Show simple item record

17‐α estradiol ameliorates age‐associated sarcopenia and improves late‐life physical function in male mice but not in females or castrated males

dc.contributor.authorGarratt, Michael
dc.contributor.authorLeander, Danielle
dc.contributor.authorPifer, Kaitlyn
dc.contributor.authorBower, Brian
dc.contributor.authorHerrera, Jonathan J.
dc.contributor.authorDay, Sharlene M.
dc.contributor.authorFiehn, Oliver
dc.contributor.authorBrooks, Susan V.
dc.contributor.authorMiller, Richard A.
dc.date.accessioned2019-04-02T18:11:11Z
dc.date.available2020-06-01T14:50:01Zen
dc.date.issued2019-04
dc.identifier.citationGarratt, Michael; Leander, Danielle; Pifer, Kaitlyn; Bower, Brian; Herrera, Jonathan J.; Day, Sharlene M.; Fiehn, Oliver; Brooks, Susan V.; Miller, Richard A. (2019). "17‐α estradiol ameliorates age‐associated sarcopenia and improves late‐life physical function in male mice but not in females or castrated males." Aging Cell 18(2): n/a-n/a.
dc.identifier.issn1474-9718
dc.identifier.issn1474-9726
dc.identifier.urihttps://hdl.handle.net/2027.42/148386
dc.description.abstractPharmacological treatments can extend mouse lifespan, but lifespan effects often differ between sexes. 17‐α estradiol (17aE2), a less feminizing structural isomer of 17‐β estradiol, produces lifespan extension only in male mice, suggesting a sexually dimorphic mechanism of lifespan regulation. We tested whether these anti‐aging effects extend to anatomical and functional aging—important in late‐life health—and whether gonadally derived hormones control aging responses to 17aE2 in either sex. While 17aE2 started at 4 months of age diminishes body weight in both sexes during adulthood, in late‐life 17aE2‐treated mice better maintain body weight. In 17aE2‐treated male mice, the higher body weight is associated with heavier skeletal muscles and larger muscle fibers compared with untreated mice during aging, while treated females have heavier subcutaneous fat. Maintenance of skeletal muscle in male mice is associated with improved grip strength and rotarod capacity at 25 months, in addition to higher levels of most amino acids in quadriceps muscle. We further show that sex‐specific responses to 17aE2—metabolomic, structural, and functional—are regulated by gonadal hormones in male mice. Castrated males have heavier quadriceps than intact males at 25 months, but do not respond to 17aE2, suggesting 17aE2 promotes an anti‐aging skeletal muscle phenotype similar to castration. Finally, 17aE2 treatment benefits can be recapitulated in mice when treatment is started at 16 months, suggesting that 17aE2 may be able to improve aspects of late‐life function even when started after middle age.
dc.publisherWiley Periodicals, Inc.
dc.title17‐α estradiol ameliorates age‐associated sarcopenia and improves late‐life physical function in male mice but not in females or castrated males
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148386/1/acel12920_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148386/2/acel12920.pdf
dc.identifier.doi10.1111/acel.12920
dc.identifier.sourceAging Cell
dc.identifier.citedreferenceSchriefers, H., Wright, M. C., Rozman, T., & Hevert, F. ( 1991 ). Inhibition of testosterone metabolism by 17‐alpha‐estradiol in rat liver slices. Arzneimittel‐Forschung, 41 ( 11 ), 1186 – 1189.
dc.identifier.citedreferenceLongo, V. D., Antebi, A., Bartke, A., Barzilai, N., Brown‐Borg, H. M., Caruso, C., … Fontana, L. ( 2015 ). Interventions to slow aging in humans: Are we ready? Aging Cell, 14 ( 4 ), 497 – 510. https://doi.org/10.1111/acel.12338
dc.identifier.citedreferenceMadak‐Erdogan, Z., Kim, S. H., Gong, P., Zhao, Y. C., Zhang, H., Chambliss, K. L., … Katzenellenbogen, B. S. ( 2016 ). Design of pathway preferential estrogens that provide beneficial metabolic and vascular effects without stimulating reproductive tissues. Science Signaling, 9 ( 429 ), ra53‐ra53. https://doi.org/10.1126/scisignal.aad8170
dc.identifier.citedreferenceMahendroo, M. S., Cala, K. M., Hess, D. L., & Russell, D. W. ( 2001 ). Unexpected virilization in male mice lacking steroid 5 alpha‐reductase enzymes. Endocrinology, 142 ( 11 ), 4652 – 4662. https://doi.org/10.1210/endo.142.11.8510
dc.identifier.citedreferenceMiller, R. A., Harrison, D. E., Astle, C. M., Fernandez, E., Flurkey, K., Han, M., … Strong, R. ( 2014 ). Rapamycin‐mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction. Aging Cell, 13 ( 3 ), 468 – 477. https://doi.org/10.1111/acel.12194
dc.identifier.citedreferenceMizushima, N., & Yoshimori, T. ( 2007 ). How to interpret LC3 immunoblotting. Autophagy, 3 ( 6 ), 542 – 545. https://doi.org/10.4161/auto.4600
dc.identifier.citedreferenceMorita, M., Gravel, S. P., Chenard, V., Sikstrom, K., Zheng, L., Alain, T., … Sonenberg, N. ( 2013 ). mTORC1 controls mitochondrial activity and biogenesis through 4E‐BP‐dependent translational regulation. Cell Metabolism, 18 ( 5 ), 698 – 711. https://doi.org/10.1016/j.cmet.2013.10.001
dc.identifier.citedreferencePurves‐Smith, F. M., Solbak, N. M., Rowan, S. L., & Hepple, R. T. ( 2012 ). Severe atrophy of slow myofibers in aging muscle is concealed by myosin heavy chain co‐expression. Experimental Gerontology, 47 ( 12 ), 913 – 918. https://doi.org/10.1016/j.exger.2012.07.013
dc.identifier.citedreferenceRichardson, A., Fischer, K. E., Speakman, J. R., De Cabo, R., Mitchell, S. J., Peterson, C. A., … Miller, R. A. ( 2015 ). Measures of healthspan as indices of aging in mice—a recommendation. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 71 ( 4 ), 427 – 430. https://doi.org/10.1093/gerona/glv080
dc.identifier.citedreferenceRobine, J.‐M., & Cubaynes, S. ( 2017 ). Worldwide demography of centenarians. Mechanisms of Ageing and Development, 165, 59 – 67. https://doi.org/10.1016/j.mad.2017.03.004
dc.identifier.citedreferenceRossetti, M. L., Steiner, J. L., & Gordon, B. S. ( 2017 ). Androgen‐mediated regulation of skeletal muscle protein balance. Molecular and Cellular Endocrinology, 447, 35 – 44. https://doi.org/10.1016/j.mce.2017.02.031
dc.identifier.citedreferenceRuss, D. W., Gregg‐Cornell, K., Conaway, M. J., & Clark, B. C. ( 2012 ). Evolving concepts on the age‐related changes in “muscle quality”. Journal of Cachexia, Sarcopenia and Muscle, 3 ( 2 ), 95 – 109. https://doi.org/10.1007/s13539-011-0054-2
dc.identifier.citedreferenceSelman, C., Tullet, J. M. A., Wieser, D., Irvine, E., Lingard, S. J., Choudhury, A. I., … Withers, D. J. ( 2009 ). Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science, 326 ( 5949 ), 140 – 144. https://doi.org/10.1126/science.1177221
dc.identifier.citedreferenceSerra, C., Sandor, N. L., Jang, H., Lee, D., Toraldo, G., Guarneri, T., … Bhasin, S. ( 2013 ). The effects of testosterone deprivation and supplementation on proteasomal and autophagy activity in the skeletal muscle of the male mouse: Differential effects on high‐androgen responder and low‐androgen responder muscle groups. Endocrinology, 154 ( 12 ), 4594 – 4606. https://doi.org/10.1210/en.2013-1004
dc.identifier.citedreferenceStanworth, R. D., & Jones, T. H. ( 2008 ). Testosterone for the aging male; current evidence and recommended practice. Clinical Interventions in Aging, 3 ( 1 ), 25 – 44.
dc.identifier.citedreferenceSteffen, K. K., & Dillin, A. ( 2016 ). A ribosomal perspective on proteostasis and aging. Cell Metabolism, 23 ( 6 ), 1004 – 1012. https://doi.org/10.1016/j.cmet.2016.05.013
dc.identifier.citedreferenceSteyn, F. J., Ngo, S. T., Chen, V. P., Bailey‐Downs, L. C., Xie, T. Y., Ghadami, M., … Stout, M. B. ( 2018 ). 17alpha‐estradiol acts through hypothalamic pro‐opiomelanocortin expressing neurons to reduce feeding behavior. Aging Cell, 17 ( 1 ), https://doi.org/10.1111/acel.12703
dc.identifier.citedreferenceStout, M. B., Steyn, F. J., Jurczak, M. J., Camporez, J.‐P.‐G., Zhu, Y., Hawse, J. R., … Kirkland, J. L. ( 2016 ). 17α‐estradiol alleviates age‐related metabolic and inflammatory dysfunction in male mice without inducing feminization. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 72 ( 1 ), 3 – 15. https://doi.org/10.1093/gerona/glv309
dc.identifier.citedreferenceStrong, R., Miller, R. A., Antebi, A., Astle, C. M., Bogue, M., Denzel, M. S., … Harrison, D. E. ( 2016 ). Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an α‐glucosidase inhibitor or a Nrf2‐inducer. Aging Cell, 15, 872 – 884. https://doi.org/10.1111/acel.12496
dc.identifier.citedreferenceStrong, R., Miller, R. A., Astle, C. M., Floyd, R. A., Flurkey, K., Hensley, K. L., … Harrison, D. E. ( 2008 ). Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice. Aging Cell, 7 ( 5 ), 641 – 650. https://doi.org/10.1111/j.1474-9726.2008.00414.x
dc.identifier.citedreferenceTao, Z., Zheng, L. D., Smith, C., Luo, J., Robinson, A., Almeida, F. A., … Cheng, Z. ( 2018 ). Estradiol signaling mediates gender difference in visceral adiposity via autophagy. Cell Death & Disease, 9 ( 3 ), 309. https://doi.org/10.1038/s41419-018-0372-9
dc.identifier.citedreferenceTsai, S., Sitzmann, J. M., Dastidar, S. G., Rodriguez, A. A., Vu, S. L., McDonald, C. E., … Kennedy, B. K. ( 2015 ). Muscle‐specific 4E‐BP1 signaling activation improves metabolic parameters during aging and obesity. The Journal of Clinical Investigation, 125 ( 8 ), 2952 – 2964. https://doi.org/10.1172/JCI77361
dc.identifier.citedreferenceWilliams, G. N., Higgins, M. J., & Lewek, M. D. ( 2002 ). Aging skeletal muscle: Physiologic changes and the effects of training. Physical Therapy, 82 ( 1 ), 62 – 68. https://doi.org/10.1093/ptj/82.1.62
dc.identifier.citedreferenceAustad, S. N., & Fischer, K. E. ( 2016 ). Sex differences in lifespan. Cell Metabolism, 23 ( 6 ), 1022 – 1033. https://doi.org/10.1016/j.cmet.2016.05.019
dc.identifier.citedreferenceBansal, A., Zhu, L. J., Yen, K., & Tissenbaum, H. A. ( 2015 ). Uncoupling lifespan and healthspan in Caenorhabditis elegans longevity mutants. PNAS, 112 ( 3 ), E277 – E286.
dc.identifier.citedreferenceBasaria, S., Coviello, A. D., Travison, T. G., Storer, T. W., Farwell, W. R., Jette, A. M., … Zhang, A. ( 2010 ). Adverse events associated with testosterone administration. New England Journal of Medicine, 363 ( 2 ), 109 – 122. https://doi.org/10.1056/NEJMoa1000485
dc.identifier.citedreferenceChen, W. Y., & Colditz, G. A. ( 2007 ). Risk factors and hormone‐receptor status: Epidemiology, risk‐prediction models and treatment implications for breast cancer. Nature Clinical Practice Oncology, 4 ( 7 ), 415 – 423. https://doi.org/10.1038/ncponc0851
dc.identifier.citedreferenceColby, S. L., & Ortman, J. M. ( 2017 ). Projections of the size and composition of the US population: 2014 to 2060: Population estimates and projections.
dc.identifier.citedreferenceCoquelin, A., & Desjardins, C. ( 1982 ). Luteinizing hormone and testosterone secretion in young and old male mice. American Journal of Physiology‐Endocrinology and Metabolism, 243 ( 3 ), E257 – E263. https://doi.org/10.1152/ajpendo.1982.243.3.E257
dc.identifier.citedreferenceFisher, C. R., Graves, K. H., Parlow, A. F., & Simpson, E. R. ( 1998 ). Characterization of mice deficient in aromatase (ArKO) because of targeted disruption of the cyp19 gene. Proceedings of the National Academy of Sciences of the United States of America, 95 ( 12 ), 6965 – 6970. https://doi.org/10.1073/pnas.95.12.6965
dc.identifier.citedreferenceGarratt, M., Bower, B., Garcia, G. G., & Miller, R. A. ( 2017 ). Sex differences in lifespan extension with acarbose and 17‐alpha estradiol: Gonadal hormones underlie male‐specific improvements in glucose tolerance and mTORC2 signaling. Aging Cell, 16 ( 6 ), 1256 – 1266. https://doi.org/10.1111/acel.12656
dc.identifier.citedreferenceGarratt, M., Lagerborg, K. A., Tsai, Y. M., Galecki, A., Jain, M., & Miller, R. A. ( 2018 ). Male lifespan extension with 17‐α estradiol is linked to a sex‐specific metabolomic response modulated by gonadal hormones in mice. Aging Cell, 17, e12786. https://doi.org/10.1111/acel.12786
dc.identifier.citedreferenceGarratt, M., Nakagawa, S. N., & Simons, M. J. ( 2016 ). Comparative idiosyncrasies in life extension by reduced mTOR signalling and its distinctiveness from dietary restriction. Aging Cell, 15 ( 4 ), 737 – 743. https://doi.org/10.1111/acel.12489
dc.identifier.citedreferenceGarratt, M., Nakagawa, S., & Simons, M. J. P. ( 2017 ). Life‐span extension with reduced somatotrophic signaling: Moderation of aging effect by signal type, sex, and experimental cohort. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 72 ( 12 ), 1620 – 1626. https://doi.org/10.1093/gerona/glx010
dc.identifier.citedreferenceGonzalez‐Freire, M., Diaz‐Ruiz, A., & de Cabo, R. ( 2016 ). 17α‐estradiol: A novel therapeutic intervention to target age‐related chronic inflammation. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 72 ( 1 ), 1 – 2.
dc.identifier.citedreferenceHansen, M., & Rubinsztein, D. C. ( 2018 ). Autophagy as a promoter of longevity: Insights from model organisms. Nature Reviews Molecular Cell Biology, 19 ( 9 ), 579 – 593. https://doi.org/10.1038/s41580-018-0033-y
dc.identifier.citedreferenceHepple, R. T., Ross, K. D., & Rempfer, A. B. ( 2004 ). Fiber atrophy and hypertrophy in skeletal muscles of late middle‐aged Fischer 344 x Brown Norway F1‐hybrid rats. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 59 ( 2 ), 108 – 117. https://doi.org/10.1093/gerona/59.2.B108
dc.identifier.citedreferenceHolzenberger, M., Dupont, J., Ducos, B., Leneuve, P., Geloen, A., Even, P. C., … Le Bouc, Y. ( 2003 ). IGF‐1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature, 421 ( 6919 ), 182 – 187. https://doi.org/10.1038/nature01298
dc.identifier.citedreferenceHorstman, A. M., Dillon, E. L., Urban, R. J., & Sheffield‐Moore, M. ( 2012 ). The role of androgens and estrogens on healthy aging and longevity. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 67 ( 11 ), 1140 – 1152. https://doi.org/10.1093/gerona/gls068
dc.identifier.citedreferenceJiao, Q., Pruznak, A. M., Huber, D., Vary, T. C., & Lang, C. H. ( 2009 ). Castration differentially alters basal and leucine‐stimulated tissue protein synthesis in skeletal muscle and adipose tissue. American Journal of Physiology ‐ Endocrinology and Metabolism, 297 ( 5 ), E1222 – E1232. https://doi.org/10.1152/ajpendo.00473.2009
dc.identifier.citedreferenceKammoun, M., Cassar‐Malek, I., Meunier, B., & Picard, B. ( 2014 ). A simplified immunohistochemical classification of skeletal muscle fibres in mouse. European Journal of Histochemistry: EJH, 58 ( 2 ), 2254.
dc.identifier.citedreferenceLamming, D. W., Ye, L., Katajisto, P., Goncalves, M. D., Saitoh, M., Stevens, D. M., … Baur, J. A. ( 2012 ). Rapamycin‐induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science, 335 ( 6076 ), 1638 – 1643. https://doi.org/10.1126/science.1215135
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.