earth’s ring current. Journal of Geophysical Research, 106 ( A5 ), 8417 – 8424. https://doi.org/10.1029/2000JA000235
dc.identifier.citedreferenceFu, H. S., Cao, J. B., Zhima, Z., Khotyaintsev, Y. V., Angelopoulos, V., Santolík, O., Omura, Y., Taubenschuss, U., Chen, L., & Huang, S. Y. ( 2014 ). First observation of rising‐tone magnetosonic waves. Geophysical Research Letters, 41, 7419 – 7426. https://doi.org/10.1002/2014GL061867
dc.identifier.citedreferenceFu, X., Cowee, M. M., Jordanova, V. K., Gary, S. P., Reeves, G. D., & Winske, D. ( 2016 ). Predicting electromagnetic ion cyclotron wave amplitude from unstable ring current plasma conditions. Journal of Geophysical Research: Space Physics, 121, 10,954 – 10,965. https://doi.org/10.1002/2016JA023303
dc.identifier.citedreferenceFu, X., Gary, S. P., Reeves, G. D., Winske, D., & Woodroffe, J. R. ( 2017 ). Generation of highly oblique lower band chorus via nonlinear three‐wave resonance. Geophysical Research Letters, 44, 9532 – 9538. https://doi.org/10.1002/2017GL074411
dc.identifier.citedreferenceGallardo‐Lacourt, B., Liang, J., Nishimura, Y., & Donovan, E. ( 2018 ). On the origin of STEVE: Particle precipitation or ionospheric skyglow? Geophysical Research Letters, 45, 7968 – 7973. https://doi.org/10.1029/2018GL078509
dc.identifier.citedreferenceGamayunov, K. V., Engebretson, M. J., Zhang, M., & Rassoul, H. K. ( 2014 ). Model of electromagnetic ion cyclotron waves in the inner magnetosphere. Journal of Geophysical Research: Space Physics, 119, 7541 – 7565. https://doi.org/10.1002/2014JA020032
dc.identifier.citedreferenceGamayunov, K. V., Khazanov, G. V., Liemohn, M. W., Fok, M.‐C., & Ridley, A. J. ( 2009 ). Self‐consistent model of magnetospheric electric field, ring current, plasmasphere, and electromagnetic ion cyclotron waves: Initial results. Journal of Geophysical Research, 114 ( A3 ), A03221. https://doi.org/10.1029/2008JA013597
dc.identifier.citedreferenceGanushkina, N. Y., Amariutei, O. A., Welling, D., & Heynderickx, D. ( 2015 ). Nowcast model for low‐energy electrons in the inner magnetosphere. Space Weather, 13, 16 – 34. https://doi.org/10.1002/2014SW001098
dc.identifier.citedreferenceGanushkina, N. Y., Liemohn, M. W., Amariutei, O. A., & Pitchford, D. ( 2014 ). Low‐energy electrons (5–50 keV) in the inner magnetosphere. Journal of Geophysical Research: Space Physics, 119, 246 – 259. https://doi.org/10.1002/2013JA019304
dc.identifier.citedreferenceGanushkina, N. Y., Liemohn, M. W., Dubyagin, S., Daglis, I. A., Dandouras, I., de Zeeuw, D. L., Ebihara, Y., Ilie, R., Katus, R., Kubyshkina, M., Milan, S. E., Ohtani, S., Ostgaard, N., Reistad, J. P., Tenfjord, P., Toffoletto, F., Zaharia, S., & Amariutei, O. ( 2015 ). Defining and resolving current systems in geospace. Annales de Geophysique, 33, 1369 – 1402. https://doi.org/10.5194/angeo‐33‐1369‐2015
dc.identifier.citedreferenceGlauert, S. A., Horne, R. B., & Meredith, N. P. ( 2014 ). Three‐dimensional electron radiation belt simulations using the BAS Radiation Belt Model with new diffusion models for chorus, plasmaspheric hiss, and lightning‐generated whistlers. Journal of Geophysical Research: Space Physics, 119, 268 – 289. https://doi.org/10.1002/2013JA019281
dc.identifier.citedreferenceGlocer, A., Fok, M., Meng, X., Toth, G., Buzulukova, N., Chen, S., & Lin, K. ( 2013 ). CRCM + BATS‐R‐US two‐way coupling. Journal of Geophysical Research: Space Physics, 118, 1635 – 1650. https://doi.org/10.1002/jgra.50221
dc.identifier.citedreferenceGlocer, A., Rastätter, L., Kuznetsova, M., Pulkkinen, A., Singer, H. J., Balch, C., Weimer, D., Welling, D., Wiltberger, M., Raeder, J., Weigel, R. S., McCollough, J., & Wing, S. ( 2016 ). Community‐wide validation of geospace model local K index predictions to support model transition to operations. Space Weather, 14, 469 – 480. https://doi.org/10.1002/2016SW001387
dc.identifier.citedreferenceGlocer, A., Toth, G., Fok, M., Gombosi, T., & Liemohn, M. ( 2009 ). Integration of the radiation belt environment model into the space weather modeling framework. Journal of Atmospheric and Solar ‐ Terrestrial Physics, 71 ( 16 ), 1653 – 1663. https://doi.org/10.1016/j.jastp.2009.01.003
dc.identifier.citedreferenceGodinez, H. C., Yu, Y., Lawrence, E., Henderson, M. G., Larsen, B., & Jordanova, V. K. ( 2016 ). Ring current pressure estimation with RAM‐SCB using data assimilation and Van Allen Probe flux data. Geophysical Research Letters, 43, 11,948 – 11,956. https://doi.org/10.1002/2016GL071646
dc.identifier.citedreferenceHe, F., Zhang, X.‐X., Lin, R.‐L., Fok, M.‐C., Katus, R. M., Liemohn, M. W., Gallagher, D. L., & Nakano, S. ( 2017 ). A new solar wind‐driven global dynamic plasmapause model: 2. Model and validation. Journal of Geophysical Research: Space Physics, 122, 7172 – 7187. https://doi.org/10.1002/2017JA023913
dc.identifier.citedreferenceHorne, R. B., Kersten, T., Glauert, S. A., Meredith, N. P., Boscher, D., Sicard‐Piet, A., & Li, W. ( 2013 ). A new diffusion matrix for whistler mode chorus waves. Journal of Geophysical Research: Space Physics, 118, 6302 – 6318. https://doi.org/10.1002/jgra.50594
dc.identifier.citedreferenceHuba, J. D., & Sazykin, S. ( 2014 ). Storm time ionosphere and plasmasphere structuring: SAMI3‐RCM simulation of the 31 March 2001 geomagnetic storm. Geophysical Research Letters, 41, 8208 – 8214. https://doi.org/10.1002/2014GL062110
dc.identifier.citedreferenceHuba, J. D., Sazykin, S., & Coster, A. ( 2017 ). SAMI3‐RCM simulation of the 17 March 2015 geomagnetic storm. Journal of Geophysical Research: Space Physics, 122, 1246 – 1257. https://doi.org/10.1002/2016JA023341
dc.identifier.citedreferenceIlie, R., Daldorff, L. K. S., Liemohn, M. W., Toth, G., & Chan, A. A. ( 2017 ). Calculating the inductive electric field in the terrestrial magnetosphere. Journal of Geophysical Research: Space Physics, 122, 5391 – 5403. https://doi.org/10.1002/2017JA023877
dc.identifier.citedreferenceIlie, R., & Liemohn, M. W. ( 2016 ). The outflow of ionospheric nitrogen ions: A possible tracer for the altitude‐dependent transport and energization processes of ionospheric plasma. Journal of Geophysical Research: Space Physics, 121, 9250 – 9255. https://doi.org/10.1002/2015JA022162
dc.identifier.citedreferenceIlie, R., Liemohn, M. W., Toth, G., & Skoug, R. M. ( 2012 ). Kinetic model of the inner magnetosphere with arbitrary magnetic field. Journal of Geophysical Research, 117 ( A4 ), A04208. https://doi.org/10.1029/2011JA017189
dc.identifier.citedreferenceJi, Y., & Shen, C. ( 2014 ). The loss rates of O+ in the inner magnetosphere caused by both magnetic field line curvature scattering and charge exchange reactions. Physics of Plamsa, 21, 032903. https://doi.org/10.1063/1.4868863
dc.identifier.citedreferenceJordanova, V. K., Delzanno, G. L., Henderson, M. G., Godinez, H. C., Jeffery, C. A., Lawrence, E. C., Morley, S. K., Moulton, J. D., Vernon, L. J., Woodroffe, J. R., Brito, T. V., Engel, M. A., Meierbachtol, C. S., Svyatsky, D., Yu, Y., Tóth, G., Welling, D. T., Chen, Y., Haiducek, J., Markidis, S., Albert, J. M., Birn, J., Denton, M. H., & Horne, R. B. ( 2018 ). Specification of the near‐Earth space environment with SHIELDS. Journal of Atmospheric and Solar‐Terrestrial Physics, 177, 148 – 159. https://doi.org/10.1016/j.jastp.2017.11.006
dc.identifier.citedreferenceJordanova, V. K., Farrugia, C. J., Thorne, R. M., Khazanov, G. V., Reeves, G. D., & Thomsen, M. F. ( 2001 ). Modeling ring current proton precipitation by electromagnetic ion cyclotron waves during the May 14–16, 1997, storm. Journal of Geophysical Research, 106 ( A1 ), 7 – 22. https://doi.org/10.1029/2000JA002008
dc.identifier.citedreferenceJordanova, V. K., Kozyra, J. U., Khazanov, G. V., Nagy, A. F., Rasmussen, C. E., & Fok, M.‐C. ( 1994 ). A bounce‐averaged kinetic model of the ring current ion population. Geophysical Research Letters, 21 ( 25 ), 2785 – 2788. https://doi.org/10.1029/94GL02695
dc.identifier.citedreferenceJordanova, V. K., Kozyra, J. U., Nagy, A. F., & Khazanov, G. V. ( 1997 ). Kinetic model of the ring current‐atmosphere interactions. Journal of Geophysical Research, 102 ( A7 ), 14,279 – 14,291. https://doi.org/10.1029/96JA03699
dc.identifier.citedreferenceJordanova, V. K., Tu, W., Chen, Y., Morley, S. K., Panaitescu, A. D., Reeves, G. D., & Kletzing, C. A. ( 2016 ). RAM‐SCB simulations of electron transport and plasma wave scattering during the October 2012 “double‐dip” storm. Journal of Geophysical Research, A: Space Physics, 121, 8712 – 8727. https://doi.org/10.1002/2016JA022470
dc.identifier.citedreferenceJordanova, V. K., Yu, Y., Niehof, J. T., Skoug, R. M., Reeves, G. D., Kletzing, C. A., Fennell, J. F., & Spence, H. E. ( 2014 ). Simulations of inner magnetosphere dynamics with an expanded RAM‐SCB model and comparisons with Van Allen Probes observations. Geophysical Research Letters, 41, 2687 – 2694. https://doi.org/10.1002/2014GL059533
dc.identifier.citedreferenceJordanova, V. K., Zaharia, S., & Welling, D. T. ( 2010 ). Comparative study of ring current development using empirical, dipolar, and self‐consistent magnetic field simulations. Journal of Geophysical Research, 115, A00J11. https://doi.org/10.1029/2010JA015671
dc.identifier.citedreferenceKang, S.‐B., Fok, M.‐C., Glocer, A., Min, K.‐W., Choi, C.‐R., Choi, E., & Hwang, J. ( 2016 ). Simulation of a rapid dropout event for highly relativistic electrons with the RBE model. Journal of Geophysical Research: Space Physics, 121, 4092 – 4102. https://doi.org/10.1002/2015JA021966
dc.identifier.citedreferenceKang, S.‐B., Min, K.‐W., Fok, M.‐C., Hwang, J., & Choi, C.‐R. ( 2015 ). Estimation of pitch angle diffusion rates and precipitation timescales of electrons due to EMIC waves in a realistic field model. Journal of Geophysical Research: Space Physics, 120, 8529 – 8546. https://doi.org/10.1002/2014JA020644
dc.identifier.citedreferenceKasahara, S., Miyoshi, Y., Yokota, S., Mitani, T., Kasahara, Y., Matsuda, S., Kumamoto, A., Matsuoka, A., Kazama, Y., Frey, H. U., Angelopoulos, V., Kurita, S., Keika, K., Seki, K., & Shinohara, I. ( 2018 ). Pulsating aurora from electron scattering by chorus waves. Nature, 554, 337 – 340. https://doi.org/10.1038/nature25505
dc.identifier.citedreferenceKellerman, A. C., Shprits, Y. Y., Kondrashov, D., Subbotin, D., Makarevich, R. A., Donovan, E., & Nagai, T. ( 2014 ). Three‐dimensional data assimilation and reanalysis of radiation belt electrons: Observations of a four‐zone structure using five spacecraft and the VERB code. Journal of Geophysical Research: Space Physics, 119, 8764 – 8783. https://doi.org/10.1002/2014JA020171
dc.identifier.citedreferenceKersten, T., Horne, R. B., Glauert, S. A., Meredith, N. P., Fraser, B. J., & Grew, R. S. ( 2014 ). Electron losses from the radiation belts caused by EMIC waves. Journal of Geophysical Research: Space Physics, 119, 8820 – 8837. https://doi.org/10.1002/2014JA020366
dc.identifier.citedreferenceKhazanov, G. V., Gamayunov, K. V., & Jordanova, V. K. ( 2003 ). Self‐consistent model of magnetospheric ring current and electromagnetic ion cyclotron waves: The 2–7 May 1998 storm. Journal of Geophysical Research, 108 ( A12 ). https://doi.org/10.1029/2003JA009856
dc.identifier.citedreferenceKhazanov, G. V., Glocer, A., & Himwich, E. W. ( 2014 ). Magnetosphere‐ionosphere energy interchange in the electron diffuse aurora. Journal of Geophysical Research: Space Physics, 119, 171 – 184. https://doi.org/10.1002/2013JA019325
dc.identifier.citedreferenceKhazanov, G. V., Robinson, R. M., Zesta, E., Sibeck, D. G., Chu, M., & Grubbs, G. A. ( 2018 ). Impact of precipitating electrons and magnetosphere‐ionosphere coupling processes on ionospheric conductance. Space Weather, 16, 829 – 837. https://doi.org/10.1029/2018SW001837
dc.identifier.citedreferenceKhazanov, G. V., Sibeck, D. G., & Zesta, E. ( 2017 ). Major pathways to electron distribution function formation in regions of diffuse aurora. Journal of Geophysical Research: Space Physics, 122, 4251 – 4265. https://doi.org/10.1002/2017JA023956
dc.identifier.citedreferenceKhazanov, G. V., Tripathi, A. K., Singhal, R. P., Himwich, E. W., Glocer, A., & Sibeck, D. G. ( 2015 ). Superthermal electron magnetosphere‐ionosphere coupling in the diffuse aurora in the presence of ECH waves. Journal of Geophysical Research: Space Physics, 120, 445 – 459. https://doi.org/10.1002/2014JA020641
dc.identifier.citedreferenceKim, K.‐H., Shiokawa, K., Mann, I. R., Park, J.‐S., Kwon, H.‐J., Hyun, K., Jin, H., & Connors, M. ( 2016 ). Longitudinal frequency variation of long‐lasting EMIC Pc1‐Pc2 waves localized in the inner magnetosphere. Geophysical Research Letters, 43, 1039 – 1046. https://doi.org/10.1002/2015GL067536
dc.identifier.citedreferenceNi, B., Thorne, R. M., Zhang, X., Bortnik, J., Pu, Z., Xie, L., Hu, Z. J., Han, D., Shi, R., Zhou, C., & Gu, X. ( 2016 ). Origins of the Earth’s diffuse auroral precipitation. Space Science Reviews, 200, 205 – 259. https://doi.org/10.1007/s11214‐016‐0234‐7
dc.identifier.citedreferenceKistler, L. M. ( 2016 ). The Impact of O+ on Magnetotail Dynamics. In C. R.   Chappell, R. W.   Schunk, P. M.   Banks, J. L.   Burch, & R. M.   Thorne (Eds.), Magnetosphere‐ionosphere coupling in the solar system, Geophysical Monograph Series (Chap. 6). Washington, DC: American Geophysical Union. https://doi.org/10.1002/9781119066880.ch6
dc.identifier.citedreferenceKistler, L. M., & Mouikis, C. G. ( 2016 ). The inner magnetosphere ion composi‐ tion and local time distribution over a solar cycle. Journal of Geophysical Research: Space Physics, 121, 2009 – 2032. https://doi.org/10.1002/2015JA021883
dc.identifier.citedreferenceKistler, L. M., Mouikis, C. G., Spence, H. E., Menz, A. M., Skoug, R. M., Funsten, H. O., Larsen, B. A., Mitchell, D. G., Gkioulidou, M., Wygant, J. R., & Lanzerotti, L. J. ( 2016 ). The source of O+ in the storm time ring current. Journal of Geophysical Research: Space Physics, 121, 5333 – 5349. https://doi.org/10.1002/2015JA022204
dc.identifier.citedreferenceKrall, J., Huba, J. D., & Sazykin, S. ( 2017 ). Erosion of the plasmasphere during a storm. Journal of Geophysical Research: Space Physics, 122, 9320 – 9328. https://doi.org/10.1002/2017JA024450
dc.identifier.citedreferenceLemon, C., Wolf, R. A., Hill, T. W., Sazykin, S., Spiro, R. W., Toffoletto, F. R., Birn, J., & Hesse, M. ( 2004 ). Magnetic storm ring current injection modeled with the Rice Convection Model and a self‐consistent magnetic field. Geophysical Research Letters, 31, L21801. https://doi.org/10.1029/2004GL020914
dc.identifier.citedreferenceLi, J., Ni, B., Ma, Q., Xie, L., Pu, Z., Fu, S., Thorne, R. M., Bortnik, J., Chen, L., Li, W., Baker, D. N., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Fennell, J. F., Reeves, G. D., Spence, H. E., Funsten, H. O., & Summers, D. ( 2016 ). Formation of energetic electron butterfly distributions by magnetosonic waves via Landau resonance. Geophysical Research Letters, 43, 3009 – 3016. https://doi.org/10.1002/2016GL067853
dc.identifier.citedreferenceLi, L., Zhou, X.‐Z., Zong, Q.‐G., Rankin, R., Zou, H., Liu, Y., Chen, X.‐R., & Hao, Y.‐X. ( 2017 ). Charged particle behavior in localized ultralow frequency waves: Theory and observations. Geophysical Research Letters, 44, 5900 – 5908. https://doi.org/10.1002/2017GL073392
dc.identifier.citedreferenceLi, L. Y., Yu, J., Cao, J. B., Wang, Z. Q., Yu, Y. Q., Reeves, G. D., & Li, X. ( 2016 ). Effects of ULF waves on local and global energetic particles: Particle energy and species dependences. Journal of Geophysical Research: Space Physics, 121, 11,007 – 11,020. https://doi.org/10.1002/2016JA023149
dc.identifier.citedreferenceLi, L. Y., Yu, J., Cao, J. B., Yang, J. Y., Li, X., Baker, D. N., Reeves, G. D., & Spence, H. ( 2017 ). Roles of whistler mode waves and magnetosonic waves in changing the outer radiation belt and the slot region. Journal of Geophysical Research: Space Physics, 122, 5431 – 5448. https://doi.org/10.1002/2016JA023634
dc.identifier.citedreferenceLi, W., Ma, Q., Thorne, R. M., Bortnik, J., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., & Nishimura, Y. ( 2015 ). Statistical properties of plasmaspheric hiss derived from Van Allen Probes data and their effects on radiation belt electron dynamics. Journal of Geophysical Research: Space Physics, 120, 3393 – 3405. https://doi.org/10.1002/2015JA021048
dc.identifier.citedreferenceLi, W., Ni, B., Thorne, R. M., Bortnik, J., Nishimura, Y., Green, J. C., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Spence, H. E., Reeves, G. D., Blake, J. B., Fennell, J. F., Claudepierre, S. G., & Gu, X. ( 2014 ). Quantifying hiss‐driven energetic electron precipitation: A detailed conjunction event analysis. Geophysical Research Letters, 41, 1085 – 1092. https://doi.org/10.1002/2013GL059132
dc.identifier.citedreferenceLi, W., Santolik, O., Bortnik, J., Thorne, R. M., Kletzing, C. A., Kurth, W. S., & Hospodarsky, G. B. ( 2016 ). New chorus wave properties near the equator from Van Allen Probes wave observations. Geophysical Research Letters, 43, 4725 – 4735. https://doi.org/10.1002/2016GL068780
dc.identifier.citedreferenceLi, X., Schiller, Q., Blum, L., Califf, S., Zhao, H., Tu, W., Turner, D. L., Gerhardt, D., Palo, S., Kanekal, S., Baker, D. N., Fennell, J., Blake, J. B., Looper, M., Reeves, G. D., & Spence, H. ( 2013 ). First results from CSSWE CubeSat: Characteristics of relativistic electrons in the near‐Earth environment during the October 2012 magnetic storms. Journal of Geophysical Research: Space Physics, 118, 6489 – 6499. https://doi.org/10.1002/2013JA019342
dc.identifier.citedreferenceLiemohn, M. W. ( 2006 ). Introduction to special section on “Results of the National Science Foundation Geospace Environment Modeling Inner Magnetosphere/Storms Assessment Challenge”. Journal of Geophysical Research, 111, A11S01. https://doi.org/10.1029/2006JA011970
dc.identifier.citedreferenceLiemohn, M. W., Ganushkina, N. Y., Ilie, R., & Welling, D. T. ( 2016 ). Challenges associated with near‐Earth nightside current. Journal of Geophysical Research: Space Physics, 121, 6763 – 6768. https://doi.org/10.1002/2016JA022948
dc.identifier.citedreferenceLiemohn, M. W., Ganushkina, N. Y., Katus, R. M., De Zeeuw, D. L., & Welling, D. T. ( 2013 ). The magnetospheric banana current. Journal of Geophysical Research: Space Physics, 118, 1009 – 1021. https://doi.org/10.1002/jgra.50153
dc.identifier.citedreferenceLiemohn, M. W., Kozyra, J. U., Thomsen, M. F., Roeder, J. L., Lu, G., Borovsky, J. E., & Cayton, T. E. ( 2001 ). The dominant role of the asymmetric ring current in producing the stormtime Dst*. Journal of Geophysical Research, 106 ( A6 ), 10,883 – 10,904. https://doi.org/10.1029/2000JA000326
dc.identifier.citedreferenceLiemohn, M. W., McCollough, J. P., Jordanova, V. K., Ngwira, C. M., Morley, S. K., Cid, C., Tobiska, W. K., Wintoft, P., Ganushkina, N. Y., Welling, D. T., Bingham, S., Balikhin, M. A., Opgenoorth, H. J., Engel, M. A., Weigel, R. S., Singer, H. J., Buresova, D., Bruinsma, S., Zhelavskaya, I. S., Shprits, Y. Y., & Vasile, R. ( 2018 ). Model evaluation guidelines for geomagnetic index predictions. Space Weather, 16, 2079 – 2102. https://doi.org/10.1029/2018SW002067
dc.identifier.citedreferenceLiemohn, M. W., Ridley, A. J., Brandt, P. C., Gallagher, D. L., Kozyra, J. U., Mitchell, D. G., Roelof, E. C., & DeMajistre, R. ( 2005 ). Parametric analysis of nightside conductance effects on inner magnetospheric dynamics for the 17 April 2002 storm. Journal of Geophysical Research, 110, A12S22. https://doi.org/10.1029/2005JA011109
dc.identifier.citedreferenceLiu, W., Tu, W., Li, X., Sarris, T., Khotyaintsev, Y., Fu, H., Zhang, H., & Shi, Q. ( 2016 ). On the calculation of electric diffusion coefficient of radiation belt electrons with in situ electric field measurements by THEMIS. Geophysical Research Letters, 43, 1023 – 1030. https://doi.org/10.1002/2015GL067398
dc.identifier.citedreferenceLiu, X., Liu, W., Cao, J. B., Fu, H. S., Yu, J., & Li, X. ( 2015 ). Dynamic plasmapause model based on THEMIS measurements. Journal of Geophysical Research: Space Physics, 120, 10,543 – 10,556. https://doi.org/10.1002/2015JA021801
dc.identifier.citedreferenceLühr, H., Xiong, C., Olsen, N., & Le, G. ( 2016 ). Near‐earth magnetic field effects of large‐scale magnetospheric currents. Space Science Reviews, 206, 521 – 545. https://doi.org/10.1007/s11214‐016‐0267‐y
dc.identifier.citedreferenceMa, Q., Li, W., Bortnik, J., Thorne, R. M., Chu, X., Ozeke, L. G., Reeves, G. D., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Engebretson, M. J., Spence, H. E., Baker, D. N., Blake, J. B., Fennell, J. F., & Claudepierre, S. G. ( 2018 ). Quantitative evaluation of radial diffusion and local acceleration processes during GEM challenge events. Journal of Geophysical Research: Space Physics, 123, 1938 – 1952. https://doi.org/10.1002/2017JA025114
dc.identifier.citedreferenceMa, Q., Li, W., Thorne, R. M., Bortnik, J., Kletzing, C. A., Kurth, W. S., & Hospodarsky, G. B. ( 2016 ). Electron scattering by magnetosonic waves in the inner magnetosphere. Journal of Geophysical Research: Space Physics, 121, 274 – 285. https://doi.org/10.1002/2015JA021992
dc.identifier.citedreferenceMa, Q., Mourenas, D., Artemyev, A., Li, W., Thorne, R. M., & Bortnik, J. ( 2016 ). Strong enhancement of 10–100 keV electron fluxes by combined effects of chorus waves and time domain structures. Geophysical Research Letters, 43, 4683 – 4690. https://doi.org/10.1002/2016GL069125
dc.identifier.citedreferenceMa, Q., Mourenas, D., Li, W., Artemyev, A., & Thorne, R. M. ( 2017 ). VLF waves from ground‐based transmitters observed by the Van Allen Probes: Statistical model and effects on plasmaspheric electrons. Geophysical Research Letters, 44, 6483 – 6491. https://doi.org/10.1002/2017GL073885
dc.identifier.citedreferenceMalaspina, D. M., Claudepierre, S. G., Takahashi, K., Jaynes, A. N., Elkington, S. R., Ergun, R. E., Wygant, J. R., Reeves, G. D., & Kletzing, C. A. ( 2015 ). Kinetic Alfven waves and particle response associated with a shock‐induced, global ULF perturbation of the terrestrial magnetosphere. Geophysical Research Letters, 42, 9203 – 9212. https://doi.org/10.1002/2015GL065935
dc.identifier.citedreferenceMalaspina, D. M., Jaynes, A. N., Boul, C., Bortnik, J., Thaller, S. A., Ergun, R. E., Kletzing, C. A., & Wygant, J. R. ( 2016 ). The distribution of plasmaspheric hiss wave power with respect to plasmapause location. Geophysical Research Letters, 43, 7878 – 7886. https://doi.org/10.1002/2016GL069982
dc.identifier.citedreferenceMalaspina, D. M., Jaynes, A. N., Hospodarsky, G., Bortnik, J., Ergun, R. E., & Wygant, J. ( 2017 ). Statistical properties of low‐frequency plasmaspheric hiss. Journal of Geophysical Research: Space Physics, 122, 8340 – 8352. https://doi.org/10.1002/2017JA024328
dc.identifier.citedreferenceMeredith, N. P., Horne, R. B., Kersten, T., Fraser, B. J., & Grew, R. S. ( 2014 ). Global morphology and spectral properties of EMIC waves derived from CRRES observations. Journal of Geophysical Research: Space Physics, 119, 5328 – 5342. https://doi.org/10.1002/2014JA020064
dc.identifier.citedreferenceMotoba, T., Ohtani, S., Anderson, B. J., Korth, H., Mitchell, D., Lanzerotti, L. J., Shiokawa, K., Connors, M., Kletzing, C. A., & Reeves, G. D. ( 2015 ). On the formation and origin of substorm growth phase/onset auroral arcs inferred from conjugate space‐ground observations. Journal of Geophysical Research: Space Physics, 120, 8707 – 8722. https://doi.org/10.1002/2015JA021676
dc.identifier.citedreferenceMourenas, D., Artemyev, A. V., Agapitov, O. V., & Krasnoselskikh, V. ( 2014 ). Consequences of geomagnetic activity on energization and loss of radiation belt electrons by oblique chorus waves. Journal of Geophysical Research: Space Physics, 119, 2775 – 2796. https://doi.org/10.1002/2013JA019674
dc.identifier.citedreferenceMozer, F. S., Agapitov, O. V., Artemyev, A., Drake, J. F., Krasnoselskikh, V., Lejosne, S., & Vasko, I. ( 2015 ). Time domain structures: What and where they are, what they do, and how they are made. Geophysical Research Letters, 42, 3627 – 3638. https://doi.org/10.1002/2015GL063946
dc.identifier.citedreferenceMurphy, K. R., Mann, I. R., & Sibeck, D. G. ( 2015 ). On the dependence of stormtime ULF wave power on magnetopause location: Impacts for ULF wave radial diffusion. Geophysical Research Letters, 42, 9676 – 9684. https://doi.org/10.1002/2015GL066592
dc.identifier.citedreferenceNemec, F., Hospodarsky, G., Pickett, J. S., Santolik, O., Kurth, W. S., & Kletzing, C. ( 2016 ). Conjugate observations of quasiperiodic emissions by the Cluster, Van Allen Probes, and THEMIS spacecraft. Journal of Geophysical Research: Space Physics, 121, 7647 – 7663. https://doi.org/10.1002/2016JA022774
dc.identifier.citedreferenceNi, B., Cao, X., Zou, Z., Zhou, C., Gu, X., Bortnik, J., Zhang, J., Fu, S., Zhao, Z., Shi, R., & Xie, L. ( 2015 ). Resonant scattering of outer zone relativistic electrons by multiband EMIC waves and resultant electron loss time scales. Journal of Geophysical Research: Space Physics, 120, 7357 – 7373. https://doi.org/10.1002/2015JA021466
dc.identifier.citedreferenceNi, B., Gu, X., Fu, S., Xiang, Z., & Lou, Y. ( 2017 ). A statistical survey of electrostatic electron cyclotron harmonic waves based on THEMIS FFF wave data. Journal of Geophysical Research: Space Physics, 122, 3342 – 3353. https://doi.org/10.1002/2016JA023433
dc.identifier.citedreferenceNishimura, Y., Bortnik, J., Li, W., Lyons, L. R., Donovan, E. F., Angelopoulos, V., & Mende, S. B. ( 2014 ). Evolution of nightside subauroral proton aurora caused by transient plasma sheet flows. Journal of Geophysical Research: Space Physics, 119, 5295 – 5304. https://doi.org/10.1002/2014JA020029
dc.identifier.citedreferenceNosé, M. ( 2016 ). Long‐term variations in the plasma sheet ion composition and substorm occurrence over 23 years. Geoscience Letters, 3, 1 – 8. https://doi.org/10.1186/s40562‐015‐0033‐0
dc.identifier.citedreferenceOmura, Y., Nunn, D., & Summers, D. ( 2013 ). Generation processes of whistler mode chorus emissions: Current status of nonlinear wave growth theory. In D.   Summers, I. R.   Mann, D. N.   Baker, & M.   Schulz (Eds.), Dynamics of the Earth’s radiation belts and inner magnetosphere (Vol. 199, pp. 243 – 254 ). Washington, DC: American Geophysical Union. https://doi.org/10.1029/2012GM001347
dc.identifier.citedreferenceOrlova, K., & Shprits, Y. ( 2015 ). Model of lifetimes of the outer radiation belt electrons in a realistic magnetic field using ralistic chorus wave parameters, 6199–6206. https://doi.org/10.1002/2015JA021354
dc.identifier.citedreferenceOrlova, K., Spasojevic, M., & Shprits, Y. ( 2014 ). Activity‐dependent global model of electron loss inside the plasmasphere. Geophysical Research Letters, 41, 6413 – 6419. https://doi.org/10.1002/2014GL061184
dc.identifier.citedreferencePembroke, A., Toffoletto, F., Sazykin, S., Wiltberger, M., Lyon, J., Merkin, V., & Schmitt, P. ( 2012 ). Initial results from a dynamic coupled magnetosphere‐ionosphere‐ring current model. Journal of Geophysical Research, 117, A02211. https://doi.org/10.1029/2011JA016979
dc.identifier.citedreferencePerlongo, N. J., Ridley, A. J., Liemohn, M. W., & Katus, R. M. ( 2017 ). The effect of ring current electron scattering rates on magnetosphere‐ionosphere coupling. Journal of Geophysical Research: Space Physics, 122, 4168 – 4189. https://doi.org/10.1002/2016JA023679
dc.identifier.citedreferencePulkkinen, A., Rastätter, L., Kuznetsova, M., Singer, H., Balch, C., Weimer, D., Toth, G., Ridley, A., Gombosi, T., Wiltberger, M., Raeder, J., & Weigel, R. ( 2013 ). Community‐wide validation of geospace model ground magnetic field perturbation predictions to support model transition to operations. Space Weather, 11, 369 – 385. https://doi.org/10.1002/swe.20056
dc.identifier.citedreferenceRaeder, J., Cramer, W. D., Jensen, J., Fuller‐Rowell, T., Maruyama, N., Toffoletto, F., & Vo, H. ( 2016 ). Sub‐auroral polarization streams: A complex interaction between themagnetosphere, ionosphere, and thermosphere. Journal of Physics: Conference Series, 767, 012021. https://doi.org/10.1088/1742‐6596/767/1/012021
dc.identifier.citedreferenceRastätter, L., Kuznetsova, M. M., Glocer, A., Welling, D., Meng, X., Raeder, J., Wiltberger, M., Jordanova, V. K., Yu, Y., Zaharia, S., Weigel, R. S., Sazykin, S., Boynton, R., Wei, H., Eccles, V., Horton, W., Mays, M. L., & Gannon, J. ( 2013 ). Geospace environment modeling 2008–2009 challenge: Dst index. Space Weather, 11, 187 – 205. https://doi.org/10.1002/swe.20036
dc.identifier.citedreferenceRastätter, L., Tóth, G., Kuznetsova, M. M., & Pulkkinen, A. A. ( 2014 ). CalcDeltaB: An efficient postprocessing tool to calculate ground‐level magnetic perturbations from global magnetosphere simulations. SpaceWeather, 12, 553 – 565. https://doi.org/10.1002/2014SW001083
dc.identifier.citedreferenceRipoll, J.‐F., Santolík, O., Reeves, G. D., Kurth, W. S., Denton, M. H., Loridan, V., Thaller, S. A., Kletzing, C. A., & Turner, D. L. ( 2017 ). Effects of whistler mode hiss waves in March 2013. Journal of Geophysical Research: Space Physics, 122, 7433 – 7462. https://doi.org/10.1002/2017JA024139
dc.identifier.citedreferenceSaikin, A. A., Zhang, J.‐C., Allen, R. C., Smith, C. W., Kistler, L. M., Spence, H. E., Torbert, R. B., Kletzing, C. A., & Jordanova, V. K. ( 2015 ). The occurrence and wave properties of H+‐, He+‐, and O+‐band EMIC waves observed by the Van Allen Probes. Journal of Geophysical Research: Space Physics, 120, 7477 – 7492. https://doi.org/10.1002/2015JA021358
dc.identifier.citedreferenceSandhu, J. K., Yeoman, T. K., Fear, R. C., & Dandouras, I. ( 2016 ). A statistical study of magnetospheric ion composition along the geomagnetic field using the Cluster spacecraft for L values between 5.9 and 9.5. Journal of Geophysical Research: Space Physics, 121, 2194 – 2208. https://doi.org/10.1002/2015JA022261
dc.identifier.citedreferenceSandhu, J. K., Yeoman, T. K., Rae, I. J., Fear, R. C., & Dandouras, I. S. ( 2017 ). The dependence of magnetospheric plasma mass loading on geomagnetic activity using Cluster. Journal of Geophysical Research: Space Physics, 122, 9371 – 9395. https://doi.org/10.1002/2017JA024171
dc.identifier.citedreferenceSantolik, O., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., & Bounds, S. R. ( 2014 ). Fine structure of large‐amplitude chorus wave packets. Geophysical Research Letters, 41, 293 – 299. https://doi.org/10.1002/2013GL058889
dc.identifier.citedreferenceSantolík, O., Macúsová, E., Kolmasová, I., Cornilleau‐Wehrlin, N., & de Conchy, Y. ( 2014 ). Propagation of lower‐band whistler‐mode waves in the outer Van Allen belt: Systematic analysis of 11 years of multi‐component data from the Cluster spacecraft. Geophysical Research Letters, 41, 2729 – 2737. https://doi.org/10.1002/2014GL059815
dc.identifier.citedreferenceSarno‐Smith, L. K., Larsen, B. A., Skoug, R. M., Liemohn, M. W., Breneman, A., Wygant, J. R., & Thomsen, M. F. ( 2016 ). Spacecraft surface charging within geosynchronous orbit observed by the Van Allen Probes. Space Weather, 14, 151 – 164. https://doi.org/10.1002/2015SW001345
dc.identifier.citedreferenceSarno‐Smith, L. K., Liemohn, M. W., Katus, R. M., Skoug, R. M., Larsen, B. A., Thomsen, M. F., Wygant, J. R., & Moldwin, M. B. ( 2015 ). Postmidnight depletion of the high‐energy tail of the quiet plasmasphere. Journal of Geophysical Research: Space Physics, 120, 1646 – 1660. https://doi.org/10.1002/2014JA020682
dc.identifier.citedreferenceShprits, Y., Kellerman, A., Kondrashov, D., & Subbotin, D. ( 2013 ). Application of a new data operator‐splitting data assimilation technique to the 3‐D VERB diffusion code and CRRES measurements. Geophysical Research Letters, 40, 4998 – 5002. https://doi.org/10.1002/grl.50969
dc.identifier.citedreferenceShprits, Y. Y. ( 2016 ). Estimation of bounce resonant scattering by fast magnetosonic waves. Geophysical Research Letters, 43, 998 – 1006. https://doi.org/10.1002/2015GL066796
dc.identifier.citedreferenceShprits, Y. Y., Drozdov, A. Y., Spasojevic, M., Kellerman, A. C., Usanova, M. E., Engebretson, M. J., Agapitov, O. V., Zhelavskaya, I. S., Raita, T. J., Spence, H. E., Baker, D. N., Zhu, H., & Aseev, N. A. ( 2016 ). Wave‐induced loss of ultra‐relativistic electrons in the Van Allen radiation belts. Nature Communications, 7, 12883. https://doi.org/10.1038/ncomms12883
dc.identifier.citedreferenceSpasojevic, M., Shprits, Y. Y., & Orlova, K. ( 2015 ). Global empirical models of plasmaspheric hiss using Van Allen Probes. Journal of Geophysical Research: Space Physics, 120, 10,370 – 10,383. https://doi.org/10.1002/2015JA021803
dc.identifier.citedreferenceTao, X., Bortnik, J., Albert, J. M., & Thorne, R. M. ( 2012 ). Comparison of bounce‐averaged quasi‐linear diffusion coefficients for parallel propagating whistler mode waves with test particle simulations. Journal of Geophysical Research, 117, A10205. https://doi.org/10.1029/2012JA017931
dc.identifier.citedreferenceToffoletto, F., Sazykin, S., Spiro, R., & Wolf, R. ( 2003 ). Inner magnetospheric modeling with the Rice Convection Model. Space Science Reviews, 107 ( 1/2 ), 175 – 196. https://doi.org/10.1023/A:1025532008047
dc.identifier.citedreferenceTsyganenko, N. A. ( 1989 ). A magnetospheric magnetic field model with a warped tail current sheet. Planetary and Space Science, 37 ( 1 ), 5 – 20. https://doi.org/10.1016/0032‐0633(89)90066‐4
dc.identifier.citedreferenceTsyganenko, N. A. ( 1996 ). Modeling the Earth’s magnetospheric magnetic field, confined within a realistic magnetopause. Journal of Geophysical Research, 100, 5599 – 5612. https://doi.org/10.1029/94JA03193
dc.identifier.citedreferenceTsyganenko, N. A. ( 2002 ). A model of the near magnetosphere with a dawn‐dusk asymmetry: 1. Mathematical structure, Journal of Geophysical Research, 107 ( A8 ), 1179. https://doi.org/10.1029/2001JA000219
dc.identifier.citedreferenceTsyganenko, N. A., & Andreeva, V. A. ( 2017 ). A hybrid approach to empirical magnetosphere modeling. Journal of Geophysical Research: Space Physics, 122, 8198 – 8213. https://doi.org/10.1002/2017JA024359
dc.identifier.citedreferenceTsyganenko, N. A., & Sitnov, M. I. ( 2007 ). Magnetospheric configurations from a high‐resolution data‐based magnetic field model. Journal of Geophysical Research, 112, A06225. https://doi.org/10.1029/2007JA012260
dc.identifier.citedreferenceTu, W., Cunningham, G. S., Chen, Y., Morley, S. K., Reeves, G. D., Blake, J. B., Baker, D. N., & Spence, H. ( 2014 ). Event‐specific chorus wave and electron seed population models in DREAM3D using the Van Allen Probes. Geophysical Research Letters, 41, 1359 – 1366. https://doi.org/10.1002/2013GL058819
dc.identifier.citedreferenceTurner, D. L., Angelopoulos, V., Li, W., Bortnik, J., Ni, B., Ma, Q., Thorne, R. M., Morley, S. K., Henderson, M. G., Reeves, G. D., Usanova, M., Mann, I. R., Claudepierre, S. G., Blake, J. B., Baker, D. N., Huang, C. L., Spence, H., Kurth, W., Kletzing, C., & Rodriguez, J. V. ( 2014 ). Competing source and loss mechanisms due to wave‐particle interactions in Earth’s outer radiation belt during the 30 September to 3 October 2012 geomagnetic storm. Journal of Geophysical Research: Space Physics, 119, 1960 – 1979. https://doi.org/10.1002/2014JA019770
dc.identifier.citedreferenceTurner, D. L., Lee, J. H., Claudepierre, S. G., Fennell, J. F., Blake, J. B., Jaynes, A. N., Leonard, T., Wilder, F. D., Ergun, R. E., Baker, D. N., Cohen, I. J., Mauk, B., Strangeway, R. J., Hartley, D. P., Kletzing, C. A., Breuillard, H., Le Contel, O., Khotyaintsev, Y. V., Torbert, R. B., Allen, R. C., Burch, J. L., & Santolik, O. ( 2017 ). Examining coherency scales, substructure, and propagation of whistler mode chorus elements with magnetospheric multiscale (MMS). Journal of Geophysical Research: Space Physics, 122, 11,201 – 11,226. https://doi.org/10.1002/2017JA024474
dc.identifier.citedreferenceUsanova, M. E., Drozdov, A., Orlova, K., Mann, I. R., Shprits, Y., Robertson, M. T., Turner, D. L., Milling, D. K., Kale, A., Baker, D. N., Thaller, S. A., Reeves, G. D., Spence, H. E., Kletzing, C., & Wygant, J. ( 2014 ). Effect of EMIC waves on relativistic and ultrarelativistic electron populations: Ground‐based and Van Allen Probes observations. Geophysical Research Letters, 41, 1375 – 1381. https://doi.org/10.1002/2013GL059024
dc.identifier.citedreferenceUsanova, M. E., Malaspina, D. M., Jaynes, A. N., Bruder, R. J., Mann, I. R., Wygant, J. R., & Ergun, R. E. ( 2016 ). Van Allen Probes observations of oxygen cyclotron harmonic waves in the inner magnetosphere. Geophysical Research Letters, 43, 8827 – 8834. https://doi.org/10.1002/2016GL070233
dc.identifier.citedreferenceWang, Z. Q., Pan, Z., Zhai, H., Gao, Z., Sun, K., & Zhang, Y. ( 2017 ). The nonlinear interactions between O + ions and oxygen band EMIC waves: The nonlinear interactions of O + ions. Journal of Geophysical Research: Space Physics, 122, 7097 – 7109. https://doi.org/10.1002/2017JA024113
dc.identifier.citedreferenceWang, Z., Zhai, H., & Gao, Z. ( 2017 ). The effects of hydrogen band EMIC waves on ring current H + ions. Geophysical Research Letters, 44, 11,722 – 11,728. https://doi.org/10.1002/2017GL075843
dc.identifier.citedreferenceWelling, D. T., Anderson, B. J., Crowley, G., Pulkkinen, A. A., & Rastätter, L. ( 2017 ). Exploring predictive performance: A reanalysis of the geospace model transition challenge. Space Weather, 15, 192 – 203. https://doi.org/10.1002/2016SW001505
dc.identifier.citedreferenceWelling, D. T., Jordanova, V. K., Glocer, A., Toth, G., Liemohn, M. W., & Weimer, D. R. ( 2015 ). The two‐way relationship between ionospheric outflow and the ring current. Journal of Geophysical Research: Space Physics, 120, 4338 – 4353. https://doi.org/10.1002/2015JA021231
dc.identifier.citedreferenceWelling, D. T., Toth, G., Jordanova, V. K., & Yu, Y. ( 2018 ). Integration of RAM‐SCB into the Space Weather Modeling Framework. Journal of Atmospheric and Solar‐Terrestrial Physics, 177, 160 – 168. https://doi.org/10.1016/j.jastp.2018.01.007
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.