Show simple item record

Comparison of Global Downscaled Versus Bottom‐Up Fossil Fuel CO2 Emissions at the Urban Scale in Four U.S. Urban Areas

dc.contributor.authorGurney, Kevin R.
dc.contributor.authorLiang, J.
dc.contributor.authorO’Keeffe, D.
dc.contributor.authorPatarasuk, R.
dc.contributor.authorHutchins, M.
dc.contributor.authorHuang, J.
dc.contributor.authorRao, P.
dc.contributor.authorSong, Y.
dc.date.accessioned2019-04-02T18:11:44Z
dc.date.available2020-05-01T18:03:25Zen
dc.date.issued2019-03-16
dc.identifier.citationGurney, Kevin R.; Liang, J.; O’Keeffe, D.; Patarasuk, R.; Hutchins, M.; Huang, J.; Rao, P.; Song, Y. (2019). "Comparison of Global Downscaled Versus Bottom‐Up Fossil Fuel CO2 Emissions at the Urban Scale in Four U.S. Urban Areas." Journal of Geophysical Research: Atmospheres 124(5): 2823-2840.
dc.identifier.issn2169-897X
dc.identifier.issn2169-8996
dc.identifier.urihttps://hdl.handle.net/2027.42/148411
dc.description.abstractSpatiotemporally resolved urban fossil fuel CO2 (FFCO2) emissions are critical to urban carbon cycle research and urban climate policy. Two general scientific approaches have been taken to estimate spatiotemporally explicit urban FFCO2 fluxes, referred to here as “downscaling” and “bottom‐up.” Bottom‐up approaches can specifically characterize the CO2‐emitting infrastructure in cities but are labor‐intensive to build and currently available in few U.S. cities. Downscaling approaches, often available globally, require proxy information to allocate or distribute emissions resulting in additional uncertainty. We present a comparison of a downscaled FFCO2 emission data product (Open‐source Data Inventory for Anthropogenic CO2 (ODIAC)) to a bottom‐up estimate (Hestia) in four U.S. urban areas in an effort to better isolate and understand differences between the approaches. We find whole‐city differences ranging from −1.5% (Los Angeles Basin) to +20.8% (Salt Lake City). At the 1 km × 1 km spatial scale, comparisons reveal a low‐emission limit in ODIAC driven by saturation of the nighttime light spatial proxy. At this resolution, the median difference between the two approaches ranged from 47 to 84% depending upon city with correlations ranging from 0.34 to 0.68. The largest discrepancies were found for large point sources and the on‐road sector, suggesting that downscaled FFCO2 data products could be improved by incorporating independent large point‐source estimates and estimating on‐road sources with a relevant spatial surrogate. Progressively coarsening the spatial resolution improves agreement but greater than approximately 25 km2, there were diminishing returns to agreement suggesting a practical resolution when using downscaled approaches.Plain Language SummaryComparison of greenhouse gas emission approaches using globally available data in specific cities shows large differences when compared to greenhouse gas emission approaches constructed from local data sources. Differences are largest at the smaller scales compared to the whole city. This suggests a limit on the use of global greenhouse gas inventories when applied to urban areas.Key PointsThe difference between the global downscaled and bottom‐up estimates for the whole‐city domain exceeds 10% in three of the four citiesAverage grid cell FFCO2 differences at 1‐km2 range from 47% (Salt Lake City) to 84% (LA Basin) with spatial correlations of 0.34 to 0.68Average grid cell FFCO2 differences show diminishing agreement improvements when resolution is coarsened beyond 25 km2
dc.publisherCarbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy
dc.publisherWiley Periodicals, Inc.
dc.subject.othermitigation
dc.subject.otherdownscaled
dc.subject.otherbottom‐up
dc.subject.otherurban
dc.subject.otherfossil fuel CO2
dc.subject.otheruncertainty
dc.titleComparison of Global Downscaled Versus Bottom‐Up Fossil Fuel CO2 Emissions at the Urban Scale in Four U.S. Urban Areas
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148411/1/jgrd55209_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148411/2/jgrd55209.pdf
dc.identifier.doi10.1029/2018JD028859
dc.identifier.sourceJournal of Geophysical Research: Atmospheres
dc.identifier.citedreferenceOu, J., Liu, X., Li, X., Li, M., & Li, W. ( 2015 ). Evaluation of NPP‐VIIRS nighttime light data for mapping global fossil fuel combustion CO 2 emissions: A comparison with DMSP‐OLS nighttime light data. PLoS One, 10 ( 9 ), e0138310. https://doi.org/10.1371/journal.pone.0138310
dc.identifier.citedreferenceNewman, S., Xu, X., Gurney, K. R., Hsu, Y. K., Li, K. F., Jiang, X., Keeling, R., Feng, S., O'Keefe, D., Patarasuk, R., Wong, K. W., Rao, P., Fischer, M. L., & Yung, Y. L. ( 2016 ). Toward consistency between trends in bottom‐up CO 2 emissions and top‐down atmospheric measurements in the Los Angeles megacity. Atmospheric Chemistry and Physics, 16 ( 6 ), 3843 – 3863. https://doi.org/10.5194/acp‐16‐3843‐2016
dc.identifier.citedreferenceOda, T., Lauvaux, T., Lu, D., Rao, P., Miles, N. L., Richardson, S. J., & Gurney, K. R. ( 2017 ). On the impact of granularity of space‐based urban CO 2 emissions in urban atmospheric inversions: A case study for Indianapolis, IN. Elementa, 5 ( 28 ). http://doi.org/10.1525/elementa.146
dc.identifier.citedreferenceOda, T., & Maksyutov, S. ( 2011 ). A very high‐resolution (1 km × 1 km) global fossil fuel CO 2 emission inventory derived using a point source database and satellite observations of nighttime lights. Atmospheric Chemistry and Physics, 11 ( 2 ), 543 – 556. https://doi.org/10.5194/acp‐11‐543‐2011
dc.identifier.citedreferenceOda, T., Maksyutov, S., & Andres, R. J. ( 2018 ). The Open‐source Data Inventory for Anthropogenic CO 2, version 2016 (ODIAC2016): A global monthly fossil fuel CO 2 gridded emissions data product for tracer transport simulations and surface flux inversions. Earth System Science Data, 10 ( 1 ), 87 – 107. https://doi.org/10.5194/essd‐10‐87‐2018
dc.identifier.citedreferenceOlivier, J. G. J., Bloos, J. P. J., Berdowski, J. J. M., Visschedijk, A. J. H., & Bouwman, A. F. ( 1999 ). A 1990 global emission inventory of anthropogenic sources of carbon monoxide on 1° × 1° developed in the framework of EDGAR/GEIA. Chemosphere ‐ Global Change Science, 1 ( 1–3 ), 1 – 17. https://doi.org/10.1016/S1465‐9972(99)00019‐7
dc.identifier.citedreferenceParshall, L., Gurney, K., Hammer, S. A., Mendoza, D., Zhou, Y., & Geethakumar, S. ( 2010 ). Modeling energy consumption and CO 2 emissions at the urban scale: Methodological challenges and insights from the United States. Energy Policy, 38 ( 9 ), 4765 – 4782. https://doi.org/10.1016/j.enpol.2009.07.006
dc.identifier.citedreferencePatarasuk, R., Gurney, K. R., O’Keeffe, D., Song, Y., Huang, J., Rao, P., Buchert, M., Lin, J. C., Mendoza, D., & Ehleringer, J. R. ( 2016 ). Urban high‐resolution fossil fuel CO 2 emissions quantification and exploration of emission drivers for potential policy applications. Urban Ecosystems, 19 ( 3 ), 1013 – 1039. https://doi.org/10.1007/s11252‐016‐0553‐1
dc.identifier.citedreferencePétron, G., Tans, P., Frost, G., Chao, D., & Trainer, M. ( 2008 ). High‐resolution emissions of CO 2 from power generation in the USA. Journal of Geophysical Research, 113, G04008. https://doi.org/10.1029/2007JG000602
dc.identifier.citedreferencePincetl, S., Chester, M., Circella, G., Fraser, A., Mini, C., Murphy, S., Reyna, J., & Sivaraman, D. ( 2014 ). Enabling future sustainability transitions: An urban metabolism approach to Los Angeles Pincetl et al. Enabling Future Sustainability Transitions. Journal of Industrial Ecology, 18 ( 6 ), 871 – 882. https://doi.org/10.1111/jiec.12144
dc.identifier.citedreferencePorse, E., Derenski, J., Gustafson, H., Elizabeth, Z., & Pincetl, S. ( 2016 ). Structural, geographic, and social factors in urban building energy use: Analysis of aggregated account‐level consumption data in a megacity. Energy Policy, 96, 179 – 192. https://doi.org/10.1016/j.enpol.2016.06.002
dc.identifier.citedreferenceRamaswami, A., Hillman, T., Janson, B., Reiner, M., & Thomas, G. ( 2008 ). A demand‐centered, hybrid life‐cycle methodology for city‐scale greenhouse gas inventories. Environmental Science and Technology, 42 ( 17 ), 6455 – 6461. https://doi.org/10.1021/es702992q
dc.identifier.citedreferenceRayner, P. J., Raupach, M. R., Paget, M., Peylin, P., & Koffi, E. ( 2010 ). A new global gridded data set of CO 2 emissions from fossil fuel combustion: Methodology and evaluation. Journal of Geophysical Research, 115, D19306. https://doi.org/10.1029/2009JD013439
dc.identifier.citedreferenceRosenzweig, C., Solecki, W., Hammer, S. A., & Mehrotra, S. ( 2010 ). Cities lead the way in climate‐change action. Nature, 467 ( 7318 ), 909 – 911. https://doi.org/10.1038/467909a
dc.identifier.citedreferenceSeto, K., Bigio, A., Blanco, H., Delgado, G. C., Dewar, D., Huang, L., Inaba, A., Kansal, A., Lwasa, S., McMahon, J., Müller, D. B., Murakami, J., Nagendra, H., & Ramaswami, A. ( 2015 ). Mitigation of climate change. In C. B. Field et al. (Eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 361 – 409 ). United Kingdom and New York, NY: Cambridge University Press.
dc.identifier.citedreferenceShiga, Y. P., Michalak, A. M., Gourdji, S. M., Mueller, K. L., & Yadav, V. ( 2014 ). Detecting fossil fuel emissions patterns from subcontinental regions using North American in situ CO 2 measurements. Geophysical Research Letters, 41, 4381 – 4388. https://doi.org/10.1002/2014GL059684
dc.identifier.citedreferenceShu, Y., & Lam, N. S. N. ( 2011 ). Spatial disaggregation of carbon dioxide emissions from road traffic based on multiple linear regression model. Atmospheric Environment, 45 ( 3 ), 634 – 640. https://doi.org/10.1016/J.ATMOSENV.2010.10.037
dc.identifier.citedreferenceTrencher, G., Castán Broto, V., Takagi, T., Sprigings, Z., Nishida, Y., & Yarime, M. ( 2016 ). Innovative policy practices to advance building energy efficiency and retrofitting: Approaches, impacts and challenges in ten C40 cities. Environmental Science and Policy, 66, 353 – 365. https://doi.org/10.1016/j.envsci.2016.06.021
dc.identifier.citedreferenceTurnbull, J. C., Sweeney, C., Karion, A., Newberger, T., Lehman, S. J., Tans, P. P., Davis, K. J., Lauvaux, T., Miles, N. L., Richardson, S. J., Cambaliza, M. O., Shepson, P. B., Gurney, K., Patarasuk, R., & Razlivanov, I. ( 2015 ). Toward quantification and source sector identification of fossil fuel CO 2 emissions from an urban area: Results from the INFLUX experiment. Journal of Geophysical Research: Atmospheres, 120, 292 – 312. https://doi.org/10.1002/2014JD022555
dc.identifier.citedreferenceUmmel, K. ( 2012 ). Carma revisited: An updated database of carbon dioxide emissions from power plants worldwide (August 23, 2012), Center for Global Development Working Paper No. 304. Available at SSRN: https://ssrn.com/abstract=2226505 or https://doi.org/10.2139/ssrn.2226505
dc.identifier.citedreferenceUnited States Environmental Protection Agency ( 2017 ). Inventory of U.S. greenhouse gas emissions and sinks 1990–2015, EPA 430‐P‐17‐001.
dc.identifier.citedreferenceÜrge‐Vorsatz, D., Rosenzweig, C., Dawson, R. J., Rodriguez, R. S., Bai, X., Barau, A. S., Seto, K. C., & Dhakal, S. ( 2018 ). Locking in positive climate responses in cities. Nature Climate Change, 8 ( 3 ), 174 – 177, https://doi.org/10.1038/s41558‐018‐0100‐6
dc.identifier.citedreferenceVandeweghe, J. R., & Kennedy, C. ( 2007 ). A spatial analysis of residential greenhouse gas emissions in the Toronto census metropolitan area. Journal of Industrial Technology, 11 ( 2 ).
dc.identifier.citedreferenceWang, R., Tao, S., Ciais, P., Shen, H. Z., Huang, Y., Chen, H., Shen, G. F., Wang, B., Li, W., Zhang, Y. Y., Lu, Y., Zhu, D., Chen, Y. C., Liu, X. P., Wang, W. T., Liu, W. X., Li, B. G., & Piao, S. L. ( 2013 ). High‐resolution mapping of combustion processes and implications for CO 2 emissions, Atmos. Chem. Phys., 13, 5189‐5203Watts, M. (2017) cities spearhead climate action. Nature Climate Change, 7, 537 – 538.
dc.identifier.citedreferenceWatts, M. ( 2017 ). Cities spearhead climate action. Nature Climate Change, 7, 937 – 938.
dc.identifier.citedreferenceWu, L., Broquet, G., Ciais, P., Bellassen, V., Vogel, F., Chevallier, F., Xueref‐Remy, I., & Wang, Y. ( 2016 ). What would dense atmospheric observation networks bring to the quantification of city CO 2 emissions? Atmospheric Chemistry and Physics, 16 ( 12 ), 7743 – 7771. https://doi.org/10.5194/acp‐16‐7743‐2016
dc.identifier.citedreferenceZhang, X., Gurney, K. R., Rayner, P., Baker, D., & Liu, Y.‐P. ( 2015 ). Sensitivity of simulated CO 2 concentration to sub‐annual variations in fossil fuel CO 2 emissions. Atmospheric Chemistry and Physics Discussions, 15 ( 14 ), 20,679 – 20,708. https://doi.org/10.5194/acpd‐15‐20679‐2015
dc.identifier.citedreferenceZhao, T., Horner, M. W., & Sulik, J. ( 2011 ). A geographic approach to sectoral carbon inventory: Examining the balance between consumption‐based emissions and land‐use carbon sequestration in Florida. Annals of the Association of American Geographers, 101 ( 4 ), 752 – 763. https://doi.org/10.1080/00045608.2011.567936
dc.identifier.citedreferenceZhou, Y., & Gurney, K. ( 2010 ). A new methodology for quantifying on‐site residential and commercial fossil fuel CO 2 emissions at the building spatial scale and hourly time scale. Carbon Management, 1 ( 1 ), 45 – 56. https://doi.org/10.4155/cmt.10.7
dc.identifier.citedreferenceAndres, R. J., Boden, T. A., Bréon, F., Ciais, P., Davis, S., Erickson, D., Gregg, J. S., Jacobson, A., Marland, G., Miller, J., Oda, T., Olivier, J. G. J., Raupach, M. R., Rayner, P., & Treanton, K. ( 2012 ). A synthesis of carbon dioxide emissions from fossil‐fuel combustion. Biogeosciences Discussions, 9 ( 1 ), 1299 – 1376. https://doi.org/10.5194/bgd‐9‐1299‐2012
dc.identifier.citedreferenceAndres, R. J., Boden, T. A., & Higdon, D. M. ( 2016 ). Gridded uncertainty in fossil fuel carbon dioxide emission maps, a CDIAC example. Atmospheric Chemistry and Physics, 16 ( 23 ), 14,979 – 14,995. https://doi.org/10.5194/acp‐16‐14979‐2016, https://doi.org/10.5194/acp‐16‐14979‐2016
dc.identifier.citedreferenceAndres, R. J., Fielding, D. J., Marland, G., Boden, T. A., Kumar, N., & Kearney, A. T. ( 1999 ). Carbon dioxide emissions from fossil fuel use, 1751–1950. Tellus Series B: Chemical and Physical Meteorology, 51 ( 4 ), 759 – 765. https://doi.org/10.1034/j.1600‐0889.1999.t01‐3‐00002.x
dc.identifier.citedreferenceAndres, R. J., Marland, G., Fung, I., & Matthews, E. ( 1996 ). A 1° × 1° distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950–1990. Global Biogeochemical Cycles, 10 ( 3 ), 419 – 429. https://doi.org/10.1029/96GB01523
dc.identifier.citedreferenceAsefi‐Najafabady, S., Rayner, P. J., Gurney, K. R., McRobert, A., Song, Y., Coltin, K., & Baugh, K. ( 2014 ). A multiyear, global gridded fossil fuel CO 2 emission data product: Evaluation and analysis of results. Journal of Geophysical Research: Atmospheres, 119, 10,213 – 10,231. https://doi.org/10.1002/2013JD021296
dc.identifier.citedreferenceBoden, T. A., Marland, G., & Andres, R. J. ( 1995 ). Estimates of global, regional, and national annual CO 2 emissions from fossil‐fuel burning, hydraulic cement production, and gas flaring: 1950–1992. ORNL/CDIAC‐90, NDP‐30/R6. Oak Ridge, TN: Oak Ridge National Laboratory, U.S. Department of Energy.
dc.identifier.citedreferenceBoden, T. A., Marland, G., & Andres, R. J. ( 2013 ). Global, Regional, and National Fossil‐Fuel CO 2 Emissions (Vol. 53, pp. 1689 – 1699 ). Oak Ridge, TN: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy. https://doi.org/10.3334/CDIAC/00001_V2013
dc.identifier.citedreferenceBoden, T. A., Marland, G., & Andres, R. J. ( 2017 ). Global, Regional, and National Fossil‐Fuel CO 2 Emissions (Vol. 53, pp. 1689 – 1699 ). Oak Ridge, TN: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy. https://doi.org/10.3334/CDIAC/00001_V2017
dc.identifier.citedreferenceBrioude, J., Angevine, W. M., Ahmadov, R., Kim, S. W., Evan, S., McKeen, S. A., Hsie, E.‐Y., Frost, G. J., Neuman, J. A., Pollack, I. B., Peischl, J., Ryerson, T. B., Holloway, J., Brown, S. S., Nowak, J. B., Roberts, J. M., Wofsy, S. C., Santoni, G. W., Oda, T., & Trainer, M. ( 2013 ). Top‐down estimate of surface flux in the Los Angeles Basin using a mesoscale inverse modeling technique: Assessing anthropogenic emissions of CO, NO x and CO 2 and their impacts. Atmospheric Chemistry and Physics, 13 ( 7 ), 3661 – 3677. https://doi.org/10.5194/acp‐13‐3661‐2013
dc.identifier.citedreferenceBrondfield, M. N., Hutyra, L. R., Gately, C. K., Raciti, S. M., & Peterson, S. a. ( 2012 ). Modeling and validation of on‐road CO 2 emissions inventories at the urban regional scale. Environmental Pollution, 170, 113 – 123. https://doi.org/10.1016/j.envpol.2012.06.003
dc.identifier.citedreferenceBulkeley, H. ( 2010 ). Cities and the governing of climate change. Annual Review of Environment and Resources, 35 ( 1 ), 229 – 253. https://doi.org/10.1146/annurev‐environ‐072809‐101747
dc.identifier.citedreferenceDoll, C. H., Muller, J.‐P., & Elvidge, C. D. ( 2000 ). Night‐time imagery as a tool for global mapping of socioeconomic parameters and greenhouse gas emissions. Ambio: A Journal of the Human Environment, 29 ( 3 ), 157 – 162. https://doi.org/10.1579/0044‐7447‐29.3.157
dc.identifier.citedreferenceDuren, R. M., & Miller, C. E. ( 2012 ). Measuring the carbon emissions of megacities. Nature Climate Change, 2 ( 8 ), 560 – 562. https://doi.org/10.1038/nclimate1629
dc.identifier.citedreferenceEngelen, R. J., Denning, A. S., & Gurney, K. R. ( 2002 ). On error estimation in atmospheric CO 2 inversions. Journal of Geophysical Research, 107 ( D22 ), 4635. https://doi.org/10.1029/2002JD002195
dc.identifier.citedreferenceEnting, I. ( 2002 ). Inverse Problems in Atmospheric Constituent Transport. New York: Cambridge University Press. https://doi.org/10.1017/CBO9780511535741
dc.identifier.citedreferenceErickson, D. J., Mills, R. T., Gregg, J., Blasing, T. J., Hoffman, F. M., Andres, R. J., Devries, M., Zhu, Z., & Kawa, S. R. ( 2008 ). An estimate of monthly global emissions of anthropogenics CO 2: Impact on the seasonal cycle of atmospheric CO 2. Journal of Geophysical Research, 113, G01023. https://doi.org/10.1029/2007JG000435
dc.identifier.citedreferenceFederal Register ( 2015 ). 40 CFR Part 60, Carbon Pollution Emission Guidelines for Existing Stationary Sources: Electric Utility Generating Units; Final Rule Environmental Protection Agency.
dc.identifier.citedreferenceFeng, S., Lauvaux, T., Newman, S., Rao, P., Ahmadov, R., Deng, A., Díaz‐Isaac, L. I., Duren, R. M., Fischer, M. L., Gerbig, C., Gurney, K. R., Huang, J., Jeong, S., Li, Z., Miller, C. E., apos, D. K., Patarasuk, R., Sander, S. P., Song, Y., Wong, K. W., & Yung, Y. L. ( 2016 ). Los Angeles megacity: A high‐resolution land‐atmosphere modelling system for urban CO 2 emissions. Atmospheric Chemistry and Physics, 16 ( 14 ), 9019 – 9045. https://doi.org/10.5194/acp‐16‐9019‐2016
dc.identifier.citedreferenceGately, C. K., & Hutyra, L. R. ( 2017 ). Large uncertainties in urban‐scale carbon emissions. Journal of Geophysical Research: Atmospheres, 122, 11,242 – 11,260. https://doi.org/10.1002/2017JD027359
dc.identifier.citedreferenceGately, C. K., Hutyra, L. R., Wing, I. S., & Brondfield, M. N. ( 2013 ). A bottom up approach to on‐road CO 2 emissions estimates: Improved spatial accuracy and applications for regional planning. Environmental Science and Technology, 47 ( 5 ), 2423 – 2430. https://doi.org/10.1021/es304238v
dc.identifier.citedreferenceGhosh, T., Elvidge, C. D., Sutton, P. C., Baugh, K. E., Ziskin, D., & Tuttle, B. T. ( 2010 ). Creating a global grid of distributed fossil fuel CO 2 emissions from nighttime satellite imagery. Energies, 3 ( 12 ), 1895 – 1913. https://doi.org/10.3390/en3121895
dc.identifier.citedreferenceGlobal Covenant of Mayors (GCoM) ( 2018 ). https://www.globalcovenantofmayors.org/
dc.identifier.citedreferenceGoodfriend, W., Reyes, B., & Pac, S. ( 2017 ). 2015 San Francisco Geographic Greenhouse Gas Emissions Inventory at a Glance, San Francisco Department of Environment, Climate Program. Retrieved from https://sfenvironment.org/sites/default/files/fliers/files/sfe_cc_2015_community_inventory_report.pdf (accessed August 31, 2018).
dc.identifier.citedreferenceGregg, J. S., & Andres, R. J. ( 2008 ). A method for estimating the temporal and spatial patterns of carbon dioxide emissions from national fossil‐fuel consumption. Tellus Series B: Chemical and Physical Meteorology, 60 ( B1 ), 1 – 10. https://doi.org/10.1111/j.1600‐0889.2007.00319.x
dc.identifier.citedreferenceGregg, J. S., Losey, L. M., Andres, R. J., Blasing, T. J., & Marland, G. ( 2009 ). The temporal and spatial distribution of carbon dioxide emissions from fossil‐fuel use in North America. Journal of Applied Meteorology and Climatology, 48 ( 12 ), 2528 – 2542. https://doi.org/10.1175/2009JAMC2115.1
dc.identifier.citedreferenceGurney, K. R. ( 2014 ). The urban landscape: Recent research quantifying carbon emissions down to the street level. Carbon Management, 5 ( 3 ), 309 – 320. https://doi.org/10.1080/17583004.2014.986849
dc.identifier.citedreferenceGurney, K. R., Chen, Y. H., Maki, T., Kawa, S. R., Andrews, A., & Zhu, Z. ( 2005 ). Sensitivity of atmospheric CO 2 inversions to seasonal and interannual variations in fossil fuel emissions. Journal of Geophysical Research, 110, D10308. https://doi.org/10.1029/2004JD005373
dc.identifier.citedreferenceGurney, K. R., Huang, J., & Coltin, K. ( 2016 ). Bias present in US federal agency power plant CO 2 emissions data and implications for the US clean power plan. Environmental Research Letters, 11 ( 6 ). https://doi.org/10.1088/1748‐9326/11/6/064005
dc.identifier.citedreferenceGurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D., Bousquet, P., Bruhwiler, L., Chen, Y. H., Ciais, P., Fan, S., Fung, I. Y., Gloor, M., Heimann, M., Higuchi, K., John, J., Maki, T., Maksyutov, S., Masarie, K., Peylin, P., Prather, M., Pak, B. C., Randerson, J., Sarmiento, J., Taguchi, S., Takahashi, T., & Yuen, C. W. ( 2002 ). Towards robust regional estimates of CO 2 sources and sinks using atmospheric transport models. Nature, 415 ( 6872 ), 626 – 630. https://doi.org/10.1038/415626a
dc.identifier.citedreferenceGurney, K. R., Liang, J., Patarasuk, R., O’Keeffe, D., Huang, J., Hutchins, M., Lauvaux, T., Turnbull, J. C., & Shepson, P. B. ( 2017 ). Reconciling the differences between a bottom‐up and inverse‐estimated FFCO 2 emissions estimate in a large US urban area. Elementa: Science of the Anthropocene, 5 ( 0 ), 44. https://doi.org/10.1525/elementa.137
dc.identifier.citedreferenceGurney, K. R., Mendoza, D. L., Zhou, Y., Fischer, M. L., Miller, C. C., Geethakumar, S., & de la Rue du Can, S. ( 2009 ). High resolution fossil fuel combustion CO 2 emission fluxes for the United States. Environmental Science & Technology, 43 ( 14 ), 5535 – 5541. https://doi.org/10.1021/es900806c
dc.identifier.citedreferenceGurney, K. R., Razlivanov, I., Song, Y., Zhou, Y., Benes, B., & Abdul‐Massih, M. ( 2012 ). Quantification of fossil fuel CO 2 emissions on the building/street scale for a large U.S. City. Environmental Science and Technology, 46 ( 21 ), 12,194 – 12,202. https://doi.org/10.1021/es3011282
dc.identifier.citedreferenceGurney, K. R., Romero‐Lankao, P., Seto, K. C., Hutyra, L. R., Duren, R., Kennedy, C., Grimm, N. B., Ehleringer, J. R., Marcotullio, P., Hughes, S., Pincetl, S., Chester, M. V., Runfola, D. M., Feddema, J. J., & Sperling, J. ( 2015 ). Climate change: Track urban emissions on a human scale. Nature, 525 ( 7568 ), 179 – 181. https://doi.org/10.1038/525179a
dc.identifier.citedreferenceHartmann, D. ( 1998 ). Global warming: The complete briefing. Eos, Transactions of the American Geophysical Union, 79 ( 33 ), 396. https://doi.org/10.1029/98EO00304
dc.identifier.citedreferenceHogue, S., Marland, E., Andres, R. J., Marland, G., & Woodard, D. ( 2016 ). Uncertainty in gridded CO 2 emissions estimates. Earth’s Future, 4, 225 – 239. https://doi.org/10.1002/2015EF000343
dc.identifier.citedreferenceHsu, A., Moffat, A. S., Weinfurter, A. J., & Schwartz, J. D. ( 2015 ). Towards a new climate diplomacy. Nature Climate Change, 5 ( 6 ), 501 – 503. https://doi.org/10.1038/nclimate2594
dc.identifier.citedreferenceHsu, A., Weinfurter, A. J., & Xu, K. ( 2017 ). Aligning subnational climate actions for the new post‐Paris climate regime. Climatic Change, 142 ( 3–4 ), 419 – 432. https://doi.org/10.1007/s10584‐017‐1957‐5
dc.identifier.citedreferenceHutchins, M. G., Colby, J. D., Marland, G., & Marland, E. ( 2016 ). A comparison of five high‐resolution spatially‐explicit, fossil‐fuel, carbon dioxide emission inventories for the United States. Mitigation and Adaptation Strategies for Global Change, 22 ( 6 ), 947 – 972. https://doi.org/10.1007/s11027‐016‐9709‐9
dc.identifier.citedreferenceHutyra, L. R., Duren, R., Gurney, K. R., Grimm, N., Kort, E. A., Larson, E., & Shrestha, G. ( 2014 ). Urbanization and the carbon cycle: Current capabilities and research outlook from the natural sciences perspective. Earth’s Future, 2, 473 – 495. https://doi.org/10.1002/2014EF000255
dc.identifier.citedreferenceJanssens‐Maenhout, G., Dentener, F., van Aardenne, J., Monni, S., Pagliari, V., Orlandini, L., Klimont, S., Kurokawa, J., Akimoto, H., Ohara, T., Wankmuller, R., Battye, B., Grano, D., Zuber, A., Keating, T. ( 2012 ). EDGAR‐HTAP: A harmonized gridded air pollution emission dataset based on national inventories, JRC scientific and technical reports, EUA 25229 EN‐2012.
dc.identifier.citedreferenceJones, C., & Kammen, D. M. ( 2014 ). Spatial distribution of U.S. household carbon footprints reveals suburbanization undermines greenhouse gas benefits of urban population density. Environmental Science and Technology, 48 ( 2 ), 895 – 902. https://doi.org/10.1021/es4034364
dc.identifier.citedreferenceKennedy, C., Steinberger, J., Gasson, B., Hansen, Y., Hillman, T., Havranek, M., Pataki, D., Phdungsilp, A., Ramaswami, A., & Villalba Mendez, G. ( 2009 ). Greenhouse gas emissions from global cities. Environmental Science & Technology, 43 ( 19 ), 7297 – 7302. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19848137, https://doi.org/10.1021/es900213p
dc.identifier.citedreferenceLauvaux, T., Miles, N. L., Deng, A., Richardson, S. J., Cambaliza, M. O., Davis, K. J., Gaudet, B., Gurney, K. R., Huang, J., O’Keeffe, D., Song, Y., Karion, A., Oda, T., Patarasuk, R., Sarmiento, D., Shepson, P., Sweeney, C., Turnbull, J., & Wu, K. ( 2016 ). High‐resolution atmospheric inversion of urban CO 2 emissions during the dormant season of the Indianapolis flux experiment (INFLUX). Journal of Geophysical Research: Atmospheres, 121, 5213 – 5236. https://doi.org/10.1002/2015JD024473
dc.identifier.citedreferenceLe Quéré, C., Andres, R. J., Boden, T., Conway, T., Houghton, R. A., House, J. I., Marland, G., Peters, G. P., van der Werf, G. R., Ahlström, A., Andrew, R. M., Bopp, L., Canadell, J. G., Ciais, P., Doney, S. C., Enright, C., Friedlingstein, P., Huntingford, C., Jain, A. K., Jourdain, C., Kato, E., Keeling, R. F., Klein Goldewijk, K., Levis, S., Levy, P., Lomas, M., Poulter, B., Raupach, M. R., Schwinger, J., Sitch, S., Stocker, B. D., Viovy, N., Zaehle, S., & Zeng, N. ( 2013 ). The global carbon budget 1959–2011. Earth System Science Data, 5 ( 1 ), 165 – 185. https://doi.org/10.5194/essd‐5‐165‐2013
dc.identifier.citedreferenceLevin, N., & Duke, Y. ( 2012 ). High spatial resolution night‐time light images for demographic and socio‐economic studies. Remote Sensing of Environment, 119, 1 – 10. https://doi.org/10.1016/j.rse.2011.12.005
dc.identifier.citedreferenceLiang, J., Gurney, K. R., O’Keeffe, D., Hutchins, M., Patarasuk, R., Huang, J., Song, Y., & Rao, P. ( 2017 ). Optimizing the spatial resolution for urban CO 2 flux studies using the Shannon entropy. Atmosphere, 8 ( 12 ). https://doi.org/10.3390/atmos8050090
dc.identifier.citedreferenceLiu, J., Bowman, K., Schimel, D., Parazoo, N., Jiang, Z., Lee, M., Bloom, A., Wunch, D., Gurney, K. R., Menemenlis, D., Girerach, M., Crisp, D., & Eldering, A. ( 2017 ). Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño. Science, 358 ( 6360 ), eaam5690. https://doi.org/10.1126/science.aam5690
dc.identifier.citedreferenceMacknick, J. ( 2011 ). Energy and CO 2 emission data uncertainties. Carbon Management, 2 ( 2 ), 189 – 205. https://doi.org/10.4155/cmt.11.10
dc.identifier.citedreferenceMadhani, A. ( 2017 ). Forget Paris: U.S. mayors sign their own pact after Trump ditches climate accord. USA Today.
dc.identifier.citedreferenceMarland, G., Rotty, R. M., & Treat, N. L. ( 1985 ). CO 2 from fossil fuel burning: Global distribution of emissions. Tellus B, 37B ( 4–5 ), 243 – 258. https://doi.org/10.1111/j.1600‐0889.1985.tb00073.x
dc.identifier.citedreferenceSchuh, A. E., Denning, A. S., Corbin, K. D., Baker, I. T., Uliasz, M., Parazoo, N., Andrews, A. E., & Worth, D. E. J. ( 2010 ). A regional high‐resolution carbon flux inversion of North American for 2004. Biogeosciences, 7 ( 5 ), 1625 – 1644. https://doi.org/10.5194/bg‐7‐1625‐2010
dc.identifier.citedreferenceMcKain, K., Wofsy, S. C., Nehrkorn, T., Eluszkiewicz, J., Ehleringer, J. R., & Stephens, B. B. ( 2012 ). Assessment of ground‐based atmospheric observations for verification of greenhouse gas emissions from an urban region. Proceedings of the National Academy of Sciences, 109 ( 22 ), 8423 – 8428. https://doi.org/10.1073/pnas.1116645109
dc.identifier.citedreferenceMitchell, L. E., Lin, J. C., Bowling, D. R., Pataki, D. E., Strong, C., Schauer, A. J., Bares, R., Bush, S. E., Stephens, B. B., Mendoza, D., Mallia, D., Holland, L., Gurney, K. R., & Ehleringer, J. R. ( 2018 ). Long‐term urban carbon dioxide observations reveal spatial and temporal dynamics related to urban characteristics and growth. Proceedings of the National Academy of Sciences of the United States of America, 115 ( 12 ), 2912 – 2917. https://doi.org/10.1073/pnas.1702393115
dc.identifier.citedreferenceNassar, R., Napier‐Linton, L., Gurney, K. R., Andres, R. J., Oda, T., Vogel, F. R., & Deng, F. ( 2013 ). Improving the temporal and spatial distribution of CO 2 emissions from global fossil fuel emission data sets. Journal of Geophysical Research: Atmospheres, 118, 917 – 933. https://doi.org/10.1029/2012JD018196
dc.identifier.citedreferenceNew York Times ( 2017 ). U.S. Climate Change Policy: Made in California, The New York Times, September 27, 2017. Retrieved from https://www.nytimes.com/2017/09/27/climate/california‐climate‐change.html
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.