Show simple item record

The Effect of Submarine Melting on Calving From Marine Terminating Glaciers

dc.contributor.authorMa, Yue
dc.contributor.authorBassis, Jeremy N.
dc.date.accessioned2019-04-02T18:11:22Z
dc.date.available2020-03-03T21:29:35Zen
dc.date.issued2019-02
dc.identifier.citationMa, Yue; Bassis, Jeremy N. (2019). "The Effect of Submarine Melting on Calving From Marine Terminating Glaciers." Journal of Geophysical Research: Earth Surface 124(2): 334-346.
dc.identifier.issn2169-9003
dc.identifier.issn2169-9011
dc.identifier.urihttps://hdl.handle.net/2027.42/148395
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.othermodel
dc.subject.otherglacier dynamics
dc.subject.othericeberg
dc.subject.otherclimate
dc.subject.othersubmarine melting
dc.subject.othercalving
dc.titleThe Effect of Submarine Melting on Calving From Marine Terminating Glaciers
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148395/1/jgrf20986.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148395/2/jgrf20986_am.pdf
dc.identifier.doi10.1029/2018JF004820
dc.identifier.sourceJournal of Geophysical Research: Earth Surface
dc.identifier.citedreferenceRignot, E., Xu, Y., Menemenlis, D., Mouginot, J., Scheuchl, B., Li, X., Morlighem, M., Seroussi, H., van den Broeke, M., Fenty, I., Cai, C., An, L., & de Fleurian, B. ( 2016 ). Modeling of ocean‐induced ice melt rates of five West Greenland glaciers over the past two decades. Geophysical Research Letters, 43, 6374 – 6382. https://doi.org/10.1002/2016GL068784
dc.identifier.citedreferenceMorlighem, M., Bondzio, J., Seroussi, H., Rignot, E., Larour, E., Humbert, A., & Rebuffi, S. ( 2016 ). Modeling of store gletscher’s calving dynamics, West Greenland, in response to ocean thermal forcing. Geophysical Research Letters, 43, 2659 – 2666. https://doi.org/10.1002/2016GL067695
dc.identifier.citedreferenceMotyka, R. J., Hunter, L., Echelmeyer, K. A., & Connor, C. ( 2003 ). Submarine melting at the terminus of a temperate tidewater glacier, LeConte Glacier, Alaska, U.S.A. Annals of Glaciology, 36 ( 1 ), 57 – 65.
dc.identifier.citedreferenceNick, F. M., van der Veen, C. J., Vieli, A., & Benn, D. I. ( 2010 ). A physically based calving model applied to marine outlet glaciers and implications for the glacier dynamics. Journal of Glaciology, 56 ( 199 ), 781 – 794.
dc.identifier.citedreferenceNye, J. F. ( 1955 ). Comments on Dr Loewe’s letter and notes on crevasses. Journal of Glaciology, 2 ( 17 ), 512 – 514.
dc.identifier.citedreferenceO’Leary, M., & Christoffersen, P. ( 2013 ). Calving on tidewater glaciers amplified by submarine frontal melting. The Cryosphere, 7 ( 1 ), 119 – 128.
dc.identifier.citedreferencePetrovic, J. J. ( 2003 ). Review mechanical properties of ice and snow. Journal of Materials Science, 38 ( 1 ), 1 – 6.
dc.identifier.citedreferenceRignot, E., Box, J., Burgess, E., & Hanna, E. ( 2008 ). Mass balance of the Greenland ice sheet from 1958 to 2007. Geophysical Research Letters, 35, L20502. https://doi.org/10.1029/2008GL035417
dc.identifier.citedreferenceRignot, E., Fenty, I., Xu, Y., Cai, C., & Kemp, C. ( 2015 ). Undercutting of marine‐terminating glaciers in West Greenland. Geophysical Research Letters, 42, 5909 – 5917. https://doi.org/10.1002/2015GL064236
dc.identifier.citedreferenceRignot, E., & Kanagaratnam, P. ( 2006 ). Changes in the velocity structure of the Greenland ice sheet. Science, 311 ( 5763 ), 986 – 990.
dc.identifier.citedreferenceRignot, E., Koppes, M., & Velicogna, I. ( 2010 ). Rapid submarine melting of the calving faces of West Greenland glaciers. Nature Geoscience, 3 ( 3 ), 187 – 191.
dc.identifier.citedreferenceRöhl, K. ( 2006 ). Thermo‐erosional notch development at fresh‐water‐calving Tasman glacier, New Zealand. Journal of Glaciology, 52 ( 177 ), 203 – 213.
dc.identifier.citedreferenceSchulson, E. M. ( 1999 ). The structure and mechanical behavior of ice. Journal of the Minerals, Metals & Materials Society, 51 ( 2 ), 21 – 27.
dc.identifier.citedreferenceSciascia, R., Straneo, F., Cenedese, C., & Heimbach, P. ( 2013 ). Seasonal variability of submarine melt rate and circulation in an East Greenland fjord. Journal of Geophysical Research: Oceans, 118, 2492 – 2506. https://doi.org/10.1002/jgrc.20142
dc.identifier.citedreferenceSlater, D. A., Nienow, P. W., Goldberg, D. N., Cowton, T. R., & Sole, A. J. ( 2017 ). A model for tidewater glacier undercutting by submarine melting. Geophysical Research Letters, 44, 2360 – 2368. https://doi.org/10.1002/2016GL072374
dc.identifier.citedreferenceTodd, J., & Christoffersen, P. ( 2014 ). Are seasonal calving dynamics forced by buttressing from ice mélange or undercutting by melting? Outcomes from full‐stokes simulations of Store Gletscher, West Greenland. The Cryosphere, 8 ( 6 ), 2353 – 2365.
dc.identifier.citedreferenceTodd, J., Christoffersen, P., Zwinger, T., Råback, P., Chauché, N., Benn, D., Luckman, A., Ryan, J., Toberg, N., Slater, D., & Hubbard, A. ( 2018 ). A full‐stokes 3‐D calving model applied to a large Greenlandic glacier. Journal of Geophysical Research: Earth Surface, 123, 410 – 432. https://doi.org/10.1002/2017JF004349
dc.identifier.citedreferenceTruffer, M., & Motyka, R. J. ( 2016 ). Where glaciers meet water: Subaqueous melt and its relevance to glaciers in various settings. Reviews of Geophysics, 54, 220 – 239. https://doi.org/10.1002/2015RG000494
dc.identifier.citedreferencevan den Broeke, M., Bamber, J., Ettema, J., Rignot, E., Schrama, E., van de Berg, W. J., van Meijgaard, E., Velicogna, I., & Wouters, B. ( 2009 ). Partitioning recent Greenland mass loss. Science, 326 ( 5955 ), 984 – 986.
dc.identifier.citedreferencevan der Veen, C. J. ( 2002 ). Calving glaciers. Progress in Physical Geography, 26 ( 1 ), 96 – 122.
dc.identifier.citedreferencevan der Veen, C. J. ( 2013 ). Fundamentals of glacier dynamics. Boca Raton, FL: CRC Press.
dc.identifier.citedreferenceXu, Y., Rignot, E., Fenty, I., Menemenlis, D., & Flexas, M. ( 2013 ). Subaqueous melting of Store Glacier, West Greenland from three‐dimensional, high‐resolution numerical modeling and ocean observations. Geophysical Research Letters, 40, 4648 – 4653. https://doi.org/10.1002/grl.50825
dc.identifier.citedreferenceAlnæs, M. S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M. E., & Wells, G. N. ( 2015 ). The FEniCS project version 1.5. Archive of Numerical Software, 3 ( 100 ), 9 – 23. https://doi.org/10.11588/ans.2015.100.20553
dc.identifier.citedreferenceAmundson, J. M., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M. P., & Motyka, R. J. ( 2010 ). Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland. Journal of Geophysical Research, 115, F01005. https://doi.org/10.1029/2009JF001405
dc.identifier.citedreferenceAmundson, J., Truffer, M., Lüthi, M., Fahnestock, M., West, M., & Motyka, R. ( 2008 ). Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbræ, Greenland. Geophysical Research Letters, 35, L22501. https://doi.org/10.1029/2008GL035281
dc.identifier.citedreferenceBartholomaus, T. C., Larsen, C. F., & O’Neel, S. ( 2013 ). Does calving matter? Evidence for significant submarine melt. Earth and Planetary Science Letters, 380, 21 – 30.
dc.identifier.citedreferenceBassis, J. N., & Walker, C. C. ( 2012 ). Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 468 ( 2140 ), 913 – 931.
dc.identifier.citedreferenceBenn, D. I., Åström, J., Zwinger, T., Todd, J., Nick, F. M., Cook, S., Hulton, N. R. J., & Luckman, A. ( 2017 ). Melt‐under‐cutting and buoyancy‐driven calving from tidewater glaciers: New insights from discrete element and continuum model simulations. Journal of Glaciology, 63 ( 240 ), 691 – 702.
dc.identifier.citedreferenceBenn, D. I., Warren, C. R., & Mottram, R. H. ( 2007 ). Calving processes and the dynamics of calving glaciers. Earth‐Science Reviews, 82 ( 3 ), 143 – 179.
dc.identifier.citedreferenceColgan, W., Rajaram, H., Abdalati, W., McCutchan, C., Mottram, R., Moussavi, M. S., & Grigsby, S. ( 2016 ). Glacier crevasses: Observations, models, and mass balance implications. Reviews of Geophysics, 54, 119 – 161. https://doi.org/10.1002/2015RG000504
dc.identifier.citedreferenceCook, S., Rutt, I., Murray, T., Luckman, A., Zwinger, T., Selmes, N., Goldsack, A., & James, T. ( 2014 ). Modelling environmental influences on calving at Helheim glacier in eastern Greenland. The Cryosphere, 8 ( 3 ), 827 – 841.
dc.identifier.citedreferenceEnderlin, E. M., & Howat, I. M. ( 2013 ). Submarine melt rate estimates for floating termini of Greenland outlet glaciers (2000–2010). Journal of Glaciology, 59 ( 213 ), 67 – 75.
dc.identifier.citedreferenceEnderlin, E. M., Howat, I. M., Jeong, S., Noh, M.‐J., Angelen, J. H., & Broeke, M. R. ( 2014 ). An improved mass budget for the Greenland Ice Sheet. Geophysical Research Letters, 41, 866 – 872. https://doi.org/10.1002/2013GL059010
dc.identifier.citedreferenceFrederking, R. M. W., Svec, O. J., & Timco, G. W. ( 1988 ). On measuring the shear strength of ice. Sapporo, Japan: National Research Council Canada, Institute for Research in Construction. Retrieved from https://nrc-publications.canada.ca/eng/view/accepted/?id=11f59b37-ce0c-425e-a802-97e1a170daa2
dc.identifier.citedreferenceGlen, J. W. ( 1955 ). The creep of polycrystalline ice. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 228 ( 1175 ), 519 – 538.
dc.identifier.citedreferenceHarper, J. T., Humphrey, N., & Pfeffer, W. T. ( 1998 ). Crevasse patterns and the strain‐rate tensor: A high‐resolution comparison. Journal of Glaciology, 44 ( 146 ), 68 – 76.
dc.identifier.citedreferenceJoughin, I., Abdalati, W., & Fahnestock, M. ( 2004 ). Large fluctuations in speed on Greenland’s Jakobshavn Isbræ glacier. Nature, 432 ( 7017 ), 608 – 610.
dc.identifier.citedreferenceJoughin, I., Howat, I. M., Fahnestock, M., Smith, B., Krabill, W., Alley, R. B., Stern, H., & Truffer, M. ( 2008 ). Continued evolution of Jakobshavn Isbræ following its rapid speedup. Journal of Geophysical Research, 113, F04006. https://doi.org/10.1029/2008JF001023
dc.identifier.citedreferenceKrug, J., Durand, G., Gagliardini, O., & Weiss, J. ( 2015 ). Modelling the impact of submarine frontal melting and ice mélange on glacier dynamics. The Cryosphere, 9, 989 – 1003.
dc.identifier.citedreferenceLogg, A., Mardal, K.‐A., & Wells, G. N. ( 2012 ). Automated solution of differential equations by the finite element method. Berlin: Springer. https://doi.org/10.1007/978-3-642-23099-8
dc.identifier.citedreferenceLuckman, A., Benn, D. I., Cottier, F., Bevan, S., Nilsen, F., & Inall, M. ( 2015 ). Calving rates at tidewater glaciers vary strongly with ocean temperature. Nature Communications, 6, 8566 – 8572.
dc.identifier.citedreferenceMa, Y., Tripathy, C. S., & Bassis, J. N. ( 2017 ). Bounds on the calving cliff height of marine terminating glaciers. Geophysical Research Letters, 44, 1369 – 1375. https://doi.org/10.1002/2016GL071560
dc.identifier.citedreferenceMoon, T., Joughin, I., Smith, B., Broeke, M. R., Berg, W. J., Noël, B., & Usher, M. ( 2014 ). Distinct patterns of seasonal Greenland glacier velocity. Geophysical research letters, 41, 7209 – 7216. https://doi.org/10.1002/2014GL061836
dc.identifier.citedreferenceMoon, T., Joughin, I., Smith, B., & Howat, I. ( 2012 ). 21st‐century evolution of Greenland outlet glacier velocities. Science, 336 ( 6081 ), 576 – 578.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.